/* * Copyright (c) 2012, 2015, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ /* * Micro-benchmark for Math.pow() and Math.exp() */ import jdk.test.lib.Utils; import java.util.Random; public class Test7177917 { static double d; static final Random R = Utils.getRandomInstance(); static long m_pow(double[][] values) { double res = 0; long start = System.nanoTime(); for (int i = 0; i < values.length; i++) { res += Math.pow(values[i][0], values[i][1]); } long stop = System.nanoTime(); d = res; return (stop - start) / 1000; } static long m_exp(double[] values) { double res = 0; long start = System.nanoTime(); for (int i = 0; i < values.length; i++) { res += Math.exp(values[i]); } long stop = System.nanoTime(); d = res; return (stop - start) / 1000; } static double[][] pow_values(int nb) { double[][] res = new double[nb][2]; for (int i = 0; i < nb; i++) { double ylogx = (1 + (R.nextDouble() * 2045)) - 1023; // 2045 rather than 2046 as a safety margin double x = Math.abs(Double.longBitsToDouble(R.nextLong())); while (x != x) { x = Math.abs(Double.longBitsToDouble(R.nextLong())); } double logx = Math.log(x) / Math.log(2); double y = ylogx / logx; res[i][0] = x; res[i][1] = y; } return res; } static double[] exp_values(int nb) { double[] res = new double[nb]; for (int i = 0; i < nb; i++) { double ylogx = (1 + (R.nextDouble() * 2045)) - 1023; // 2045 rather than 2046 as a safety margin double x = Math.E; double logx = Math.log(x) / Math.log(2); double y = ylogx / logx; res[i] = y; } return res; } static public void main(String[] args) { { // warmup double[][] warmup_values = pow_values(10); m_pow(warmup_values); for (int i = 0; i < 20000; i++) { m_pow(warmup_values); } // test pow perf double[][] values = pow_values(1000000); System.out.println("==> POW " + m_pow(values)); // force uncommon trap double[][] nan_values = new double[1][2]; nan_values[0][0] = Double.NaN; nan_values[0][1] = Double.NaN; m_pow(nan_values); // force recompilation for (int i = 0; i < 20000; i++) { m_pow(warmup_values); } // test pow perf again System.out.println("==> POW " + m_pow(values)); } { // warmup double[] warmup_values = exp_values(10); m_exp(warmup_values); for (int i = 0; i < 20000; i++) { m_exp(warmup_values); } // test pow perf double[] values = exp_values(1000000); System.out.println("==> EXP " + m_exp(values)); // force uncommon trap double[] nan_values = new double[1]; nan_values[0] = Double.NaN; m_exp(nan_values); // force recompilation for (int i = 0; i < 20000; i++) { m_exp(warmup_values); } // test pow perf again System.out.println("==> EXP " + m_exp(values)); } } }