/* * Copyright (c) 2020, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ /* * @test * @run testng TestSpliterator */ import jdk.incubator.foreign.MemoryAddress; import jdk.incubator.foreign.MemoryLayout; import jdk.incubator.foreign.MemoryLayouts; import jdk.incubator.foreign.MemorySegment; import jdk.incubator.foreign.SequenceLayout; import java.lang.invoke.VarHandle; import java.util.LinkedList; import java.util.List; import java.util.Map; import java.util.Spliterator; import java.util.concurrent.CountedCompleter; import java.util.concurrent.RecursiveTask; import java.util.concurrent.atomic.AtomicLong; import java.util.function.Consumer; import java.util.function.Supplier; import java.util.stream.LongStream; import java.util.stream.StreamSupport; import org.testng.annotations.*; import static jdk.incubator.foreign.MemorySegment.*; import static org.testng.Assert.*; public class TestSpliterator { static final VarHandle INT_HANDLE = MemoryLayout.ofSequence(MemoryLayouts.JAVA_INT) .varHandle(int.class, MemoryLayout.PathElement.sequenceElement()); final static int CARRIER_SIZE = 4; @Test(dataProvider = "splits") public void testSum(int size, int threshold) { SequenceLayout layout = MemoryLayout.ofSequence(size, MemoryLayouts.JAVA_INT); //setup MemorySegment segment = MemorySegment.allocateNative(layout); for (int i = 0; i < layout.elementCount().getAsLong(); i++) { INT_HANDLE.set(segment.baseAddress(), (long) i, i); } long expected = LongStream.range(0, layout.elementCount().getAsLong()).sum(); //serial long serial = sum(0, segment); assertEquals(serial, expected); //parallel counted completer long parallelCounted = new SumSegmentCounted(null, MemorySegment.spliterator(segment, layout), threshold).invoke(); assertEquals(parallelCounted, expected); //parallel recursive action long parallelRecursive = new SumSegmentRecursive(MemorySegment.spliterator(segment, layout), threshold).invoke(); assertEquals(parallelRecursive, expected); //parallel stream long streamParallel = StreamSupport.stream(MemorySegment.spliterator(segment, layout), true) .reduce(0L, TestSpliterator::sumSingle, Long::sum); assertEquals(streamParallel, expected); segment.close(); } public void testSumSameThread() { SequenceLayout layout = MemoryLayout.ofSequence(1024, MemoryLayouts.JAVA_INT); //setup MemorySegment segment = MemorySegment.allocateNative(layout); for (int i = 0; i < layout.elementCount().getAsLong(); i++) { INT_HANDLE.set(segment.baseAddress(), (long) i, i); } long expected = LongStream.range(0, layout.elementCount().getAsLong()).sum(); //check that a segment w/o ACQUIRE access mode can still be used from same thread AtomicLong spliteratorSum = new AtomicLong(); spliterator(segment.withAccessModes(MemorySegment.READ), layout) .forEachRemaining(s -> spliteratorSum.addAndGet(sumSingle(0L, s))); assertEquals(spliteratorSum.get(), expected); } static long sumSingle(long acc, MemorySegment segment) { return acc + (int)INT_HANDLE.get(segment.baseAddress(), 0L); } static long sum(long start, MemorySegment segment) { long sum = start; MemoryAddress base = segment.baseAddress(); int length = (int)segment.byteSize(); for (int i = 0 ; i < length / CARRIER_SIZE ; i++) { sum += (int)INT_HANDLE.get(base, (long)i); } return sum; } static class SumSegmentCounted extends CountedCompleter { final long threshold; long localSum = 0; List children = new LinkedList<>(); private Spliterator segmentSplitter; SumSegmentCounted(SumSegmentCounted parent, Spliterator segmentSplitter, long threshold) { super(parent); this.segmentSplitter = segmentSplitter; this.threshold = threshold; } @Override public void compute() { Spliterator sub; while (segmentSplitter.estimateSize() > threshold && (sub = segmentSplitter.trySplit()) != null) { addToPendingCount(1); SumSegmentCounted child = new SumSegmentCounted(this, sub, threshold); children.add(child); child.fork(); } segmentSplitter.forEachRemaining(slice -> { localSum += sumSingle(0, slice); }); tryComplete(); } @Override public Long getRawResult() { long sum = localSum; for (SumSegmentCounted c : children) { sum += c.getRawResult(); } return sum; } } static class SumSegmentRecursive extends RecursiveTask { final long threshold; private final Spliterator splitter; private long result; SumSegmentRecursive(Spliterator splitter, long threshold) { this.splitter = splitter; this.threshold = threshold; } @Override protected Long compute() { if (splitter.estimateSize() > threshold) { SumSegmentRecursive sub = new SumSegmentRecursive(splitter.trySplit(), threshold); sub.fork(); return compute() + sub.join(); } else { splitter.forEachRemaining(slice -> { result += sumSingle(0, slice); }); return result; } } } @DataProvider(name = "splits") public Object[][] splits() { return new Object[][] { { 10, 1 }, { 100, 1 }, { 1000, 1 }, { 10000, 1 }, { 10, 10 }, { 100, 10 }, { 1000, 10 }, { 10000, 10 }, { 10, 100 }, { 100, 100 }, { 1000, 100 }, { 10000, 100 }, { 10, 1000 }, { 100, 1000 }, { 1000, 1000 }, { 10000, 1000 }, { 10, 10000 }, { 100, 10000 }, { 1000, 10000 }, { 10000, 10000 }, }; } @DataProvider(name = "accessScenarios") public Object[][] accessScenarios() { SequenceLayout layout = MemoryLayout.ofSequence(16, MemoryLayouts.JAVA_INT); var mallocSegment = MemorySegment.allocateNative(layout); Map>,Integer> l = Map.of( () -> spliterator(mallocSegment.withAccessModes(ALL_ACCESS), layout), ALL_ACCESS, () -> spliterator(mallocSegment.withAccessModes(0), layout), 0, () -> spliterator(mallocSegment.withAccessModes(READ), layout), READ, () -> spliterator(mallocSegment.withAccessModes(CLOSE), layout), 0, () -> spliterator(mallocSegment.withAccessModes(READ|WRITE), layout), READ|WRITE, () -> spliterator(mallocSegment.withAccessModes(READ|WRITE|ACQUIRE), layout), READ|WRITE|ACQUIRE, () -> spliterator(mallocSegment.withAccessModes(READ|WRITE|ACQUIRE|HANDOFF), layout), READ|WRITE|ACQUIRE|HANDOFF ); return l.entrySet().stream().map(e -> new Object[] { e.getKey(), e.getValue() }).toArray(Object[][]::new); } static Consumer assertAccessModes(int accessModes) { return segment -> { assertTrue(segment.hasAccessModes(accessModes & ~CLOSE)); assertEquals(segment.accessModes(), accessModes & ~CLOSE); }; } @Test(dataProvider = "accessScenarios") public void testAccessModes(Supplier> spliteratorSupplier, int expectedAccessModes) { Spliterator spliterator = spliteratorSupplier.get(); spliterator.forEachRemaining(assertAccessModes(expectedAccessModes)); spliterator = spliteratorSupplier.get(); do { } while (spliterator.tryAdvance(assertAccessModes(expectedAccessModes))); splitOrConsume(spliteratorSupplier.get(), assertAccessModes(expectedAccessModes)); } static void splitOrConsume(Spliterator spliterator, Consumer consumer) { var s1 = spliterator.trySplit(); if (s1 != null) { splitOrConsume(s1, consumer); splitOrConsume(spliterator, consumer); } else { spliterator.forEachRemaining(consumer); } } }