/* * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "ci/ciConstant.hpp" #include "ci/ciEnv.hpp" #include "ci/ciField.hpp" #include "ci/ciInstance.hpp" #include "ci/ciInstanceKlass.hpp" #include "ci/ciMethod.hpp" #include "ci/ciNullObject.hpp" #include "ci/ciReplay.hpp" #include "ci/ciUtilities.hpp" #include "classfile/systemDictionary.hpp" #include "classfile/vmSymbols.hpp" #include "code/codeCache.hpp" #include "code/scopeDesc.hpp" #include "compiler/compileBroker.hpp" #include "compiler/compileLog.hpp" #include "compiler/compilerOracle.hpp" #include "gc/shared/collectedHeap.inline.hpp" #include "interpreter/linkResolver.hpp" #include "memory/allocation.inline.hpp" #include "memory/oopFactory.hpp" #include "memory/universe.inline.hpp" #include "oops/methodData.hpp" #include "oops/objArrayKlass.hpp" #include "oops/objArrayOop.inline.hpp" #include "oops/oop.inline.hpp" #include "prims/jvmtiExport.hpp" #include "runtime/init.hpp" #include "runtime/reflection.hpp" #include "runtime/sharedRuntime.hpp" #include "runtime/thread.inline.hpp" #include "trace/tracing.hpp" #include "utilities/dtrace.hpp" #include "utilities/macros.hpp" #ifdef COMPILER1 #include "c1/c1_Runtime1.hpp" #endif #ifdef COMPILER2 #include "opto/runtime.hpp" #endif // ciEnv // // This class is the top level broker for requests from the compiler // to the VM. ciObject* ciEnv::_null_object_instance; #define WK_KLASS_DEFN(name, ignore_s, ignore_o) ciInstanceKlass* ciEnv::_##name = NULL; WK_KLASSES_DO(WK_KLASS_DEFN) #undef WK_KLASS_DEFN ciSymbol* ciEnv::_unloaded_cisymbol = NULL; ciInstanceKlass* ciEnv::_unloaded_ciinstance_klass = NULL; ciObjArrayKlass* ciEnv::_unloaded_ciobjarrayklass = NULL; jobject ciEnv::_ArrayIndexOutOfBoundsException_handle = NULL; jobject ciEnv::_ArrayStoreException_handle = NULL; jobject ciEnv::_ClassCastException_handle = NULL; #ifndef PRODUCT static bool firstEnv = true; #endif /* PRODUCT */ // ------------------------------------------------------------------ // ciEnv::ciEnv ciEnv::ciEnv(CompileTask* task, int system_dictionary_modification_counter) : _ciEnv_arena(mtCompiler) { VM_ENTRY_MARK; // Set up ciEnv::current immediately, for the sake of ciObjectFactory, etc. thread->set_env(this); assert(ciEnv::current() == this, "sanity"); _oop_recorder = NULL; _debug_info = NULL; _dependencies = NULL; _failure_reason = NULL; _compilable = MethodCompilable; _break_at_compile = false; _compiler_data = NULL; #ifndef PRODUCT assert(!firstEnv, "not initialized properly"); #endif /* !PRODUCT */ _system_dictionary_modification_counter = system_dictionary_modification_counter; _num_inlined_bytecodes = 0; assert(task == NULL || thread->task() == task, "sanity"); _task = task; _log = NULL; // Temporary buffer for creating symbols and such. _name_buffer = NULL; _name_buffer_len = 0; _arena = &_ciEnv_arena; _factory = new (_arena) ciObjectFactory(_arena, 128); // Preload commonly referenced system ciObjects. // During VM initialization, these instances have not yet been created. // Assertions ensure that these instances are not accessed before // their initialization. assert(Universe::is_fully_initialized(), "should be complete"); oop o = Universe::null_ptr_exception_instance(); assert(o != NULL, "should have been initialized"); _NullPointerException_instance = get_object(o)->as_instance(); o = Universe::arithmetic_exception_instance(); assert(o != NULL, "should have been initialized"); _ArithmeticException_instance = get_object(o)->as_instance(); _ArrayIndexOutOfBoundsException_instance = NULL; _ArrayStoreException_instance = NULL; _ClassCastException_instance = NULL; _the_null_string = NULL; _the_min_jint_string = NULL; _jvmti_can_hotswap_or_post_breakpoint = false; _jvmti_can_access_local_variables = false; _jvmti_can_post_on_exceptions = false; _jvmti_can_pop_frame = false; } ciEnv::ciEnv(Arena* arena) : _ciEnv_arena(mtCompiler) { ASSERT_IN_VM; // Set up ciEnv::current immediately, for the sake of ciObjectFactory, etc. CompilerThread* current_thread = CompilerThread::current(); assert(current_thread->env() == NULL, "must be"); current_thread->set_env(this); assert(ciEnv::current() == this, "sanity"); _oop_recorder = NULL; _debug_info = NULL; _dependencies = NULL; _failure_reason = NULL; _compilable = MethodCompilable_never; _break_at_compile = false; _compiler_data = NULL; #ifndef PRODUCT assert(firstEnv, "must be first"); firstEnv = false; #endif /* !PRODUCT */ _system_dictionary_modification_counter = 0; _num_inlined_bytecodes = 0; _task = NULL; _log = NULL; // Temporary buffer for creating symbols and such. _name_buffer = NULL; _name_buffer_len = 0; _arena = arena; _factory = new (_arena) ciObjectFactory(_arena, 128); // Preload commonly referenced system ciObjects. // During VM initialization, these instances have not yet been created. // Assertions ensure that these instances are not accessed before // their initialization. assert(Universe::is_fully_initialized(), "must be"); _NullPointerException_instance = NULL; _ArithmeticException_instance = NULL; _ArrayIndexOutOfBoundsException_instance = NULL; _ArrayStoreException_instance = NULL; _ClassCastException_instance = NULL; _the_null_string = NULL; _the_min_jint_string = NULL; _jvmti_can_hotswap_or_post_breakpoint = false; _jvmti_can_access_local_variables = false; _jvmti_can_post_on_exceptions = false; _jvmti_can_pop_frame = false; } ciEnv::~ciEnv() { CompilerThread* current_thread = CompilerThread::current(); _factory->remove_symbols(); // Need safepoint to clear the env on the thread. RedefineClasses might // be reading it. GUARDED_VM_ENTRY(current_thread->set_env(NULL);) } // ------------------------------------------------------------------ // Cache Jvmti state void ciEnv::cache_jvmti_state() { VM_ENTRY_MARK; // Get Jvmti capabilities under lock to get consistant values. MutexLocker mu(JvmtiThreadState_lock); _jvmti_can_hotswap_or_post_breakpoint = JvmtiExport::can_hotswap_or_post_breakpoint(); _jvmti_can_access_local_variables = JvmtiExport::can_access_local_variables(); _jvmti_can_post_on_exceptions = JvmtiExport::can_post_on_exceptions(); _jvmti_can_pop_frame = JvmtiExport::can_pop_frame(); } bool ciEnv::should_retain_local_variables() const { return _jvmti_can_access_local_variables || _jvmti_can_pop_frame; } bool ciEnv::jvmti_state_changed() const { if (!_jvmti_can_access_local_variables && JvmtiExport::can_access_local_variables()) { return true; } if (!_jvmti_can_hotswap_or_post_breakpoint && JvmtiExport::can_hotswap_or_post_breakpoint()) { return true; } if (!_jvmti_can_post_on_exceptions && JvmtiExport::can_post_on_exceptions()) { return true; } if (!_jvmti_can_pop_frame && JvmtiExport::can_pop_frame()) { return true; } return false; } // ------------------------------------------------------------------ // Cache DTrace flags void ciEnv::cache_dtrace_flags() { // Need lock? _dtrace_extended_probes = ExtendedDTraceProbes; if (_dtrace_extended_probes) { _dtrace_monitor_probes = true; _dtrace_method_probes = true; _dtrace_alloc_probes = true; } else { _dtrace_monitor_probes = DTraceMonitorProbes; _dtrace_method_probes = DTraceMethodProbes; _dtrace_alloc_probes = DTraceAllocProbes; } } // ------------------------------------------------------------------ // helper for lazy exception creation ciInstance* ciEnv::get_or_create_exception(jobject& handle, Symbol* name) { VM_ENTRY_MARK; if (handle == NULL) { // Cf. universe.cpp, creation of Universe::_null_ptr_exception_instance. Klass* k = SystemDictionary::find(name, Handle(), Handle(), THREAD); jobject objh = NULL; if (!HAS_PENDING_EXCEPTION && k != NULL) { oop obj = InstanceKlass::cast(k)->allocate_instance(THREAD); if (!HAS_PENDING_EXCEPTION) objh = JNIHandles::make_global(obj); } if (HAS_PENDING_EXCEPTION) { CLEAR_PENDING_EXCEPTION; } else { handle = objh; } } oop obj = JNIHandles::resolve(handle); return obj == NULL? NULL: get_object(obj)->as_instance(); } ciInstance* ciEnv::ArrayIndexOutOfBoundsException_instance() { if (_ArrayIndexOutOfBoundsException_instance == NULL) { _ArrayIndexOutOfBoundsException_instance = get_or_create_exception(_ArrayIndexOutOfBoundsException_handle, vmSymbols::java_lang_ArrayIndexOutOfBoundsException()); } return _ArrayIndexOutOfBoundsException_instance; } ciInstance* ciEnv::ArrayStoreException_instance() { if (_ArrayStoreException_instance == NULL) { _ArrayStoreException_instance = get_or_create_exception(_ArrayStoreException_handle, vmSymbols::java_lang_ArrayStoreException()); } return _ArrayStoreException_instance; } ciInstance* ciEnv::ClassCastException_instance() { if (_ClassCastException_instance == NULL) { _ClassCastException_instance = get_or_create_exception(_ClassCastException_handle, vmSymbols::java_lang_ClassCastException()); } return _ClassCastException_instance; } ciInstance* ciEnv::the_null_string() { if (_the_null_string == NULL) { VM_ENTRY_MARK; _the_null_string = get_object(Universe::the_null_string())->as_instance(); } return _the_null_string; } ciInstance* ciEnv::the_min_jint_string() { if (_the_min_jint_string == NULL) { VM_ENTRY_MARK; _the_min_jint_string = get_object(Universe::the_min_jint_string())->as_instance(); } return _the_min_jint_string; } // ------------------------------------------------------------------ // ciEnv::get_method_from_handle ciMethod* ciEnv::get_method_from_handle(Method* method) { VM_ENTRY_MARK; return get_metadata(method)->as_method(); } // ------------------------------------------------------------------ // ciEnv::array_element_offset_in_bytes int ciEnv::array_element_offset_in_bytes(ciArray* a_h, ciObject* o_h) { VM_ENTRY_MARK; objArrayOop a = (objArrayOop)a_h->get_oop(); assert(a->is_objArray(), ""); int length = a->length(); oop o = o_h->get_oop(); for (int i = 0; i < length; i++) { if (a->obj_at(i) == o) return i; } return -1; } // ------------------------------------------------------------------ // ciEnv::check_klass_accessiblity // // Note: the logic of this method should mirror the logic of // ConstantPool::verify_constant_pool_resolve. bool ciEnv::check_klass_accessibility(ciKlass* accessing_klass, Klass* resolved_klass) { if (accessing_klass == NULL || !accessing_klass->is_loaded()) { return true; } if (accessing_klass->is_obj_array_klass()) { accessing_klass = accessing_klass->as_obj_array_klass()->base_element_klass(); } if (!accessing_klass->is_instance_klass()) { return true; } if (resolved_klass->oop_is_objArray()) { // Find the element klass, if this is an array. resolved_klass = ObjArrayKlass::cast(resolved_klass)->bottom_klass(); } if (resolved_klass->oop_is_instance()) { return Reflection::verify_class_access(accessing_klass->get_Klass(), resolved_klass, true); } return true; } // ------------------------------------------------------------------ // ciEnv::get_klass_by_name_impl ciKlass* ciEnv::get_klass_by_name_impl(ciKlass* accessing_klass, constantPoolHandle cpool, ciSymbol* name, bool require_local) { ASSERT_IN_VM; EXCEPTION_CONTEXT; // Now we need to check the SystemDictionary Symbol* sym = name->get_symbol(); if (sym->byte_at(0) == 'L' && sym->byte_at(sym->utf8_length()-1) == ';') { // This is a name from a signature. Strip off the trimmings. // Call recursive to keep scope of strippedsym. TempNewSymbol strippedsym = SymbolTable::new_symbol(sym->as_utf8()+1, sym->utf8_length()-2, KILL_COMPILE_ON_FATAL_(_unloaded_ciinstance_klass)); ciSymbol* strippedname = get_symbol(strippedsym); return get_klass_by_name_impl(accessing_klass, cpool, strippedname, require_local); } // Check for prior unloaded klass. The SystemDictionary's answers // can vary over time but the compiler needs consistency. ciKlass* unloaded_klass = check_get_unloaded_klass(accessing_klass, name); if (unloaded_klass != NULL) { if (require_local) return NULL; return unloaded_klass; } Handle loader(THREAD, (oop)NULL); Handle domain(THREAD, (oop)NULL); if (accessing_klass != NULL) { loader = Handle(THREAD, accessing_klass->loader()); domain = Handle(THREAD, accessing_klass->protection_domain()); } // setup up the proper type to return on OOM ciKlass* fail_type; if (sym->byte_at(0) == '[') { fail_type = _unloaded_ciobjarrayklass; } else { fail_type = _unloaded_ciinstance_klass; } KlassHandle found_klass; { ttyUnlocker ttyul; // release tty lock to avoid ordering problems MutexLocker ml(Compile_lock); Klass* kls; if (!require_local) { kls = SystemDictionary::find_constrained_instance_or_array_klass(sym, loader, KILL_COMPILE_ON_FATAL_(fail_type)); } else { kls = SystemDictionary::find_instance_or_array_klass(sym, loader, domain, KILL_COMPILE_ON_FATAL_(fail_type)); } found_klass = KlassHandle(THREAD, kls); } // If we fail to find an array klass, look again for its element type. // The element type may be available either locally or via constraints. // In either case, if we can find the element type in the system dictionary, // we must build an array type around it. The CI requires array klasses // to be loaded if their element klasses are loaded, except when memory // is exhausted. if (sym->byte_at(0) == '[' && (sym->byte_at(1) == '[' || sym->byte_at(1) == 'L')) { // We have an unloaded array. // Build it on the fly if the element class exists. TempNewSymbol elem_sym = SymbolTable::new_symbol(sym->as_utf8()+1, sym->utf8_length()-1, KILL_COMPILE_ON_FATAL_(fail_type)); // Get element ciKlass recursively. ciKlass* elem_klass = get_klass_by_name_impl(accessing_klass, cpool, get_symbol(elem_sym), require_local); if (elem_klass != NULL && elem_klass->is_loaded()) { // Now make an array for it return ciObjArrayKlass::make_impl(elem_klass); } } if (found_klass() == NULL && !cpool.is_null() && cpool->has_preresolution()) { // Look inside the constant pool for pre-resolved class entries. for (int i = cpool->length() - 1; i >= 1; i--) { if (cpool->tag_at(i).is_klass()) { Klass* kls = cpool->resolved_klass_at(i); if (kls->name() == sym) { found_klass = KlassHandle(THREAD, kls); break; } } } } if (found_klass() != NULL) { // Found it. Build a CI handle. return get_klass(found_klass()); } if (require_local) return NULL; // Not yet loaded into the VM, or not governed by loader constraints. // Make a CI representative for it. return get_unloaded_klass(accessing_klass, name); } // ------------------------------------------------------------------ // ciEnv::get_klass_by_name ciKlass* ciEnv::get_klass_by_name(ciKlass* accessing_klass, ciSymbol* klass_name, bool require_local) { GUARDED_VM_ENTRY(return get_klass_by_name_impl(accessing_klass, constantPoolHandle(), klass_name, require_local);) } // ------------------------------------------------------------------ // ciEnv::get_klass_by_index_impl // // Implementation of get_klass_by_index. ciKlass* ciEnv::get_klass_by_index_impl(constantPoolHandle cpool, int index, bool& is_accessible, ciInstanceKlass* accessor) { EXCEPTION_CONTEXT; KlassHandle klass; // = NULL; Symbol* klass_name = NULL; if (cpool->tag_at(index).is_symbol()) { klass_name = cpool->symbol_at(index); } else { // Check if it's resolved if it's not a symbol constant pool entry. klass = KlassHandle(THREAD, ConstantPool::klass_at_if_loaded(cpool, index)); // Try to look it up by name. if (klass.is_null()) { klass_name = cpool->klass_name_at(index); } } if (klass.is_null()) { // Not found in constant pool. Use the name to do the lookup. ciKlass* k = get_klass_by_name_impl(accessor, cpool, get_symbol(klass_name), false); // Calculate accessibility the hard way. if (!k->is_loaded()) { is_accessible = false; } else if (k->loader() != accessor->loader() && get_klass_by_name_impl(accessor, cpool, k->name(), true) == NULL) { // Loaded only remotely. Not linked yet. is_accessible = false; } else { // Linked locally, and we must also check public/private, etc. is_accessible = check_klass_accessibility(accessor, k->get_Klass()); } return k; } // Check for prior unloaded klass. The SystemDictionary's answers // can vary over time but the compiler needs consistency. ciSymbol* name = get_symbol(klass()->name()); ciKlass* unloaded_klass = check_get_unloaded_klass(accessor, name); if (unloaded_klass != NULL) { is_accessible = false; return unloaded_klass; } // It is known to be accessible, since it was found in the constant pool. is_accessible = true; return get_klass(klass()); } // ------------------------------------------------------------------ // ciEnv::get_klass_by_index // // Get a klass from the constant pool. ciKlass* ciEnv::get_klass_by_index(constantPoolHandle cpool, int index, bool& is_accessible, ciInstanceKlass* accessor) { GUARDED_VM_ENTRY(return get_klass_by_index_impl(cpool, index, is_accessible, accessor);) } // ------------------------------------------------------------------ // ciEnv::get_constant_by_index_impl // // Implementation of get_constant_by_index(). ciConstant ciEnv::get_constant_by_index_impl(constantPoolHandle cpool, int pool_index, int cache_index, ciInstanceKlass* accessor) { bool ignore_will_link; EXCEPTION_CONTEXT; int index = pool_index; if (cache_index >= 0) { assert(index < 0, "only one kind of index at a time"); oop obj = cpool->resolved_references()->obj_at(cache_index); if (obj != NULL) { ciObject* ciobj = get_object(obj); if (ciobj->is_array()) { return ciConstant(T_ARRAY, ciobj); } else { assert(ciobj->is_instance(), "should be an instance"); return ciConstant(T_OBJECT, ciobj); } } index = cpool->object_to_cp_index(cache_index); } constantTag tag = cpool->tag_at(index); if (tag.is_int()) { return ciConstant(T_INT, (jint)cpool->int_at(index)); } else if (tag.is_long()) { return ciConstant((jlong)cpool->long_at(index)); } else if (tag.is_float()) { return ciConstant((jfloat)cpool->float_at(index)); } else if (tag.is_double()) { return ciConstant((jdouble)cpool->double_at(index)); } else if (tag.is_string()) { oop string = NULL; assert(cache_index >= 0, "should have a cache index"); if (cpool->is_pseudo_string_at(index)) { string = cpool->pseudo_string_at(index, cache_index); } else { string = cpool->string_at(index, cache_index, THREAD); if (HAS_PENDING_EXCEPTION) { CLEAR_PENDING_EXCEPTION; record_out_of_memory_failure(); return ciConstant(); } } ciObject* constant = get_object(string); if (constant->is_array()) { return ciConstant(T_ARRAY, constant); } else { assert (constant->is_instance(), "must be an instance, or not? "); return ciConstant(T_OBJECT, constant); } } else if (tag.is_klass() || tag.is_unresolved_klass()) { // 4881222: allow ldc to take a class type ciKlass* klass = get_klass_by_index_impl(cpool, index, ignore_will_link, accessor); if (HAS_PENDING_EXCEPTION) { CLEAR_PENDING_EXCEPTION; record_out_of_memory_failure(); return ciConstant(); } assert (klass->is_instance_klass() || klass->is_array_klass(), "must be an instance or array klass "); return ciConstant(T_OBJECT, klass->java_mirror()); } else if (tag.is_method_type()) { // must execute Java code to link this CP entry into cache[i].f1 ciSymbol* signature = get_symbol(cpool->method_type_signature_at(index)); ciObject* ciobj = get_unloaded_method_type_constant(signature); return ciConstant(T_OBJECT, ciobj); } else if (tag.is_method_handle()) { // must execute Java code to link this CP entry into cache[i].f1 int ref_kind = cpool->method_handle_ref_kind_at(index); int callee_index = cpool->method_handle_klass_index_at(index); ciKlass* callee = get_klass_by_index_impl(cpool, callee_index, ignore_will_link, accessor); ciSymbol* name = get_symbol(cpool->method_handle_name_ref_at(index)); ciSymbol* signature = get_symbol(cpool->method_handle_signature_ref_at(index)); ciObject* ciobj = get_unloaded_method_handle_constant(callee, name, signature, ref_kind); return ciConstant(T_OBJECT, ciobj); } else { ShouldNotReachHere(); return ciConstant(); } } // ------------------------------------------------------------------ // ciEnv::get_constant_by_index // // Pull a constant out of the constant pool. How appropriate. // // Implementation note: this query is currently in no way cached. ciConstant ciEnv::get_constant_by_index(constantPoolHandle cpool, int pool_index, int cache_index, ciInstanceKlass* accessor) { GUARDED_VM_ENTRY(return get_constant_by_index_impl(cpool, pool_index, cache_index, accessor);) } // ------------------------------------------------------------------ // ciEnv::get_field_by_index_impl // // Implementation of get_field_by_index. // // Implementation note: the results of field lookups are cached // in the accessor klass. ciField* ciEnv::get_field_by_index_impl(ciInstanceKlass* accessor, int index) { ciConstantPoolCache* cache = accessor->field_cache(); if (cache == NULL) { ciField* field = new (arena()) ciField(accessor, index); return field; } else { ciField* field = (ciField*)cache->get(index); if (field == NULL) { field = new (arena()) ciField(accessor, index); cache->insert(index, field); } return field; } } // ------------------------------------------------------------------ // ciEnv::get_field_by_index // // Get a field by index from a klass's constant pool. ciField* ciEnv::get_field_by_index(ciInstanceKlass* accessor, int index) { GUARDED_VM_ENTRY(return get_field_by_index_impl(accessor, index);) } // ------------------------------------------------------------------ // ciEnv::lookup_method // // Perform an appropriate method lookup based on accessor, holder, // name, signature, and bytecode. Method* ciEnv::lookup_method(InstanceKlass* accessor, InstanceKlass* holder, Symbol* name, Symbol* sig, Bytecodes::Code bc) { EXCEPTION_CONTEXT; KlassHandle h_accessor(THREAD, accessor); KlassHandle h_holder(THREAD, holder); LinkResolver::check_klass_accessability(h_accessor, h_holder, KILL_COMPILE_ON_FATAL_(NULL)); methodHandle dest_method; LinkInfo link_info(h_holder, name, sig, h_accessor, /*check_access*/true); switch (bc) { case Bytecodes::_invokestatic: dest_method = LinkResolver::resolve_static_call_or_null(link_info); break; case Bytecodes::_invokespecial: dest_method = LinkResolver::resolve_special_call_or_null(link_info); break; case Bytecodes::_invokeinterface: dest_method = LinkResolver::linktime_resolve_interface_method_or_null(link_info); break; case Bytecodes::_invokevirtual: dest_method = LinkResolver::linktime_resolve_virtual_method_or_null(link_info); break; default: ShouldNotReachHere(); } return dest_method(); } // ------------------------------------------------------------------ // ciEnv::get_method_by_index_impl ciMethod* ciEnv::get_method_by_index_impl(constantPoolHandle cpool, int index, Bytecodes::Code bc, ciInstanceKlass* accessor) { if (bc == Bytecodes::_invokedynamic) { ConstantPoolCacheEntry* cpce = cpool->invokedynamic_cp_cache_entry_at(index); bool is_resolved = !cpce->is_f1_null(); // FIXME: code generation could allow for null (unlinked) call site // The call site could be made patchable as follows: // Load the appendix argument from the constant pool. // Test the appendix argument and jump to a known deopt routine if it is null. // Jump through a patchable call site, which is initially a deopt routine. // Patch the call site to the nmethod entry point of the static compiled lambda form. // As with other two-component call sites, both values must be independently verified. if (is_resolved) { // Get the invoker Method* from the constant pool. // (The appendix argument, if any, will be noted in the method's signature.) Method* adapter = cpce->f1_as_method(); return get_method(adapter); } // Fake a method that is equivalent to a declared method. ciInstanceKlass* holder = get_instance_klass(SystemDictionary::MethodHandle_klass()); ciSymbol* name = ciSymbol::invokeBasic_name(); ciSymbol* signature = get_symbol(cpool->signature_ref_at(index)); return get_unloaded_method(holder, name, signature, accessor); } else { const int holder_index = cpool->klass_ref_index_at(index); bool holder_is_accessible; ciKlass* holder = get_klass_by_index_impl(cpool, holder_index, holder_is_accessible, accessor); ciInstanceKlass* declared_holder = get_instance_klass_for_declared_method_holder(holder); // Get the method's name and signature. Symbol* name_sym = cpool->name_ref_at(index); Symbol* sig_sym = cpool->signature_ref_at(index); if (cpool->has_preresolution() || (holder == ciEnv::MethodHandle_klass() && MethodHandles::is_signature_polymorphic_name(holder->get_Klass(), name_sym))) { // Short-circuit lookups for JSR 292-related call sites. // That is, do not rely only on name-based lookups, because they may fail // if the names are not resolvable in the boot class loader (7056328). switch (bc) { case Bytecodes::_invokevirtual: case Bytecodes::_invokeinterface: case Bytecodes::_invokespecial: case Bytecodes::_invokestatic: { Method* m = ConstantPool::method_at_if_loaded(cpool, index); if (m != NULL) { return get_method(m); } } break; } } if (holder_is_accessible) { // Our declared holder is loaded. InstanceKlass* lookup = declared_holder->get_instanceKlass(); Method* m = lookup_method(accessor->get_instanceKlass(), lookup, name_sym, sig_sym, bc); if (m != NULL && (bc == Bytecodes::_invokestatic ? m->method_holder()->is_not_initialized() : !m->method_holder()->is_loaded())) { m = NULL; } #ifdef ASSERT if (m != NULL && ReplayCompiles && !ciReplay::is_loaded(m)) { m = NULL; } #endif if (m != NULL) { // We found the method. return get_method(m); } } // Either the declared holder was not loaded, or the method could // not be found. Create a dummy ciMethod to represent the failed // lookup. ciSymbol* name = get_symbol(name_sym); ciSymbol* signature = get_symbol(sig_sym); return get_unloaded_method(declared_holder, name, signature, accessor); } } // ------------------------------------------------------------------ // ciEnv::get_instance_klass_for_declared_method_holder ciInstanceKlass* ciEnv::get_instance_klass_for_declared_method_holder(ciKlass* method_holder) { // For the case of .clone(), the method holder can be a ciArrayKlass // instead of a ciInstanceKlass. For that case simply pretend that the // declared holder is Object.clone since that's where the call will bottom out. // A more correct fix would trickle out through many interfaces in CI, // requiring ciInstanceKlass* to become ciKlass* and many more places would // require checks to make sure the expected type was found. Given that this // only occurs for clone() the more extensive fix seems like overkill so // instead we simply smear the array type into Object. guarantee(method_holder != NULL, "no method holder"); if (method_holder->is_instance_klass()) { return method_holder->as_instance_klass(); } else if (method_holder->is_array_klass()) { return current()->Object_klass(); } else { ShouldNotReachHere(); } return NULL; } // ------------------------------------------------------------------ // ciEnv::get_method_by_index ciMethod* ciEnv::get_method_by_index(constantPoolHandle cpool, int index, Bytecodes::Code bc, ciInstanceKlass* accessor) { GUARDED_VM_ENTRY(return get_method_by_index_impl(cpool, index, bc, accessor);) } // ------------------------------------------------------------------ // ciEnv::name_buffer char *ciEnv::name_buffer(int req_len) { if (_name_buffer_len < req_len) { if (_name_buffer == NULL) { _name_buffer = (char*)arena()->Amalloc(sizeof(char)*req_len); _name_buffer_len = req_len; } else { _name_buffer = (char*)arena()->Arealloc(_name_buffer, _name_buffer_len, req_len); _name_buffer_len = req_len; } } return _name_buffer; } // ------------------------------------------------------------------ // ciEnv::is_in_vm bool ciEnv::is_in_vm() { return JavaThread::current()->thread_state() == _thread_in_vm; } bool ciEnv::system_dictionary_modification_counter_changed() { return _system_dictionary_modification_counter != SystemDictionary::number_of_modifications(); } // ------------------------------------------------------------------ // ciEnv::validate_compile_task_dependencies // // Check for changes during compilation (e.g. class loads, evolution, // breakpoints, call site invalidation). void ciEnv::validate_compile_task_dependencies(ciMethod* target) { if (failing()) return; // no need for further checks // First, check non-klass dependencies as we might return early and // not check klass dependencies if the system dictionary // modification counter hasn't changed (see below). for (Dependencies::DepStream deps(dependencies()); deps.next(); ) { if (deps.is_klass_type()) continue; // skip klass dependencies Klass* witness = deps.check_dependency(); if (witness != NULL) { record_failure("invalid non-klass dependency"); return; } } // Klass dependencies must be checked when the system dictionary // changes. If logging is enabled all violated dependences will be // recorded in the log. In debug mode check dependencies even if // the system dictionary hasn't changed to verify that no invalid // dependencies were inserted. Any violated dependences in this // case are dumped to the tty. bool counter_changed = system_dictionary_modification_counter_changed(); bool verify_deps = trueInDebug; if (!counter_changed && !verify_deps) return; int klass_violations = 0; for (Dependencies::DepStream deps(dependencies()); deps.next(); ) { if (!deps.is_klass_type()) continue; // skip non-klass dependencies Klass* witness = deps.check_dependency(); if (witness != NULL) { klass_violations++; if (!counter_changed) { // Dependence failed but counter didn't change. Log a message // describing what failed and allow the assert at the end to // trigger. deps.print_dependency(witness); } else if (xtty == NULL) { // If we're not logging then a single violation is sufficient, // otherwise we want to log all the dependences which were // violated. break; } } } if (klass_violations != 0) { #ifdef ASSERT if (!counter_changed && !PrintCompilation) { // Print out the compile task that failed _task->print_tty(); } #endif assert(counter_changed, "failed dependencies, but counter didn't change"); record_failure("concurrent class loading"); } } // ------------------------------------------------------------------ // ciEnv::register_method void ciEnv::register_method(ciMethod* target, int entry_bci, CodeOffsets* offsets, int orig_pc_offset, CodeBuffer* code_buffer, int frame_words, OopMapSet* oop_map_set, ExceptionHandlerTable* handler_table, ImplicitExceptionTable* inc_table, AbstractCompiler* compiler, int comp_level, bool has_unsafe_access, bool has_wide_vectors, RTMState rtm_state) { VM_ENTRY_MARK; nmethod* nm = NULL; { // To prevent compile queue updates. MutexLocker locker(MethodCompileQueue_lock, THREAD); // Prevent SystemDictionary::add_to_hierarchy from running // and invalidating our dependencies until we install this method. // No safepoints are allowed. Otherwise, class redefinition can occur in between. MutexLocker ml(Compile_lock); No_Safepoint_Verifier nsv; // Change in Jvmti state may invalidate compilation. if (!failing() && jvmti_state_changed()) { record_failure("Jvmti state change invalidated dependencies"); } // Change in DTrace flags may invalidate compilation. if (!failing() && ( (!dtrace_extended_probes() && ExtendedDTraceProbes) || (!dtrace_method_probes() && DTraceMethodProbes) || (!dtrace_alloc_probes() && DTraceAllocProbes) )) { record_failure("DTrace flags change invalidated dependencies"); } if (!failing()) { if (log() != NULL) { // Log the dependencies which this compilation declares. dependencies()->log_all_dependencies(); } // Encode the dependencies now, so we can check them right away. dependencies()->encode_content_bytes(); // Check for {class loads, evolution, breakpoints, ...} during compilation validate_compile_task_dependencies(target); } methodHandle method(THREAD, target->get_Method()); #if INCLUDE_RTM_OPT if (!failing() && (rtm_state != NoRTM) && (method()->method_data() != NULL) && (method()->method_data()->rtm_state() != rtm_state)) { // Preemptive decompile if rtm state was changed. record_failure("RTM state change invalidated rtm code"); } #endif if (failing()) { // While not a true deoptimization, it is a preemptive decompile. MethodData* mdo = method()->method_data(); if (mdo != NULL) { mdo->inc_decompile_count(); } // All buffers in the CodeBuffer are allocated in the CodeCache. // If the code buffer is created on each compile attempt // as in C2, then it must be freed. code_buffer->free_blob(); return; } assert(offsets->value(CodeOffsets::Deopt) != -1, "must have deopt entry"); assert(offsets->value(CodeOffsets::Exceptions) != -1, "must have exception entry"); nm = nmethod::new_nmethod(method, compile_id(), entry_bci, offsets, orig_pc_offset, debug_info(), dependencies(), code_buffer, frame_words, oop_map_set, handler_table, inc_table, compiler, comp_level); // Free codeBlobs code_buffer->free_blob(); if (nm != NULL) { nm->set_has_unsafe_access(has_unsafe_access); nm->set_has_wide_vectors(has_wide_vectors); #if INCLUDE_RTM_OPT nm->set_rtm_state(rtm_state); #endif // Record successful registration. // (Put nm into the task handle *before* publishing to the Java heap.) if (task() != NULL) { task()->set_code(nm); } if (entry_bci == InvocationEntryBci) { if (TieredCompilation) { // If there is an old version we're done with it nmethod* old = method->code(); if (TraceMethodReplacement && old != NULL) { ResourceMark rm; char *method_name = method->name_and_sig_as_C_string(); tty->print_cr("Replacing method %s", method_name); } if (old != NULL) { old->make_not_entrant(); } } if (TraceNMethodInstalls) { ResourceMark rm; char *method_name = method->name_and_sig_as_C_string(); ttyLocker ttyl; tty->print_cr("Installing method (%d) %s ", comp_level, method_name); } // Allow the code to be executed method->set_code(method, nm); } else { if (TraceNMethodInstalls) { ResourceMark rm; char *method_name = method->name_and_sig_as_C_string(); ttyLocker ttyl; tty->print_cr("Installing osr method (%d) %s @ %d", comp_level, method_name, entry_bci); } method->method_holder()->add_osr_nmethod(nm); } } } // safepoints are allowed again if (nm != NULL) { // JVMTI -- compiled method notification (must be done outside lock) nm->post_compiled_method_load_event(); } else { // The CodeCache is full. record_failure("code cache is full"); } } // ------------------------------------------------------------------ // ciEnv::find_system_klass ciKlass* ciEnv::find_system_klass(ciSymbol* klass_name) { VM_ENTRY_MARK; return get_klass_by_name_impl(NULL, constantPoolHandle(), klass_name, false); } // ------------------------------------------------------------------ // ciEnv::comp_level int ciEnv::comp_level() { if (task() == NULL) return CompLevel_highest_tier; return task()->comp_level(); } // ------------------------------------------------------------------ // ciEnv::compile_id uint ciEnv::compile_id() { if (task() == NULL) return 0; return task()->compile_id(); } // ------------------------------------------------------------------ // ciEnv::notice_inlined_method() void ciEnv::notice_inlined_method(ciMethod* method) { _num_inlined_bytecodes += method->code_size_for_inlining(); } // ------------------------------------------------------------------ // ciEnv::num_inlined_bytecodes() int ciEnv::num_inlined_bytecodes() const { return _num_inlined_bytecodes; } // ------------------------------------------------------------------ // ciEnv::record_failure() void ciEnv::record_failure(const char* reason) { if (_failure_reason == NULL) { // Record the first failure reason. _failure_reason = reason; } } void ciEnv::report_failure(const char* reason) { // Create and fire JFR event EventCompilerFailure event; if (event.should_commit()) { event.set_compileID(compile_id()); event.set_failure(reason); event.commit(); } } // ------------------------------------------------------------------ // ciEnv::record_method_not_compilable() void ciEnv::record_method_not_compilable(const char* reason, bool all_tiers) { int new_compilable = all_tiers ? MethodCompilable_never : MethodCompilable_not_at_tier ; // Only note transitions to a worse state if (new_compilable > _compilable) { if (log() != NULL) { if (all_tiers) { log()->elem("method_not_compilable"); } else { log()->elem("method_not_compilable_at_tier level='%d'", current()->task()->comp_level()); } } _compilable = new_compilable; // Reset failure reason; this one is more important. _failure_reason = NULL; record_failure(reason); } } // ------------------------------------------------------------------ // ciEnv::record_out_of_memory_failure() void ciEnv::record_out_of_memory_failure() { // If memory is low, we stop compiling methods. record_method_not_compilable("out of memory"); } ciInstance* ciEnv::unloaded_ciinstance() { GUARDED_VM_ENTRY(return _factory->get_unloaded_object_constant();) } // ------------------------------------------------------------------ // ciEnv::dump_replay_data* // Don't change thread state and acquire any locks. // Safe to call from VM error reporter. void ciEnv::dump_compile_data(outputStream* out) { CompileTask* task = this->task(); Method* method = task->method(); int entry_bci = task->osr_bci(); int comp_level = task->comp_level(); out->print("compile %s %s %s %d %d", method->klass_name()->as_quoted_ascii(), method->name()->as_quoted_ascii(), method->signature()->as_quoted_ascii(), entry_bci, comp_level); if (compiler_data() != NULL) { if (is_c2_compile(comp_level)) { // C2 or Shark #ifdef COMPILER2 // Dump C2 inlining data. ((Compile*)compiler_data())->dump_inline_data(out); #endif } else if (is_c1_compile(comp_level)) { // C1 #ifdef COMPILER1 // Dump C1 inlining data. ((Compilation*)compiler_data())->dump_inline_data(out); #endif } } out->cr(); } void ciEnv::dump_replay_data_unsafe(outputStream* out) { ResourceMark rm; #if INCLUDE_JVMTI out->print_cr("JvmtiExport can_access_local_variables %d", _jvmti_can_access_local_variables); out->print_cr("JvmtiExport can_hotswap_or_post_breakpoint %d", _jvmti_can_hotswap_or_post_breakpoint); out->print_cr("JvmtiExport can_post_on_exceptions %d", _jvmti_can_post_on_exceptions); #endif // INCLUDE_JVMTI GrowableArray* objects = _factory->get_ci_metadata(); out->print_cr("# %d ciObject found", objects->length()); for (int i = 0; i < objects->length(); i++) { objects->at(i)->dump_replay_data(out); } dump_compile_data(out); out->flush(); } void ciEnv::dump_replay_data(outputStream* out) { GUARDED_VM_ENTRY( MutexLocker ml(Compile_lock); dump_replay_data_unsafe(out); ) } void ciEnv::dump_replay_data(int compile_id) { static char buffer[O_BUFLEN]; int ret = jio_snprintf(buffer, O_BUFLEN, "replay_pid%p_compid%d.log", os::current_process_id(), compile_id); if (ret > 0) { int fd = open(buffer, O_RDWR | O_CREAT | O_TRUNC, 0666); if (fd != -1) { FILE* replay_data_file = os::open(fd, "w"); if (replay_data_file != NULL) { fileStream replay_data_stream(replay_data_file, /*need_close=*/true); dump_replay_data(&replay_data_stream); tty->print_cr("# Compiler replay data is saved as: %s", buffer); } else { tty->print_cr("# Can't open file to dump replay data."); } } } } void ciEnv::dump_inline_data(int compile_id) { static char buffer[O_BUFLEN]; int ret = jio_snprintf(buffer, O_BUFLEN, "inline_pid%p_compid%d.log", os::current_process_id(), compile_id); if (ret > 0) { int fd = open(buffer, O_RDWR | O_CREAT | O_TRUNC, 0666); if (fd != -1) { FILE* inline_data_file = os::open(fd, "w"); if (inline_data_file != NULL) { fileStream replay_data_stream(inline_data_file, /*need_close=*/true); GUARDED_VM_ENTRY( MutexLocker ml(Compile_lock); dump_compile_data(&replay_data_stream); ) replay_data_stream.flush(); tty->print("# Compiler inline data is saved as: "); tty->print_cr("%s", buffer); } else { tty->print_cr("# Can't open file to dump inline data."); } } } }