/* * Copyright (c) 2018, 2024, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ #include "precompiled.hpp" #ifdef LINUX #include "os_linux.hpp" #include "prims/jniCheck.hpp" #include "runtime/globals.hpp" #include "runtime/os.hpp" #include "utilities/align.hpp" #include "utilities/decoder.hpp" #include "concurrentTestRunner.inline.hpp" #include "testutils.hpp" #include "unittest.hpp" #include static bool using_explicit_hugepages() { return UseLargePages && !UseTransparentHugePages; } namespace { static void small_page_write(void* addr, size_t size) { size_t page_size = os::vm_page_size(); char* end = (char*)addr + size; for (char* p = (char*)addr; p < end; p += page_size) { *p = 1; } } class HugeTlbfsMemory : private ::os::Linux { char* const _ptr; const size_t _size; public: static char* reserve_memory_special_huge_tlbfs(size_t bytes, size_t alignment, size_t page_size, char* req_addr, bool exec) { return os::reserve_memory_special(bytes, alignment, page_size, req_addr, exec); } HugeTlbfsMemory(char* const ptr, size_t size) : _ptr(ptr), _size(size) { } ~HugeTlbfsMemory() { if (_ptr != nullptr) { os::release_memory_special(_ptr, _size); } } }; // have to use these functions, as gtest's _PRED macros don't like is_aligned // nor (is_aligned) static bool is_size_aligned(size_t size, size_t alignment) { return is_aligned(size, alignment); } static bool is_ptr_aligned(char* ptr, size_t alignment) { return is_aligned(ptr, alignment); } } TEST_VM(os_linux, reserve_memory_special_huge_tlbfs_size_aligned) { if (!using_explicit_hugepages()) { return; } size_t lp = os::large_page_size(); for (size_t size = lp; size <= lp * 10; size += lp) { char* addr = HugeTlbfsMemory::reserve_memory_special_huge_tlbfs(size, lp, lp, nullptr, false); if (addr != nullptr) { HugeTlbfsMemory mr(addr, size); small_page_write(addr, size); } } } TEST_VM(os_linux, reserve_memory_special_huge_tlbfs_size_not_aligned_without_addr) { if (!using_explicit_hugepages()) { return; } size_t lp = os::large_page_size(); size_t ag = os::vm_allocation_granularity(); // sizes to test const size_t sizes[] = { lp, lp + ag, lp + lp / 2, lp * 2, lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2, lp * 10, lp * 10 + lp / 2 }; const int num_sizes = sizeof(sizes) / sizeof(size_t); for (int i = 0; i < num_sizes; i++) { const size_t size = sizes[i]; for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) { char* p = HugeTlbfsMemory::reserve_memory_special_huge_tlbfs(size, alignment, lp, nullptr, false); if (p != nullptr) { HugeTlbfsMemory mr(p, size); EXPECT_PRED2(is_ptr_aligned, p, alignment) << " size = " << size; small_page_write(p, size); } } } } TEST_VM(os_linux, reserve_memory_special_huge_tlbfs_size_not_aligned_with_good_req_addr) { if (!using_explicit_hugepages()) { return; } size_t lp = os::large_page_size(); size_t ag = os::vm_allocation_granularity(); // sizes to test const size_t sizes[] = { lp, lp + ag, lp + lp / 2, lp * 2, lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2, lp * 10, lp * 10 + lp / 2 }; const int num_sizes = sizeof(sizes) / sizeof(size_t); // Pre-allocate an area as large as the largest allocation // and aligned to the largest alignment we will be testing. const size_t mapping_size = sizes[num_sizes - 1] * 2; char* const mapping = (char*) ::mmap(nullptr, mapping_size, PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE, -1, 0); ASSERT_TRUE(mapping != MAP_FAILED) << " mmap failed, mapping_size = " << mapping_size; // Unmap the mapping, it will serve as a value for a "good" req_addr ::munmap(mapping, mapping_size); for (int i = 0; i < num_sizes; i++) { const size_t size = sizes[i]; for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) { // req_addr must be at least large page aligned. char* const req_addr = align_up(mapping, MAX2(alignment, lp)); char* p = HugeTlbfsMemory::reserve_memory_special_huge_tlbfs(size, alignment, lp, req_addr, false); if (p != nullptr) { HugeTlbfsMemory mr(p, size); ASSERT_EQ(req_addr, p) << " size = " << size << ", alignment = " << alignment; small_page_write(p, size); } } } } TEST_VM(os_linux, reserve_memory_special_huge_tlbfs_size_not_aligned_with_bad_req_addr) { if (!using_explicit_hugepages()) { return; } size_t lp = os::large_page_size(); size_t ag = os::vm_allocation_granularity(); // sizes to test const size_t sizes[] = { lp, lp + ag, lp + lp / 2, lp * 2, lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2, lp * 10, lp * 10 + lp / 2 }; const int num_sizes = sizeof(sizes) / sizeof(size_t); // Pre-allocate an area as large as the largest allocation // and aligned to the largest alignment we will be testing. const size_t mapping_size = sizes[num_sizes - 1] * 2; char* const mapping = (char*) ::mmap(nullptr, mapping_size, PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE, -1, 0); ASSERT_TRUE(mapping != MAP_FAILED) << " mmap failed, mapping_size = " << mapping_size; // Leave the mapping intact, it will server as "bad" req_addr class MappingHolder { char* const _mapping; size_t _size; public: MappingHolder(char* mapping, size_t size) : _mapping(mapping), _size(size) { } ~MappingHolder() { ::munmap(_mapping, _size); } } holder(mapping, mapping_size); for (int i = 0; i < num_sizes; i++) { const size_t size = sizes[i]; for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) { // req_addr must be at least large page aligned. char* const req_addr = align_up(mapping, MAX2(alignment, lp)); char* p = HugeTlbfsMemory::reserve_memory_special_huge_tlbfs(size, alignment, lp, req_addr, false); HugeTlbfsMemory mr(p, size); // as the area around req_addr contains already existing mappings, the API should always // return null (as per contract, it cannot return another address) EXPECT_TRUE(p == nullptr) << " size = " << size << ", alignment = " << alignment << ", req_addr = " << req_addr << ", p = " << p; } } } class TestReserveMemorySpecial : AllStatic { public: static void small_page_write(void* addr, size_t size) { size_t page_size = os::vm_page_size(); char* end = (char*)addr + size; for (char* p = (char*)addr; p < end; p += page_size) { *p = 1; } } static void test_reserve_memory_special_huge_tlbfs_size_aligned(size_t size, size_t alignment, size_t page_size) { if (!using_explicit_hugepages()) { return; } char* addr = os::reserve_memory_special(size, alignment, page_size, nullptr, false); if (addr != nullptr) { small_page_write(addr, size); os::release_memory_special(addr, size); } } static void test_reserve_memory_special_huge_tlbfs_size_aligned() { if (!using_explicit_hugepages()) { return; } size_t lp = os::large_page_size(); for (size_t size = lp; size <= lp * 10; size += lp) { test_reserve_memory_special_huge_tlbfs_size_aligned(size, lp, lp); } } static void test_reserve_memory_special_huge_tlbfs_size_not_aligned() { size_t lp = os::large_page_size(); size_t ag = os::vm_allocation_granularity(); // sizes to test const size_t sizes[] = { lp, lp + ag, lp + lp / 2, lp * 2, lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2, lp * 10, lp * 10 + lp / 2 }; const int num_sizes = sizeof(sizes) / sizeof(size_t); // For each size/alignment combination, we test three scenarios: // 1) with req_addr == nullptr // 2) with a non-null req_addr at which we expect to successfully allocate // 3) with a non-null req_addr which contains a pre-existing mapping, at which we // expect the allocation to either fail or to ignore req_addr // Pre-allocate two areas; they shall be as large as the largest allocation // and aligned to the largest alignment we will be testing. const size_t mapping_size = sizes[num_sizes - 1] * 2; char* const mapping1 = (char*) ::mmap(nullptr, mapping_size, PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE, -1, 0); EXPECT_NE(mapping1, MAP_FAILED); char* const mapping2 = (char*) ::mmap(nullptr, mapping_size, PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE, -1, 0); EXPECT_NE(mapping2, MAP_FAILED); // Unmap the first mapping, but leave the second mapping intact: the first // mapping will serve as a value for a "good" req_addr (case 2). The second // mapping, still intact, as "bad" req_addr (case 3). ::munmap(mapping1, mapping_size); // Case 1 for (int i = 0; i < num_sizes; i++) { const size_t size = sizes[i]; for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) { char* p = os::reserve_memory_special(size, alignment, lp, nullptr, false); if (p != nullptr) { EXPECT_TRUE(is_aligned(p, alignment)); small_page_write(p, size); os::release_memory_special(p, size); } } } // Case 2 for (int i = 0; i < num_sizes; i++) { const size_t size = sizes[i]; for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) { // req_addr must be at least large page aligned. char* const req_addr = align_up(mapping1, MAX2(alignment, lp)); char* p = os::reserve_memory_special(size, alignment, lp, req_addr, false); if (p != nullptr) { EXPECT_EQ(p, req_addr); small_page_write(p, size); os::release_memory_special(p, size); } } } // Case 3 for (int i = 0; i < num_sizes; i++) { const size_t size = sizes[i]; for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) { // req_addr must be at least large page aligned. char* const req_addr = align_up(mapping2, MAX2(alignment, lp)); char* p = os::reserve_memory_special(size, alignment, lp, req_addr, false); // as the area around req_addr contains already existing mappings, the API should always // return nullptr (as per contract, it cannot return another address) EXPECT_TRUE(p == nullptr); } } ::munmap(mapping2, mapping_size); } static void test() { if (!using_explicit_hugepages()) { return; } test_reserve_memory_special_huge_tlbfs_size_aligned(); test_reserve_memory_special_huge_tlbfs_size_not_aligned(); } }; TEST_VM(os_linux, reserve_memory_special) { TestReserveMemorySpecial::test(); } class ReserveMemorySpecialRunnable : public TestRunnable { public: void runUnitTest() const { TestReserveMemorySpecial::test(); } }; TEST_VM(os_linux, reserve_memory_special_concurrent) { if (UseLargePages) { ReserveMemorySpecialRunnable runnable; ConcurrentTestRunner testRunner(&runnable, 5, 3000); testRunner.run(); } } TEST_VM(os_linux, pretouch_thp_and_use_concurrent) { // Explicitly enable thp to test cocurrent system calls. const size_t size = 1 * G; const bool useThp = UseTransparentHugePages; UseTransparentHugePages = true; char* const heap = os::reserve_memory(size, false, mtInternal); EXPECT_NE(heap, nullptr); EXPECT_TRUE(os::commit_memory(heap, size, false)); { auto pretouch = [heap](Thread*, int) { os::pretouch_memory(heap, heap + size, os::vm_page_size()); }; auto useMemory = [heap](Thread*, int) { int* iptr = reinterpret_cast(heap); for (int i = 0; i < 1000; i++) *iptr++ = i; }; TestThreadGroup pretouchThreads{pretouch, 4}; TestThreadGroup useMemoryThreads{useMemory, 4}; useMemoryThreads.doit(); pretouchThreads.doit(); useMemoryThreads.join(); pretouchThreads.join(); } int* iptr = reinterpret_cast(heap); for (int i = 0; i < 1000; i++) EXPECT_EQ(*iptr++, i); EXPECT_TRUE(os::uncommit_memory(heap, size, false)); EXPECT_TRUE(os::release_memory(heap, size)); UseTransparentHugePages = useThp; } // Check that method JNI_CreateJavaVM is found. TEST(os_linux, addr_to_function_valid) { char buf[128] = ""; int offset = -1; address valid_function_pointer = (address)JNI_CreateJavaVM; ASSERT_TRUE(os::dll_address_to_function_name(valid_function_pointer, buf, sizeof(buf), &offset, true)); ASSERT_THAT(buf, testing::HasSubstr("JNI_CreateJavaVM")); ASSERT_TRUE(offset >= 0); } #if !defined(__clang_major__) || (__clang_major__ >= 5) // DWARF does not support Clang versions older than 5.0. // Test valid address of method ReportJNIFatalError in jniCheck.hpp. We should get "jniCheck.hpp" in the buffer and a valid line number. TEST_VM(os_linux, decoder_get_source_info_valid) { char buf[128] = ""; int line = -1; address valid_function_pointer = (address)ReportJNIFatalError; ASSERT_TRUE(Decoder::get_source_info(valid_function_pointer, buf, sizeof(buf), &line)); EXPECT_STREQ(buf, "jniCheck.hpp"); ASSERT_TRUE(line > 0); } // Test invalid addresses. Should not cause harm and output buffer and line must contain "" and -1, respectively. TEST_VM(os_linux, decoder_get_source_info_invalid) { char buf[128] = ""; int line = -1; address invalid_function_pointers[] = { nullptr, (address)1, (address)&line }; for (address addr : invalid_function_pointers) { strcpy(buf, "somestring"); line = 12; // We should return false but do not crash or fail in any way. ASSERT_FALSE(Decoder::get_source_info(addr, buf, sizeof(buf), &line)); ASSERT_TRUE(buf[0] == '\0'); // Should contain "" on error ASSERT_TRUE(line == -1); // Should contain -1 on error } } // Test with valid address but a too small buffer to store the entire filename. Should find generic message // and a valid line number. TEST_VM(os_linux, decoder_get_source_info_valid_overflow) { char buf[11] = ""; int line = -1; address valid_function_pointer = (address)ReportJNIFatalError; ASSERT_TRUE(Decoder::get_source_info(valid_function_pointer, buf, 11, &line)); EXPECT_STREQ(buf, ""); ASSERT_TRUE(line > 0); } // Test with valid address but a too small buffer that can neither store the entire filename nor the generic // message. We should find "L" as filename and a valid line number. TEST_VM(os_linux, decoder_get_source_info_valid_overflow_minimal) { char buf[2] = ""; int line = -1; address valid_function_pointer = (address)ReportJNIFatalError; ASSERT_TRUE(Decoder::get_source_info(valid_function_pointer, buf, 2, &line)); EXPECT_STREQ(buf, "L"); // Overflow message does not fit, so we fall back to "L:line_number" ASSERT_TRUE(line > 0); // Line should correctly be found and returned } #endif // clang #ifdef __GLIBC__ TEST_VM(os_linux, glibc_mallinfo_wrapper) { // Very basic test. Call it. That proves that resolution and invocation works. os::Linux::glibc_mallinfo mi; bool did_wrap = false; os::Linux::get_mallinfo(&mi, &did_wrap); void* p = os::malloc(2 * K, mtTest); ASSERT_NOT_NULL(p); // We should see total allocation values > 0 ASSERT_GE((mi.uordblks + mi.hblkhd), 2 * K); // These values also should exceed some reasonable size. ASSERT_LT(mi.fordblks, 2 * G); ASSERT_LT(mi.uordblks, 2 * G); ASSERT_LT(mi.hblkhd, 2 * G); os::free(p); } #endif // __GLIBC__ #endif // LINUX