/* * Copyright (c) 2014, 2019, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "gc/g1/g1Allocator.inline.hpp" #include "gc/g1/g1CollectedHeap.inline.hpp" #include "gc/g1/g1CollectionSet.hpp" #include "gc/g1/g1OopClosures.inline.hpp" #include "gc/g1/g1ParScanThreadState.inline.hpp" #include "gc/g1/g1RootClosures.hpp" #include "gc/g1/g1StringDedup.hpp" #include "gc/g1/g1Trace.hpp" #include "gc/shared/taskqueue.inline.hpp" #include "memory/allocation.inline.hpp" #include "oops/access.inline.hpp" #include "oops/oop.inline.hpp" #include "runtime/prefetch.inline.hpp" G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, G1RedirtyCardsQueueSet* rdcqs, uint worker_id, size_t young_cset_length, size_t optional_cset_length) : _g1h(g1h), _refs(g1h->task_queue(worker_id)), _rdcq(rdcqs), _ct(g1h->card_table()), _closures(NULL), _plab_allocator(NULL), _age_table(false), _tenuring_threshold(g1h->policy()->tenuring_threshold()), _scanner(g1h, this), _worker_id(worker_id), _last_enqueued_card(SIZE_MAX), _stack_trim_upper_threshold(GCDrainStackTargetSize * 2 + 1), _stack_trim_lower_threshold(GCDrainStackTargetSize), _trim_ticks(), _old_gen_is_full(false), _num_optional_regions(optional_cset_length) { // We allocate number of young gen regions in the collection set plus one // entries, since entry 0 keeps track of surviving bytes for non-young regions. // We also add a few elements at the beginning and at the end in // an attempt to eliminate cache contention size_t real_length = young_cset_length + 1; size_t array_length = PADDING_ELEM_NUM + real_length + PADDING_ELEM_NUM; _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC); _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM; memset(_surviving_young_words, 0, real_length * sizeof(size_t)); _plab_allocator = new G1PLABAllocator(_g1h->allocator()); // The dest for Young is used when the objects are aged enough to // need to be moved to the next space. _dest[G1HeapRegionAttr::Young] = G1HeapRegionAttr::Old; _dest[G1HeapRegionAttr::Old] = G1HeapRegionAttr::Old; _closures = G1EvacuationRootClosures::create_root_closures(this, _g1h); _oops_into_optional_regions = new G1OopStarChunkedList[_num_optional_regions]; } // Pass locally gathered statistics to global state. void G1ParScanThreadState::flush(size_t* surviving_young_words) { _rdcq.flush(); // Update allocation statistics. _plab_allocator->flush_and_retire_stats(); _g1h->policy()->record_age_table(&_age_table); uint length = _g1h->collection_set()->young_region_length() + 1; for (uint i = 0; i < length; i++) { surviving_young_words[i] += _surviving_young_words[i]; } } G1ParScanThreadState::~G1ParScanThreadState() { delete _plab_allocator; delete _closures; FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base); delete[] _oops_into_optional_regions; } size_t G1ParScanThreadState::lab_waste_words() const { return _plab_allocator->waste(); } size_t G1ParScanThreadState::lab_undo_waste_words() const { return _plab_allocator->undo_waste(); } #ifdef ASSERT bool G1ParScanThreadState::verify_ref(narrowOop* ref) const { assert(ref != NULL, "invariant"); assert(UseCompressedOops, "sanity"); assert(!has_partial_array_mask(ref), "ref=" PTR_FORMAT, p2i(ref)); oop p = RawAccess<>::oop_load(ref); assert(_g1h->is_in_g1_reserved(p), "ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p)); return true; } bool G1ParScanThreadState::verify_ref(oop* ref) const { assert(ref != NULL, "invariant"); if (has_partial_array_mask(ref)) { // Must be in the collection set--it's already been copied. oop p = clear_partial_array_mask(ref); assert(_g1h->is_in_cset(p), "ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p)); } else { oop p = RawAccess<>::oop_load(ref); assert(_g1h->is_in_g1_reserved(p), "ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p)); } return true; } bool G1ParScanThreadState::verify_task(StarTask ref) const { if (ref.is_narrow()) { return verify_ref((narrowOop*) ref); } else { return verify_ref((oop*) ref); } } #endif // ASSERT void G1ParScanThreadState::trim_queue() { StarTask ref; do { // Fully drain the queue. trim_queue_to_threshold(0); } while (!_refs->is_empty()); } HeapWord* G1ParScanThreadState::allocate_in_next_plab(G1HeapRegionAttr* dest, size_t word_sz, bool previous_plab_refill_failed, uint node_index) { assert(dest->is_in_cset_or_humongous(), "Unexpected dest: %s region attr", dest->get_type_str()); // Right now we only have two types of regions (young / old) so // let's keep the logic here simple. We can generalize it when necessary. if (dest->is_young()) { bool plab_refill_in_old_failed = false; HeapWord* const obj_ptr = _plab_allocator->allocate(G1HeapRegionAttr::Old, word_sz, &plab_refill_in_old_failed, node_index); // Make sure that we won't attempt to copy any other objects out // of a survivor region (given that apparently we cannot allocate // any new ones) to avoid coming into this slow path again and again. // Only consider failed PLAB refill here: failed inline allocations are // typically large, so not indicative of remaining space. if (previous_plab_refill_failed) { _tenuring_threshold = 0; } if (obj_ptr != NULL) { dest->set_old(); } else { // We just failed to allocate in old gen. The same idea as explained above // for making survivor gen unavailable for allocation applies for old gen. _old_gen_is_full = plab_refill_in_old_failed; } return obj_ptr; } else { _old_gen_is_full = previous_plab_refill_failed; assert(dest->is_old(), "Unexpected dest region attr: %s", dest->get_type_str()); // no other space to try. return NULL; } } G1HeapRegionAttr G1ParScanThreadState::next_region_attr(G1HeapRegionAttr const region_attr, markWord const m, uint& age) { if (region_attr.is_young()) { age = !m.has_displaced_mark_helper() ? m.age() : m.displaced_mark_helper().age(); if (age < _tenuring_threshold) { return region_attr; } } return dest(region_attr); } void G1ParScanThreadState::report_promotion_event(G1HeapRegionAttr const dest_attr, oop const old, size_t word_sz, uint age, HeapWord * const obj_ptr, uint node_index) const { PLAB* alloc_buf = _plab_allocator->alloc_buffer(dest_attr, node_index); if (alloc_buf->contains(obj_ptr)) { _g1h->_gc_tracer_stw->report_promotion_in_new_plab_event(old->klass(), word_sz * HeapWordSize, age, dest_attr.type() == G1HeapRegionAttr::Old, alloc_buf->word_sz() * HeapWordSize); } else { _g1h->_gc_tracer_stw->report_promotion_outside_plab_event(old->klass(), word_sz * HeapWordSize, age, dest_attr.type() == G1HeapRegionAttr::Old); } } oop G1ParScanThreadState::copy_to_survivor_space(G1HeapRegionAttr const region_attr, oop const old, markWord const old_mark) { const size_t word_sz = old->size(); uint age = 0; G1HeapRegionAttr dest_attr = next_region_attr(region_attr, old_mark, age); // The second clause is to prevent premature evacuation failure in case there // is still space in survivor, but old gen is full. if (_old_gen_is_full && dest_attr.is_old()) { return handle_evacuation_failure_par(old, old_mark); } HeapRegion* const from_region = _g1h->heap_region_containing(old); uint node_index = from_region->node_index(); HeapWord* obj_ptr = _plab_allocator->plab_allocate(dest_attr, word_sz, node_index); // PLAB allocations should succeed most of the time, so we'll // normally check against NULL once and that's it. if (obj_ptr == NULL) { bool plab_refill_failed = false; obj_ptr = _plab_allocator->allocate_direct_or_new_plab(dest_attr, word_sz, &plab_refill_failed, node_index); if (obj_ptr == NULL) { assert(region_attr.is_in_cset(), "Unexpected region attr type: %s", region_attr.get_type_str()); obj_ptr = allocate_in_next_plab(&dest_attr, word_sz, plab_refill_failed, node_index); if (obj_ptr == NULL) { // This will either forward-to-self, or detect that someone else has // installed a forwarding pointer. return handle_evacuation_failure_par(old, old_mark); } } if (_g1h->_gc_tracer_stw->should_report_promotion_events()) { // The events are checked individually as part of the actual commit report_promotion_event(dest_attr, old, word_sz, age, obj_ptr, node_index); } } assert(obj_ptr != NULL, "when we get here, allocation should have succeeded"); assert(_g1h->is_in_reserved(obj_ptr), "Allocated memory should be in the heap"); #ifndef PRODUCT // Should this evacuation fail? if (_g1h->evacuation_should_fail()) { // Doing this after all the allocation attempts also tests the // undo_allocation() method too. _plab_allocator->undo_allocation(dest_attr, obj_ptr, word_sz, node_index); return handle_evacuation_failure_par(old, old_mark); } #endif // !PRODUCT // We're going to allocate linearly, so might as well prefetch ahead. Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes); const oop obj = oop(obj_ptr); const oop forward_ptr = old->forward_to_atomic(obj, old_mark, memory_order_relaxed); if (forward_ptr == NULL) { Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz); const uint young_index = from_region->young_index_in_cset(); assert((from_region->is_young() && young_index > 0) || (!from_region->is_young() && young_index == 0), "invariant" ); if (dest_attr.is_young()) { if (age < markWord::max_age) { age++; } if (old_mark.has_displaced_mark_helper()) { // In this case, we have to install the mark word first, // otherwise obj looks to be forwarded (the old mark word, // which contains the forward pointer, was copied) obj->set_mark_raw(old_mark); markWord new_mark = old_mark.displaced_mark_helper().set_age(age); old_mark.set_displaced_mark_helper(new_mark); } else { obj->set_mark_raw(old_mark.set_age(age)); } _age_table.add(age, word_sz); } else { obj->set_mark_raw(old_mark); } if (G1StringDedup::is_enabled()) { const bool is_from_young = region_attr.is_young(); const bool is_to_young = dest_attr.is_young(); assert(is_from_young == from_region->is_young(), "sanity"); assert(is_to_young == _g1h->heap_region_containing(obj)->is_young(), "sanity"); G1StringDedup::enqueue_from_evacuation(is_from_young, is_to_young, _worker_id, obj); } _surviving_young_words[young_index] += word_sz; if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) { // We keep track of the next start index in the length field of // the to-space object. The actual length can be found in the // length field of the from-space object. arrayOop(obj)->set_length(0); oop* old_p = set_partial_array_mask(old); do_oop_partial_array(old_p); } else { G1ScanInYoungSetter x(&_scanner, dest_attr.is_young()); obj->oop_iterate_backwards(&_scanner); } return obj; } else { _plab_allocator->undo_allocation(dest_attr, obj_ptr, word_sz, node_index); return forward_ptr; } } G1ParScanThreadState* G1ParScanThreadStateSet::state_for_worker(uint worker_id) { assert(worker_id < _n_workers, "out of bounds access"); if (_states[worker_id] == NULL) { _states[worker_id] = new G1ParScanThreadState(_g1h, _rdcqs, worker_id, _young_cset_length, _optional_cset_length); } return _states[worker_id]; } const size_t* G1ParScanThreadStateSet::surviving_young_words() const { assert(_flushed, "thread local state from the per thread states should have been flushed"); return _surviving_young_words_total; } void G1ParScanThreadStateSet::flush() { assert(!_flushed, "thread local state from the per thread states should be flushed once"); for (uint worker_index = 0; worker_index < _n_workers; ++worker_index) { G1ParScanThreadState* pss = _states[worker_index]; if (pss == NULL) { continue; } pss->flush(_surviving_young_words_total); delete pss; _states[worker_index] = NULL; } _flushed = true; } void G1ParScanThreadStateSet::record_unused_optional_region(HeapRegion* hr) { for (uint worker_index = 0; worker_index < _n_workers; ++worker_index) { G1ParScanThreadState* pss = _states[worker_index]; if (pss == NULL) { continue; } size_t used_memory = pss->oops_into_optional_region(hr)->used_memory(); _g1h->phase_times()->record_or_add_thread_work_item(G1GCPhaseTimes::OptScanHR, worker_index, used_memory, G1GCPhaseTimes::ScanHRUsedMemory); } } oop G1ParScanThreadState::handle_evacuation_failure_par(oop old, markWord m) { assert(_g1h->is_in_cset(old), "Object " PTR_FORMAT " should be in the CSet", p2i(old)); oop forward_ptr = old->forward_to_atomic(old, m, memory_order_relaxed); if (forward_ptr == NULL) { // Forward-to-self succeeded. We are the "owner" of the object. HeapRegion* r = _g1h->heap_region_containing(old); if (!r->evacuation_failed()) { r->set_evacuation_failed(true); _g1h->hr_printer()->evac_failure(r); } _g1h->preserve_mark_during_evac_failure(_worker_id, old, m); G1ScanInYoungSetter x(&_scanner, r->is_young()); old->oop_iterate_backwards(&_scanner); return old; } else { // Forward-to-self failed. Either someone else managed to allocate // space for this object (old != forward_ptr) or they beat us in // self-forwarding it (old == forward_ptr). assert(old == forward_ptr || !_g1h->is_in_cset(forward_ptr), "Object " PTR_FORMAT " forwarded to: " PTR_FORMAT " " "should not be in the CSet", p2i(old), p2i(forward_ptr)); return forward_ptr; } } G1ParScanThreadStateSet::G1ParScanThreadStateSet(G1CollectedHeap* g1h, G1RedirtyCardsQueueSet* rdcqs, uint n_workers, size_t young_cset_length, size_t optional_cset_length) : _g1h(g1h), _rdcqs(rdcqs), _states(NEW_C_HEAP_ARRAY(G1ParScanThreadState*, n_workers, mtGC)), _surviving_young_words_total(NEW_C_HEAP_ARRAY(size_t, young_cset_length + 1, mtGC)), _young_cset_length(young_cset_length), _optional_cset_length(optional_cset_length), _n_workers(n_workers), _flushed(false) { for (uint i = 0; i < n_workers; ++i) { _states[i] = NULL; } memset(_surviving_young_words_total, 0, (young_cset_length + 1) * sizeof(size_t)); } G1ParScanThreadStateSet::~G1ParScanThreadStateSet() { assert(_flushed, "thread local state from the per thread states should have been flushed"); FREE_C_HEAP_ARRAY(G1ParScanThreadState*, _states); FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_total); }