/* * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "memory/allocation.inline.hpp" #include "opto/addnode.hpp" #include "opto/cfgnode.hpp" #include "opto/connode.hpp" #include "opto/machnode.hpp" #include "opto/mulnode.hpp" #include "opto/phaseX.hpp" #include "opto/subnode.hpp" // Portions of code courtesy of Clifford Click // Classic Add functionality. This covers all the usual 'add' behaviors for // an algebraic ring. Add-integer, add-float, add-double, and binary-or are // all inherited from this class. The various identity values are supplied // by virtual functions. //============================================================================= //------------------------------hash------------------------------------------- // Hash function over AddNodes. Needs to be commutative; i.e., I swap // (commute) inputs to AddNodes willy-nilly so the hash function must return // the same value in the presence of edge swapping. uint AddNode::hash() const { return (uintptr_t)in(1) + (uintptr_t)in(2) + Opcode(); } //------------------------------Identity--------------------------------------- // If either input is a constant 0, return the other input. Node *AddNode::Identity( PhaseTransform *phase ) { const Type *zero = add_id(); // The additive identity if( phase->type( in(1) )->higher_equal( zero ) ) return in(2); if( phase->type( in(2) )->higher_equal( zero ) ) return in(1); return this; } //------------------------------commute---------------------------------------- // Commute operands to move loads and constants to the right. static bool commute( Node *add, int con_left, int con_right ) { Node *in1 = add->in(1); Node *in2 = add->in(2); // Convert "1+x" into "x+1". // Right is a constant; leave it if( con_right ) return false; // Left is a constant; move it right. if( con_left ) { add->swap_edges(1, 2); return true; } // Convert "Load+x" into "x+Load". // Now check for loads if (in2->is_Load()) { if (!in1->is_Load()) { // already x+Load to return return false; } // both are loads, so fall through to sort inputs by idx } else if( in1->is_Load() ) { // Left is a Load and Right is not; move it right. add->swap_edges(1, 2); return true; } PhiNode *phi; // Check for tight loop increments: Loop-phi of Add of loop-phi if( in1->is_Phi() && (phi = in1->as_Phi()) && !phi->is_copy() && phi->region()->is_Loop() && phi->in(2)==add) return false; if( in2->is_Phi() && (phi = in2->as_Phi()) && !phi->is_copy() && phi->region()->is_Loop() && phi->in(2)==add){ add->swap_edges(1, 2); return true; } // Otherwise, sort inputs (commutativity) to help value numbering. if( in1->_idx > in2->_idx ) { add->swap_edges(1, 2); return true; } return false; } //------------------------------Idealize--------------------------------------- // If we get here, we assume we are associative! Node *AddNode::Ideal(PhaseGVN *phase, bool can_reshape) { const Type *t1 = phase->type( in(1) ); const Type *t2 = phase->type( in(2) ); int con_left = t1->singleton(); int con_right = t2->singleton(); // Check for commutative operation desired if( commute(this,con_left,con_right) ) return this; AddNode *progress = NULL; // Progress flag // Convert "(x+1)+2" into "x+(1+2)". If the right input is a // constant, and the left input is an add of a constant, flatten the // expression tree. Node *add1 = in(1); Node *add2 = in(2); int add1_op = add1->Opcode(); int this_op = Opcode(); if( con_right && t2 != Type::TOP && // Right input is a constant? add1_op == this_op ) { // Left input is an Add? // Type of left _in right input const Type *t12 = phase->type( add1->in(2) ); if( t12->singleton() && t12 != Type::TOP ) { // Left input is an add of a constant? // Check for rare case of closed data cycle which can happen inside // unreachable loops. In these cases the computation is undefined. #ifdef ASSERT Node *add11 = add1->in(1); int add11_op = add11->Opcode(); if( (add1 == add1->in(1)) || (add11_op == this_op && add11->in(1) == add1) ) { assert(false, "dead loop in AddNode::Ideal"); } #endif // The Add of the flattened expression Node *x1 = add1->in(1); Node *x2 = phase->makecon( add1->as_Add()->add_ring( t2, t12 )); PhaseIterGVN *igvn = phase->is_IterGVN(); if( igvn ) { set_req_X(2,x2,igvn); set_req_X(1,x1,igvn); } else { set_req(2,x2); set_req(1,x1); } progress = this; // Made progress add1 = in(1); add1_op = add1->Opcode(); } } // Convert "(x+1)+y" into "(x+y)+1". Push constants down the expression tree. if( add1_op == this_op && !con_right ) { Node *a12 = add1->in(2); const Type *t12 = phase->type( a12 ); if( t12->singleton() && t12 != Type::TOP && (add1 != add1->in(1)) && !(add1->in(1)->is_Phi() && add1->in(1)->as_Phi()->is_tripcount()) ) { assert(add1->in(1) != this, "dead loop in AddNode::Ideal"); add2 = add1->clone(); add2->set_req(2, in(2)); add2 = phase->transform(add2); set_req(1, add2); set_req(2, a12); progress = this; add2 = a12; } } // Convert "x+(y+1)" into "(x+y)+1". Push constants down the expression tree. int add2_op = add2->Opcode(); if( add2_op == this_op && !con_left ) { Node *a22 = add2->in(2); const Type *t22 = phase->type( a22 ); if( t22->singleton() && t22 != Type::TOP && (add2 != add2->in(1)) && !(add2->in(1)->is_Phi() && add2->in(1)->as_Phi()->is_tripcount()) ) { assert(add2->in(1) != this, "dead loop in AddNode::Ideal"); Node *addx = add2->clone(); addx->set_req(1, in(1)); addx->set_req(2, add2->in(1)); addx = phase->transform(addx); set_req(1, addx); set_req(2, a22); progress = this; } } return progress; } //------------------------------Value----------------------------------------- // An add node sums it's two _in. If one input is an RSD, we must mixin // the other input's symbols. const Type *AddNode::Value( PhaseTransform *phase ) const { // Either input is TOP ==> the result is TOP const Type *t1 = phase->type( in(1) ); const Type *t2 = phase->type( in(2) ); if( t1 == Type::TOP ) return Type::TOP; if( t2 == Type::TOP ) return Type::TOP; // Either input is BOTTOM ==> the result is the local BOTTOM const Type *bot = bottom_type(); if( (t1 == bot) || (t2 == bot) || (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) ) return bot; // Check for an addition involving the additive identity const Type *tadd = add_of_identity( t1, t2 ); if( tadd ) return tadd; return add_ring(t1,t2); // Local flavor of type addition } //------------------------------add_identity----------------------------------- // Check for addition of the identity const Type *AddNode::add_of_identity( const Type *t1, const Type *t2 ) const { const Type *zero = add_id(); // The additive identity if( t1->higher_equal( zero ) ) return t2; if( t2->higher_equal( zero ) ) return t1; return NULL; } //============================================================================= //------------------------------Idealize--------------------------------------- Node *AddINode::Ideal(PhaseGVN *phase, bool can_reshape) { Node* in1 = in(1); Node* in2 = in(2); int op1 = in1->Opcode(); int op2 = in2->Opcode(); // Fold (con1-x)+con2 into (con1+con2)-x if ( op1 == Op_AddI && op2 == Op_SubI ) { // Swap edges to try optimizations below in1 = in2; in2 = in(1); op1 = op2; op2 = in2->Opcode(); } if( op1 == Op_SubI ) { const Type *t_sub1 = phase->type( in1->in(1) ); const Type *t_2 = phase->type( in2 ); if( t_sub1->singleton() && t_2->singleton() && t_sub1 != Type::TOP && t_2 != Type::TOP ) return new (phase->C) SubINode(phase->makecon( add_ring( t_sub1, t_2 ) ), in1->in(2) ); // Convert "(a-b)+(c-d)" into "(a+c)-(b+d)" if( op2 == Op_SubI ) { // Check for dead cycle: d = (a-b)+(c-d) assert( in1->in(2) != this && in2->in(2) != this, "dead loop in AddINode::Ideal" ); Node *sub = new (phase->C) SubINode(NULL, NULL); sub->init_req(1, phase->transform(new (phase->C) AddINode(in1->in(1), in2->in(1) ) )); sub->init_req(2, phase->transform(new (phase->C) AddINode(in1->in(2), in2->in(2) ) )); return sub; } // Convert "(a-b)+(b+c)" into "(a+c)" if( op2 == Op_AddI && in1->in(2) == in2->in(1) ) { assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddINode::Ideal"); return new (phase->C) AddINode(in1->in(1), in2->in(2)); } // Convert "(a-b)+(c+b)" into "(a+c)" if( op2 == Op_AddI && in1->in(2) == in2->in(2) ) { assert(in1->in(1) != this && in2->in(1) != this,"dead loop in AddINode::Ideal"); return new (phase->C) AddINode(in1->in(1), in2->in(1)); } // Convert "(a-b)+(b-c)" into "(a-c)" if( op2 == Op_SubI && in1->in(2) == in2->in(1) ) { assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddINode::Ideal"); return new (phase->C) SubINode(in1->in(1), in2->in(2)); } // Convert "(a-b)+(c-a)" into "(c-b)" if( op2 == Op_SubI && in1->in(1) == in2->in(2) ) { assert(in1->in(2) != this && in2->in(1) != this,"dead loop in AddINode::Ideal"); return new (phase->C) SubINode(in2->in(1), in1->in(2)); } } // Convert "x+(0-y)" into "(x-y)" if( op2 == Op_SubI && phase->type(in2->in(1)) == TypeInt::ZERO ) return new (phase->C) SubINode(in1, in2->in(2) ); // Convert "(0-y)+x" into "(x-y)" if( op1 == Op_SubI && phase->type(in1->in(1)) == TypeInt::ZERO ) return new (phase->C) SubINode( in2, in1->in(2) ); // Convert (x>>>z)+y into (x+(y<>>z for small constant z and y. // Helps with array allocation math constant folding // See 4790063: // Unrestricted transformation is unsafe for some runtime values of 'x' // ( x == 0, z == 1, y == -1 ) fails // ( x == -5, z == 1, y == 1 ) fails // Transform works for small z and small negative y when the addition // (x + (y << z)) does not cross zero. // Implement support for negative y and (x >= -(y << z)) // Have not observed cases where type information exists to support // positive y and (x <= -(y << z)) if( op1 == Op_URShiftI && op2 == Op_ConI && in1->in(2)->Opcode() == Op_ConI ) { jint z = phase->type( in1->in(2) )->is_int()->get_con() & 0x1f; // only least significant 5 bits matter jint y = phase->type( in2 )->is_int()->get_con(); if( z < 5 && -5 < y && y < 0 ) { const Type *t_in11 = phase->type(in1->in(1)); if( t_in11 != Type::TOP && (t_in11->is_int()->_lo >= -(y << z)) ) { Node *a = phase->transform( new (phase->C) AddINode( in1->in(1), phase->intcon(y<C) URShiftINode( a, in1->in(2) ); } } } return AddNode::Ideal(phase, can_reshape); } //------------------------------Identity--------------------------------------- // Fold (x-y)+y OR y+(x-y) into x Node *AddINode::Identity( PhaseTransform *phase ) { if( in(1)->Opcode() == Op_SubI && phase->eqv(in(1)->in(2),in(2)) ) { return in(1)->in(1); } else if( in(2)->Opcode() == Op_SubI && phase->eqv(in(2)->in(2),in(1)) ) { return in(2)->in(1); } return AddNode::Identity(phase); } //------------------------------add_ring--------------------------------------- // Supplied function returns the sum of the inputs. Guaranteed never // to be passed a TOP or BOTTOM type, these are filtered out by // pre-check. const Type *AddINode::add_ring( const Type *t0, const Type *t1 ) const { const TypeInt *r0 = t0->is_int(); // Handy access const TypeInt *r1 = t1->is_int(); int lo = r0->_lo + r1->_lo; int hi = r0->_hi + r1->_hi; if( !(r0->is_con() && r1->is_con()) ) { // Not both constants, compute approximate result if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) { lo = min_jint; hi = max_jint; // Underflow on the low side } if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) { lo = min_jint; hi = max_jint; // Overflow on the high side } if( lo > hi ) { // Handle overflow lo = min_jint; hi = max_jint; } } else { // both constants, compute precise result using 'lo' and 'hi' // Semantics define overflow and underflow for integer addition // as expected. In particular: 0x80000000 + 0x80000000 --> 0x0 } return TypeInt::make( lo, hi, MAX2(r0->_widen,r1->_widen) ); } //============================================================================= //------------------------------Idealize--------------------------------------- Node *AddLNode::Ideal(PhaseGVN *phase, bool can_reshape) { Node* in1 = in(1); Node* in2 = in(2); int op1 = in1->Opcode(); int op2 = in2->Opcode(); // Fold (con1-x)+con2 into (con1+con2)-x if ( op1 == Op_AddL && op2 == Op_SubL ) { // Swap edges to try optimizations below in1 = in2; in2 = in(1); op1 = op2; op2 = in2->Opcode(); } // Fold (con1-x)+con2 into (con1+con2)-x if( op1 == Op_SubL ) { const Type *t_sub1 = phase->type( in1->in(1) ); const Type *t_2 = phase->type( in2 ); if( t_sub1->singleton() && t_2->singleton() && t_sub1 != Type::TOP && t_2 != Type::TOP ) return new (phase->C) SubLNode(phase->makecon( add_ring( t_sub1, t_2 ) ), in1->in(2) ); // Convert "(a-b)+(c-d)" into "(a+c)-(b+d)" if( op2 == Op_SubL ) { // Check for dead cycle: d = (a-b)+(c-d) assert( in1->in(2) != this && in2->in(2) != this, "dead loop in AddLNode::Ideal" ); Node *sub = new (phase->C) SubLNode(NULL, NULL); sub->init_req(1, phase->transform(new (phase->C) AddLNode(in1->in(1), in2->in(1) ) )); sub->init_req(2, phase->transform(new (phase->C) AddLNode(in1->in(2), in2->in(2) ) )); return sub; } // Convert "(a-b)+(b+c)" into "(a+c)" if( op2 == Op_AddL && in1->in(2) == in2->in(1) ) { assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddLNode::Ideal"); return new (phase->C) AddLNode(in1->in(1), in2->in(2)); } // Convert "(a-b)+(c+b)" into "(a+c)" if( op2 == Op_AddL && in1->in(2) == in2->in(2) ) { assert(in1->in(1) != this && in2->in(1) != this,"dead loop in AddLNode::Ideal"); return new (phase->C) AddLNode(in1->in(1), in2->in(1)); } // Convert "(a-b)+(b-c)" into "(a-c)" if( op2 == Op_SubL && in1->in(2) == in2->in(1) ) { assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddLNode::Ideal"); return new (phase->C) SubLNode(in1->in(1), in2->in(2)); } // Convert "(a-b)+(c-a)" into "(c-b)" if( op2 == Op_SubL && in1->in(1) == in1->in(2) ) { assert(in1->in(2) != this && in2->in(1) != this,"dead loop in AddLNode::Ideal"); return new (phase->C) SubLNode(in2->in(1), in1->in(2)); } } // Convert "x+(0-y)" into "(x-y)" if( op2 == Op_SubL && phase->type(in2->in(1)) == TypeLong::ZERO ) return new (phase->C) SubLNode( in1, in2->in(2) ); // Convert "(0-y)+x" into "(x-y)" if( op1 == Op_SubL && phase->type(in1->in(1)) == TypeInt::ZERO ) return new (phase->C) SubLNode( in2, in1->in(2) ); // Convert "X+X+X+X+X...+X+Y" into "k*X+Y" or really convert "X+(X+Y)" // into "(X<<1)+Y" and let shift-folding happen. if( op2 == Op_AddL && in2->in(1) == in1 && op1 != Op_ConL && 0 ) { Node *shift = phase->transform(new (phase->C) LShiftLNode(in1,phase->intcon(1))); return new (phase->C) AddLNode(shift,in2->in(2)); } return AddNode::Ideal(phase, can_reshape); } //------------------------------Identity--------------------------------------- // Fold (x-y)+y OR y+(x-y) into x Node *AddLNode::Identity( PhaseTransform *phase ) { if( in(1)->Opcode() == Op_SubL && phase->eqv(in(1)->in(2),in(2)) ) { return in(1)->in(1); } else if( in(2)->Opcode() == Op_SubL && phase->eqv(in(2)->in(2),in(1)) ) { return in(2)->in(1); } return AddNode::Identity(phase); } //------------------------------add_ring--------------------------------------- // Supplied function returns the sum of the inputs. Guaranteed never // to be passed a TOP or BOTTOM type, these are filtered out by // pre-check. const Type *AddLNode::add_ring( const Type *t0, const Type *t1 ) const { const TypeLong *r0 = t0->is_long(); // Handy access const TypeLong *r1 = t1->is_long(); jlong lo = r0->_lo + r1->_lo; jlong hi = r0->_hi + r1->_hi; if( !(r0->is_con() && r1->is_con()) ) { // Not both constants, compute approximate result if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) { lo =min_jlong; hi = max_jlong; // Underflow on the low side } if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) { lo = min_jlong; hi = max_jlong; // Overflow on the high side } if( lo > hi ) { // Handle overflow lo = min_jlong; hi = max_jlong; } } else { // both constants, compute precise result using 'lo' and 'hi' // Semantics define overflow and underflow for integer addition // as expected. In particular: 0x80000000 + 0x80000000 --> 0x0 } return TypeLong::make( lo, hi, MAX2(r0->_widen,r1->_widen) ); } //============================================================================= //------------------------------add_of_identity-------------------------------- // Check for addition of the identity const Type *AddFNode::add_of_identity( const Type *t1, const Type *t2 ) const { // x ADD 0 should return x unless 'x' is a -zero // // const Type *zero = add_id(); // The additive identity // jfloat f1 = t1->getf(); // jfloat f2 = t2->getf(); // // if( t1->higher_equal( zero ) ) return t2; // if( t2->higher_equal( zero ) ) return t1; return NULL; } //------------------------------add_ring--------------------------------------- // Supplied function returns the sum of the inputs. // This also type-checks the inputs for sanity. Guaranteed never to // be passed a TOP or BOTTOM type, these are filtered out by pre-check. const Type *AddFNode::add_ring( const Type *t0, const Type *t1 ) const { // We must be adding 2 float constants. return TypeF::make( t0->getf() + t1->getf() ); } //------------------------------Ideal------------------------------------------ Node *AddFNode::Ideal(PhaseGVN *phase, bool can_reshape) { if( IdealizedNumerics && !phase->C->method()->is_strict() ) { return AddNode::Ideal(phase, can_reshape); // commutative and associative transforms } // Floating point additions are not associative because of boundary conditions (infinity) return commute(this, phase->type( in(1) )->singleton(), phase->type( in(2) )->singleton() ) ? this : NULL; } //============================================================================= //------------------------------add_of_identity-------------------------------- // Check for addition of the identity const Type *AddDNode::add_of_identity( const Type *t1, const Type *t2 ) const { // x ADD 0 should return x unless 'x' is a -zero // // const Type *zero = add_id(); // The additive identity // jfloat f1 = t1->getf(); // jfloat f2 = t2->getf(); // // if( t1->higher_equal( zero ) ) return t2; // if( t2->higher_equal( zero ) ) return t1; return NULL; } //------------------------------add_ring--------------------------------------- // Supplied function returns the sum of the inputs. // This also type-checks the inputs for sanity. Guaranteed never to // be passed a TOP or BOTTOM type, these are filtered out by pre-check. const Type *AddDNode::add_ring( const Type *t0, const Type *t1 ) const { // We must be adding 2 double constants. return TypeD::make( t0->getd() + t1->getd() ); } //------------------------------Ideal------------------------------------------ Node *AddDNode::Ideal(PhaseGVN *phase, bool can_reshape) { if( IdealizedNumerics && !phase->C->method()->is_strict() ) { return AddNode::Ideal(phase, can_reshape); // commutative and associative transforms } // Floating point additions are not associative because of boundary conditions (infinity) return commute(this, phase->type( in(1) )->singleton(), phase->type( in(2) )->singleton() ) ? this : NULL; } //============================================================================= //------------------------------Identity--------------------------------------- // If one input is a constant 0, return the other input. Node *AddPNode::Identity( PhaseTransform *phase ) { return ( phase->type( in(Offset) )->higher_equal( TypeX_ZERO ) ) ? in(Address) : this; } //------------------------------Idealize--------------------------------------- Node *AddPNode::Ideal(PhaseGVN *phase, bool can_reshape) { // Bail out if dead inputs if( phase->type( in(Address) ) == Type::TOP ) return NULL; // If the left input is an add of a constant, flatten the expression tree. const Node *n = in(Address); if (n->is_AddP() && n->in(Base) == in(Base)) { const AddPNode *addp = n->as_AddP(); // Left input is an AddP assert( !addp->in(Address)->is_AddP() || addp->in(Address)->as_AddP() != addp, "dead loop in AddPNode::Ideal" ); // Type of left input's right input const Type *t = phase->type( addp->in(Offset) ); if( t == Type::TOP ) return NULL; const TypeX *t12 = t->is_intptr_t(); if( t12->is_con() ) { // Left input is an add of a constant? // If the right input is a constant, combine constants const Type *temp_t2 = phase->type( in(Offset) ); if( temp_t2 == Type::TOP ) return NULL; const TypeX *t2 = temp_t2->is_intptr_t(); Node* address; Node* offset; if( t2->is_con() ) { // The Add of the flattened expression address = addp->in(Address); offset = phase->MakeConX(t2->get_con() + t12->get_con()); } else { // Else move the constant to the right. ((A+con)+B) into ((A+B)+con) address = phase->transform(new (phase->C) AddPNode(in(Base),addp->in(Address),in(Offset))); offset = addp->in(Offset); } PhaseIterGVN *igvn = phase->is_IterGVN(); if( igvn ) { set_req_X(Address,address,igvn); set_req_X(Offset,offset,igvn); } else { set_req(Address,address); set_req(Offset,offset); } return this; } } // Raw pointers? if( in(Base)->bottom_type() == Type::TOP ) { // If this is a NULL+long form (from unsafe accesses), switch to a rawptr. if (phase->type(in(Address)) == TypePtr::NULL_PTR) { Node* offset = in(Offset); return new (phase->C) CastX2PNode(offset); } } // If the right is an add of a constant, push the offset down. // Convert: (ptr + (offset+con)) into (ptr+offset)+con. // The idea is to merge array_base+scaled_index groups together, // and only have different constant offsets from the same base. const Node *add = in(Offset); if( add->Opcode() == Op_AddX && add->in(1) != add ) { const Type *t22 = phase->type( add->in(2) ); if( t22->singleton() && (t22 != Type::TOP) ) { // Right input is an add of a constant? set_req(Address, phase->transform(new (phase->C) AddPNode(in(Base),in(Address),add->in(1)))); set_req(Offset, add->in(2)); return this; // Made progress } } return NULL; // No progress } //------------------------------bottom_type------------------------------------ // Bottom-type is the pointer-type with unknown offset. const Type *AddPNode::bottom_type() const { if (in(Address) == NULL) return TypePtr::BOTTOM; const TypePtr *tp = in(Address)->bottom_type()->isa_ptr(); if( !tp ) return Type::TOP; // TOP input means TOP output assert( in(Offset)->Opcode() != Op_ConP, "" ); const Type *t = in(Offset)->bottom_type(); if( t == Type::TOP ) return tp->add_offset(Type::OffsetTop); const TypeX *tx = t->is_intptr_t(); intptr_t txoffset = Type::OffsetBot; if (tx->is_con()) { // Left input is an add of a constant? txoffset = tx->get_con(); } return tp->add_offset(txoffset); } //------------------------------Value------------------------------------------ const Type *AddPNode::Value( PhaseTransform *phase ) const { // Either input is TOP ==> the result is TOP const Type *t1 = phase->type( in(Address) ); const Type *t2 = phase->type( in(Offset) ); if( t1 == Type::TOP ) return Type::TOP; if( t2 == Type::TOP ) return Type::TOP; // Left input is a pointer const TypePtr *p1 = t1->isa_ptr(); // Right input is an int const TypeX *p2 = t2->is_intptr_t(); // Add 'em intptr_t p2offset = Type::OffsetBot; if (p2->is_con()) { // Left input is an add of a constant? p2offset = p2->get_con(); } return p1->add_offset(p2offset); } //------------------------Ideal_base_and_offset-------------------------------- // Split an oop pointer into a base and offset. // (The offset might be Type::OffsetBot in the case of an array.) // Return the base, or NULL if failure. Node* AddPNode::Ideal_base_and_offset(Node* ptr, PhaseTransform* phase, // second return value: intptr_t& offset) { if (ptr->is_AddP()) { Node* base = ptr->in(AddPNode::Base); Node* addr = ptr->in(AddPNode::Address); Node* offs = ptr->in(AddPNode::Offset); if (base == addr || base->is_top()) { offset = phase->find_intptr_t_con(offs, Type::OffsetBot); if (offset != Type::OffsetBot) { return addr; } } } offset = Type::OffsetBot; return NULL; } //------------------------------unpack_offsets---------------------------------- // Collect the AddP offset values into the elements array, giving up // if there are more than length. int AddPNode::unpack_offsets(Node* elements[], int length) { int count = 0; Node* addr = this; Node* base = addr->in(AddPNode::Base); while (addr->is_AddP()) { if (addr->in(AddPNode::Base) != base) { // give up return -1; } elements[count++] = addr->in(AddPNode::Offset); if (count == length) { // give up return -1; } addr = addr->in(AddPNode::Address); } if (addr != base) { return -1; } return count; } //------------------------------match_edge------------------------------------- // Do we Match on this edge index or not? Do not match base pointer edge uint AddPNode::match_edge(uint idx) const { return idx > Base; } //============================================================================= //------------------------------Identity--------------------------------------- Node *OrINode::Identity( PhaseTransform *phase ) { // x | x => x if (phase->eqv(in(1), in(2))) { return in(1); } return AddNode::Identity(phase); } //------------------------------add_ring--------------------------------------- // Supplied function returns the sum of the inputs IN THE CURRENT RING. For // the logical operations the ring's ADD is really a logical OR function. // This also type-checks the inputs for sanity. Guaranteed never to // be passed a TOP or BOTTOM type, these are filtered out by pre-check. const Type *OrINode::add_ring( const Type *t0, const Type *t1 ) const { const TypeInt *r0 = t0->is_int(); // Handy access const TypeInt *r1 = t1->is_int(); // If both args are bool, can figure out better types if ( r0 == TypeInt::BOOL ) { if ( r1 == TypeInt::ONE) { return TypeInt::ONE; } else if ( r1 == TypeInt::BOOL ) { return TypeInt::BOOL; } } else if ( r0 == TypeInt::ONE ) { if ( r1 == TypeInt::BOOL ) { return TypeInt::ONE; } } // If either input is not a constant, just return all integers. if( !r0->is_con() || !r1->is_con() ) return TypeInt::INT; // Any integer, but still no symbols. // Otherwise just OR them bits. return TypeInt::make( r0->get_con() | r1->get_con() ); } //============================================================================= //------------------------------Identity--------------------------------------- Node *OrLNode::Identity( PhaseTransform *phase ) { // x | x => x if (phase->eqv(in(1), in(2))) { return in(1); } return AddNode::Identity(phase); } //------------------------------add_ring--------------------------------------- const Type *OrLNode::add_ring( const Type *t0, const Type *t1 ) const { const TypeLong *r0 = t0->is_long(); // Handy access const TypeLong *r1 = t1->is_long(); // If either input is not a constant, just return all integers. if( !r0->is_con() || !r1->is_con() ) return TypeLong::LONG; // Any integer, but still no symbols. // Otherwise just OR them bits. return TypeLong::make( r0->get_con() | r1->get_con() ); } //============================================================================= //------------------------------add_ring--------------------------------------- // Supplied function returns the sum of the inputs IN THE CURRENT RING. For // the logical operations the ring's ADD is really a logical OR function. // This also type-checks the inputs for sanity. Guaranteed never to // be passed a TOP or BOTTOM type, these are filtered out by pre-check. const Type *XorINode::add_ring( const Type *t0, const Type *t1 ) const { const TypeInt *r0 = t0->is_int(); // Handy access const TypeInt *r1 = t1->is_int(); // Complementing a boolean? if( r0 == TypeInt::BOOL && ( r1 == TypeInt::ONE || r1 == TypeInt::BOOL)) return TypeInt::BOOL; if( !r0->is_con() || !r1->is_con() ) // Not constants return TypeInt::INT; // Any integer, but still no symbols. // Otherwise just XOR them bits. return TypeInt::make( r0->get_con() ^ r1->get_con() ); } //============================================================================= //------------------------------add_ring--------------------------------------- const Type *XorLNode::add_ring( const Type *t0, const Type *t1 ) const { const TypeLong *r0 = t0->is_long(); // Handy access const TypeLong *r1 = t1->is_long(); // If either input is not a constant, just return all integers. if( !r0->is_con() || !r1->is_con() ) return TypeLong::LONG; // Any integer, but still no symbols. // Otherwise just OR them bits. return TypeLong::make( r0->get_con() ^ r1->get_con() ); } //============================================================================= //------------------------------add_ring--------------------------------------- // Supplied function returns the sum of the inputs. const Type *MaxINode::add_ring( const Type *t0, const Type *t1 ) const { const TypeInt *r0 = t0->is_int(); // Handy access const TypeInt *r1 = t1->is_int(); // Otherwise just MAX them bits. return TypeInt::make( MAX2(r0->_lo,r1->_lo), MAX2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) ); } //============================================================================= //------------------------------Idealize--------------------------------------- // MINs show up in range-check loop limit calculations. Look for // "MIN2(x+c0,MIN2(y,x+c1))". Pick the smaller constant: "MIN2(x+c0,y)" Node *MinINode::Ideal(PhaseGVN *phase, bool can_reshape) { Node *progress = NULL; // Force a right-spline graph Node *l = in(1); Node *r = in(2); // Transform MinI1( MinI2(a,b), c) into MinI1( a, MinI2(b,c) ) // to force a right-spline graph for the rest of MinINode::Ideal(). if( l->Opcode() == Op_MinI ) { assert( l != l->in(1), "dead loop in MinINode::Ideal" ); r = phase->transform(new (phase->C) MinINode(l->in(2),r)); l = l->in(1); set_req(1, l); set_req(2, r); return this; } // Get left input & constant Node *x = l; int x_off = 0; if( x->Opcode() == Op_AddI && // Check for "x+c0" and collect constant x->in(2)->is_Con() ) { const Type *t = x->in(2)->bottom_type(); if( t == Type::TOP ) return NULL; // No progress x_off = t->is_int()->get_con(); x = x->in(1); } // Scan a right-spline-tree for MINs Node *y = r; int y_off = 0; // Check final part of MIN tree if( y->Opcode() == Op_AddI && // Check for "y+c1" and collect constant y->in(2)->is_Con() ) { const Type *t = y->in(2)->bottom_type(); if( t == Type::TOP ) return NULL; // No progress y_off = t->is_int()->get_con(); y = y->in(1); } if( x->_idx > y->_idx && r->Opcode() != Op_MinI ) { swap_edges(1, 2); return this; } if( r->Opcode() == Op_MinI ) { assert( r != r->in(2), "dead loop in MinINode::Ideal" ); y = r->in(1); // Check final part of MIN tree if( y->Opcode() == Op_AddI &&// Check for "y+c1" and collect constant y->in(2)->is_Con() ) { const Type *t = y->in(2)->bottom_type(); if( t == Type::TOP ) return NULL; // No progress y_off = t->is_int()->get_con(); y = y->in(1); } if( x->_idx > y->_idx ) return new (phase->C) MinINode(r->in(1),phase->transform(new (phase->C) MinINode(l,r->in(2)))); // See if covers: MIN2(x+c0,MIN2(y+c1,z)) if( !phase->eqv(x,y) ) return NULL; // If (y == x) transform MIN2(x+c0, MIN2(x+c1,z)) into // MIN2(x+c0 or x+c1 which less, z). return new (phase->C) MinINode(phase->transform(new (phase->C) AddINode(x,phase->intcon(MIN2(x_off,y_off)))),r->in(2)); } else { // See if covers: MIN2(x+c0,y+c1) if( !phase->eqv(x,y) ) return NULL; // If (y == x) transform MIN2(x+c0,x+c1) into x+c0 or x+c1 which less. return new (phase->C) AddINode(x,phase->intcon(MIN2(x_off,y_off))); } } //------------------------------add_ring--------------------------------------- // Supplied function returns the sum of the inputs. const Type *MinINode::add_ring( const Type *t0, const Type *t1 ) const { const TypeInt *r0 = t0->is_int(); // Handy access const TypeInt *r1 = t1->is_int(); // Otherwise just MIN them bits. return TypeInt::make( MIN2(r0->_lo,r1->_lo), MIN2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) ); }