/* * Copyright (c) 2005, 2011, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "opto/addnode.hpp" #include "opto/callnode.hpp" #include "opto/cfgnode.hpp" #include "opto/idealKit.hpp" #include "opto/runtime.hpp" // Static initialization // This declares the position where vars are kept in the cvstate // For some degree of consistency we use the TypeFunc enum to // soak up spots in the inputs even though we only use early Control // and Memory slots. (So far.) const uint IdealKit::first_var = TypeFunc::Parms + 1; //----------------------------IdealKit----------------------------------------- IdealKit::IdealKit(GraphKit* gkit, bool delay_all_transforms, bool has_declarations) : _gvn(gkit->gvn()), C(gkit->C) { _initial_ctrl = gkit->control(); _initial_memory = gkit->merged_memory(); _initial_i_o = gkit->i_o(); _delay_all_transforms = delay_all_transforms; _var_ct = 0; _cvstate = NULL; // We can go memory state free or else we need the entire memory state assert(_initial_memory == NULL || _initial_memory->Opcode() == Op_MergeMem, "memory must be pre-split"); int init_size = 5; _pending_cvstates = new (C->node_arena()) GrowableArray(C->node_arena(), init_size, 0, 0); _delay_transform = new (C->node_arena()) GrowableArray(C->node_arena(), init_size, 0, 0); DEBUG_ONLY(_state = new (C->node_arena()) GrowableArray(C->node_arena(), init_size, 0, 0)); if (!has_declarations) { declarations_done(); } } //----------------------------sync_kit----------------------------------------- void IdealKit::sync_kit(GraphKit* gkit) { set_all_memory(gkit->merged_memory()); set_i_o(gkit->i_o()); set_ctrl(gkit->control()); } //-------------------------------if_then------------------------------------- // Create: if(left relop right) // / \ // iffalse iftrue // Push the iffalse cvstate onto the stack. The iftrue becomes the current cvstate. void IdealKit::if_then(Node* left, BoolTest::mask relop, Node* right, float prob, float cnt, bool push_new_state) { assert((state() & (BlockS|LoopS|IfThenS|ElseS)), "bad state for new If"); Node* bol; if (left->bottom_type()->isa_ptr() == NULL) { if (left->bottom_type()->isa_int() != NULL) { bol = Bool(CmpI(left, right), relop); } else { assert(left->bottom_type()->isa_long() != NULL, "what else?"); bol = Bool(CmpL(left, right), relop); } } else { bol = Bool(CmpP(left, right), relop); } // Delay gvn.tranform on if-nodes until construction is finished // to prevent a constant bool input from discarding a control output. IfNode* iff = delay_transform(new (C) IfNode(ctrl(), bol, prob, cnt))->as_If(); Node* then = IfTrue(iff); Node* elsen = IfFalse(iff); Node* else_cvstate = copy_cvstate(); else_cvstate->set_req(TypeFunc::Control, elsen); _pending_cvstates->push(else_cvstate); DEBUG_ONLY(if (push_new_state) _state->push(IfThenS)); set_ctrl(then); } //-------------------------------else_------------------------------------- // Pop the else cvstate off the stack, and push the (current) then cvstate. // The else cvstate becomes the current cvstate. void IdealKit::else_() { assert(state() == IfThenS, "bad state for new Else"); Node* else_cvstate = _pending_cvstates->pop(); DEBUG_ONLY(_state->pop()); // save current (then) cvstate for later use at endif _pending_cvstates->push(_cvstate); DEBUG_ONLY(_state->push(ElseS)); _cvstate = else_cvstate; } //-------------------------------end_if------------------------------------- // Merge the "then" and "else" cvstates. // // The if_then() pushed a copy of the current state for later use // as the initial state for a future "else" clause. The // current state then became the initial state for the // then clause. If an "else" clause was encountered, it will // pop the top state and use it for it's initial state. // It will also push the current state (the state at the end of // the "then" clause) for latter use at the end_if. // // At the endif, the states are: // 1) else exists a) current state is end of "else" clause // b) top stack state is end of "then" clause // // 2) no else: a) current state is end of "then" clause // b) top stack state is from the "if_then" which // would have been the initial state of the else. // // Merging the states is accomplished by: // 1) make a label for the merge // 2) terminate the current state with a goto to the label // 3) pop the top state from the stack and make it the // current state // 4) bind the label at the current state. Binding a label // terminates the current state with a goto to the // label and makes the label's state the current state. // void IdealKit::end_if() { assert(state() & (IfThenS|ElseS), "bad state for new Endif"); Node* lab = make_label(1); // Node* join_state = _pending_cvstates->pop(); /* merging, join */ goto_(lab); _cvstate = _pending_cvstates->pop(); bind(lab); DEBUG_ONLY(_state->pop()); } //-------------------------------loop------------------------------------- // Create the loop head portion (*) of: // * iv = init // * top: (region node) // * if (iv relop limit) { // loop body // i = i + 1 // goto top // * } else // exits loop // // Pushes the loop top cvstate first, then the else (loop exit) cvstate // onto the stack. void IdealKit::loop(GraphKit* gkit, int nargs, IdealVariable& iv, Node* init, BoolTest::mask relop, Node* limit, float prob, float cnt) { assert((state() & (BlockS|LoopS|IfThenS|ElseS)), "bad state for new loop"); if (UseLoopPredicate) { // Sync IdealKit and graphKit. gkit->sync_kit(*this); // Add loop predicate. gkit->add_predicate(nargs); // Update IdealKit memory. sync_kit(gkit); } set(iv, init); Node* head = make_label(1); bind(head); _pending_cvstates->push(head); // push for use at end_loop _cvstate = copy_cvstate(); if_then(value(iv), relop, limit, prob, cnt, false /* no new state */); DEBUG_ONLY(_state->push(LoopS)); assert(ctrl()->is_IfTrue(), "true branch stays in loop"); assert(_pending_cvstates->top()->in(TypeFunc::Control)->is_IfFalse(), "false branch exits loop"); } //-------------------------------end_loop------------------------------------- // Creates the goto top label. // Expects the else (loop exit) cvstate to be on top of the // stack, and the loop top cvstate to be 2nd. void IdealKit::end_loop() { assert((state() == LoopS), "bad state for new end_loop"); Node* exit = _pending_cvstates->pop(); Node* head = _pending_cvstates->pop(); goto_(head); clear(head); DEBUG_ONLY(_state->pop()); _cvstate = exit; } //-------------------------------make_label------------------------------------- // Creates a label. The number of goto's // must be specified (which should be 1 less than // the number of precedessors.) Node* IdealKit::make_label(int goto_ct) { assert(_cvstate != NULL, "must declare variables before labels"); Node* lab = new_cvstate(); int sz = 1 + goto_ct + 1 /* fall thru */; Node* reg = delay_transform(new (C) RegionNode(sz)); lab->init_req(TypeFunc::Control, reg); return lab; } //-------------------------------bind------------------------------------- // Bind a label at the current cvstate by simulating // a goto to the label. void IdealKit::bind(Node* lab) { goto_(lab, true /* bind */); _cvstate = lab; } //-------------------------------goto_------------------------------------- // Make the current cvstate a predecessor of the label, // creating phi's to merge values. If bind is true and // this is not the last control edge, then ensure that // all live values have phis created. Used to create phis // at loop-top regions. void IdealKit::goto_(Node* lab, bool bind) { Node* reg = lab->in(TypeFunc::Control); // find next empty slot in region uint slot = 1; while (slot < reg->req() && reg->in(slot) != NULL) slot++; assert(slot < reg->req(), "too many gotos"); // If this is last predecessor, then don't force phi creation if (slot == reg->req() - 1) bind = false; reg->init_req(slot, ctrl()); assert(first_var + _var_ct == _cvstate->req(), "bad _cvstate size"); for (uint i = first_var; i < _cvstate->req(); i++) { // l is the value of var reaching the label. Could be a single value // reaching the label, or a phi that merges multiples values reaching // the label. The latter is true if the label's input: in(..) is // a phi whose control input is the region node for the label. Node* l = lab->in(i); // Get the current value of the var Node* m = _cvstate->in(i); // If the var went unused no need for a phi if (m == NULL) { continue; } else if (l == NULL || m == l) { // Only one unique value "m" is known to reach this label so a phi // is not yet necessary unless: // the label is being bound and all predecessors have not been seen, // in which case "bind" will be true. if (bind) { m = promote_to_phi(m, reg); } // Record the phi/value used for this var in the label's cvstate lab->set_req(i, m); } else { // More than one value for the variable reaches this label so // a create a phi if one does not already exist. if (!was_promoted_to_phi(l, reg)) { l = promote_to_phi(l, reg); lab->set_req(i, l); } // Record in the phi, the var's value from the current state l->set_req(slot, m); } } do_memory_merge(_cvstate, lab); stop(); } //-----------------------------promote_to_phi----------------------------------- Node* IdealKit::promote_to_phi(Node* n, Node* reg) { assert(!was_promoted_to_phi(n, reg), "n already promoted to phi on this region"); // Get a conservative type for the phi const BasicType bt = n->bottom_type()->basic_type(); const Type* ct = Type::get_const_basic_type(bt); return delay_transform(PhiNode::make(reg, n, ct)); } //-----------------------------declarations_done------------------------------- void IdealKit::declarations_done() { _cvstate = new_cvstate(); // initialize current cvstate set_ctrl(_initial_ctrl); // initialize control in current cvstate set_all_memory(_initial_memory);// initialize memory in current cvstate set_i_o(_initial_i_o); // initialize i_o in current cvstate DEBUG_ONLY(_state->push(BlockS)); } //-----------------------------transform----------------------------------- Node* IdealKit::transform(Node* n) { if (_delay_all_transforms) { return delay_transform(n); } else { n = gvn().transform(n); if (!gvn().is_IterGVN()) { C->record_for_igvn(n); } return n; } } //-----------------------------delay_transform----------------------------------- Node* IdealKit::delay_transform(Node* n) { if (!gvn().is_IterGVN() || !gvn().is_IterGVN()->delay_transform()) { gvn().set_type(n, n->bottom_type()); } _delay_transform->push(n); return n; } //-----------------------------new_cvstate----------------------------------- Node* IdealKit::new_cvstate() { uint sz = _var_ct + first_var; return new (C) Node(sz); } //-----------------------------copy_cvstate----------------------------------- Node* IdealKit::copy_cvstate() { Node* ns = new_cvstate(); for (uint i = 0; i < ns->req(); i++) ns->init_req(i, _cvstate->in(i)); // We must clone memory since it will be updated as we do stores. ns->set_req(TypeFunc::Memory, MergeMemNode::make(C, ns->in(TypeFunc::Memory))); return ns; } //-----------------------------clear----------------------------------- void IdealKit::clear(Node* m) { for (uint i = 0; i < m->req(); i++) m->set_req(i, NULL); } //-----------------------------drain_delay_transform---------------------------- void IdealKit::drain_delay_transform() { while (_delay_transform->length() > 0) { Node* n = _delay_transform->pop(); gvn().transform(n); if (!gvn().is_IterGVN()) { C->record_for_igvn(n); } } } //-----------------------------IdealVariable---------------------------- IdealVariable::IdealVariable(IdealKit &k) { k.declare(this); } Node* IdealKit::memory(uint alias_idx) { MergeMemNode* mem = merged_memory(); Node* p = mem->memory_at(alias_idx); if (!gvn().is_IterGVN() || !gvn().is_IterGVN()->delay_transform()) { _gvn.set_type(p, Type::MEMORY); // must be mapped } return p; } void IdealKit::set_memory(Node* mem, uint alias_idx) { merged_memory()->set_memory_at(alias_idx, mem); } //----------------------------- make_load ---------------------------- Node* IdealKit::load(Node* ctl, Node* adr, const Type* t, BasicType bt, int adr_idx, bool require_atomic_access) { assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" ); const TypePtr* adr_type = NULL; // debug-mode-only argument debug_only(adr_type = C->get_adr_type(adr_idx)); Node* mem = memory(adr_idx); Node* ld; if (require_atomic_access && bt == T_LONG) { ld = LoadLNode::make_atomic(C, ctl, mem, adr, adr_type, t); } else { ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt); } return transform(ld); } Node* IdealKit::store(Node* ctl, Node* adr, Node *val, BasicType bt, int adr_idx, bool require_atomic_access) { assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" ); const TypePtr* adr_type = NULL; debug_only(adr_type = C->get_adr_type(adr_idx)); Node *mem = memory(adr_idx); Node* st; if (require_atomic_access && bt == T_LONG) { st = StoreLNode::make_atomic(C, ctl, mem, adr, adr_type, val); } else { st = StoreNode::make(_gvn, ctl, mem, adr, adr_type, val, bt); } st = transform(st); set_memory(st, adr_idx); return st; } // Card mark store. Must be ordered so that it will come after the store of // the oop. Node* IdealKit::storeCM(Node* ctl, Node* adr, Node *val, Node* oop_store, int oop_adr_idx, BasicType bt, int adr_idx) { assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" ); const TypePtr* adr_type = NULL; debug_only(adr_type = C->get_adr_type(adr_idx)); Node *mem = memory(adr_idx); // Add required edge to oop_store, optimizer does not support precedence edges. // Convert required edge to precedence edge before allocation. Node* st = new (C) StoreCMNode(ctl, mem, adr, adr_type, val, oop_store, oop_adr_idx); st = transform(st); set_memory(st, adr_idx); return st; } //---------------------------- do_memory_merge -------------------------------- // The memory from one merging cvstate needs to be merged with the memory for another // join cvstate. If the join cvstate doesn't have a merged memory yet then we // can just copy the state from the merging cvstate // Merge one slow path into the rest of memory. void IdealKit::do_memory_merge(Node* merging, Node* join) { // Get the region for the join state Node* join_region = join->in(TypeFunc::Control); assert(join_region != NULL, "join region must exist"); if (join->in(TypeFunc::I_O) == NULL ) { join->set_req(TypeFunc::I_O, merging->in(TypeFunc::I_O)); } if (join->in(TypeFunc::Memory) == NULL ) { join->set_req(TypeFunc::Memory, merging->in(TypeFunc::Memory)); return; } // The control flow for merging must have already been attached to the join region // we need its index for the phis. uint slot; for (slot = 1; slot < join_region->req() ; slot ++ ) { if (join_region->in(slot) == merging->in(TypeFunc::Control)) break; } assert(slot != join_region->req(), "edge must already exist"); MergeMemNode* join_m = join->in(TypeFunc::Memory)->as_MergeMem(); MergeMemNode* merging_m = merging->in(TypeFunc::Memory)->as_MergeMem(); // join_m should be an ancestor mergemem of merging // Slow path memory comes from the current map (which is from a slow call) // Fast path/null path memory comes from the call's input // Merge the other fast-memory inputs with the new slow-default memory. // for (MergeMemStream mms(merged_memory(), fast_mem->as_MergeMem()); mms.next_non_empty2(); ) { for (MergeMemStream mms(join_m, merging_m); mms.next_non_empty2(); ) { Node* join_slice = mms.force_memory(); Node* merging_slice = mms.memory2(); if (join_slice != merging_slice) { PhiNode* phi; // bool new_phi = false; // Is the phi for this slice one that we created for this join region or simply // one we copied? If it is ours then add if (join_slice->is_Phi() && join_slice->as_Phi()->region() == join_region) { phi = join_slice->as_Phi(); } else { // create the phi with join_slice filling supplying memory for all of the // control edges to the join region phi = PhiNode::make(join_region, join_slice, Type::MEMORY, mms.adr_type(C)); phi = (PhiNode*) delay_transform(phi); // gvn().set_type(phi, Type::MEMORY); // new_phi = true; } // Now update the phi with the slice for the merging slice phi->set_req(slot, merging_slice/* slow_path, slow_slice */); // this updates join_m with the phi mms.set_memory(phi); } } Node* join_io = join->in(TypeFunc::I_O); Node* merging_io = merging->in(TypeFunc::I_O); if (join_io != merging_io) { PhiNode* phi; if (join_io->is_Phi() && join_io->as_Phi()->region() == join_region) { phi = join_io->as_Phi(); } else { phi = PhiNode::make(join_region, join_io, Type::ABIO); phi = (PhiNode*) delay_transform(phi); join->set_req(TypeFunc::I_O, phi); } phi->set_req(slot, merging_io); } } //----------------------------- make_call ---------------------------- // Trivial runtime call void IdealKit::make_leaf_call(const TypeFunc *slow_call_type, address slow_call, const char *leaf_name, Node* parm0, Node* parm1, Node* parm2, Node* parm3) { // We only handle taking in RawMem and modifying RawMem const TypePtr* adr_type = TypeRawPtr::BOTTOM; uint adr_idx = C->get_alias_index(adr_type); // Slow-path leaf call CallNode *call = (CallNode*)new (C) CallLeafNode( slow_call_type, slow_call, leaf_name, adr_type); // Set fixed predefined input arguments call->init_req( TypeFunc::Control, ctrl() ); call->init_req( TypeFunc::I_O , top() ) ; // does no i/o // Narrow memory as only memory input call->init_req( TypeFunc::Memory , memory(adr_idx)); call->init_req( TypeFunc::FramePtr, top() /* frameptr() */ ); call->init_req( TypeFunc::ReturnAdr, top() ); if (parm0 != NULL) call->init_req(TypeFunc::Parms+0, parm0); if (parm1 != NULL) call->init_req(TypeFunc::Parms+1, parm1); if (parm2 != NULL) call->init_req(TypeFunc::Parms+2, parm2); if (parm3 != NULL) call->init_req(TypeFunc::Parms+3, parm3); // Node *c = _gvn.transform(call); call = (CallNode *) _gvn.transform(call); Node *c = call; // dbx gets confused with call call->dump() // Slow leaf call has no side-effects, sets few values set_ctrl(transform( new (C) ProjNode(call,TypeFunc::Control) )); // Make memory for the call Node* mem = _gvn.transform( new (C) ProjNode(call, TypeFunc::Memory) ); // Set the RawPtr memory state only. set_memory(mem, adr_idx); assert(C->alias_type(call->adr_type()) == C->alias_type(adr_type), "call node must be constructed correctly"); } void IdealKit::make_leaf_call_no_fp(const TypeFunc *slow_call_type, address slow_call, const char *leaf_name, const TypePtr* adr_type, Node* parm0, Node* parm1, Node* parm2, Node* parm3) { // We only handle taking in RawMem and modifying RawMem uint adr_idx = C->get_alias_index(adr_type); // Slow-path leaf call CallNode *call = (CallNode*)new (C) CallLeafNoFPNode( slow_call_type, slow_call, leaf_name, adr_type); // Set fixed predefined input arguments call->init_req( TypeFunc::Control, ctrl() ); call->init_req( TypeFunc::I_O , top() ) ; // does no i/o // Narrow memory as only memory input call->init_req( TypeFunc::Memory , memory(adr_idx)); call->init_req( TypeFunc::FramePtr, top() /* frameptr() */ ); call->init_req( TypeFunc::ReturnAdr, top() ); if (parm0 != NULL) call->init_req(TypeFunc::Parms+0, parm0); if (parm1 != NULL) call->init_req(TypeFunc::Parms+1, parm1); if (parm2 != NULL) call->init_req(TypeFunc::Parms+2, parm2); if (parm3 != NULL) call->init_req(TypeFunc::Parms+3, parm3); // Node *c = _gvn.transform(call); call = (CallNode *) _gvn.transform(call); Node *c = call; // dbx gets confused with call call->dump() // Slow leaf call has no side-effects, sets few values set_ctrl(transform( new (C) ProjNode(call,TypeFunc::Control) )); // Make memory for the call Node* mem = _gvn.transform( new (C) ProjNode(call, TypeFunc::Memory) ); // Set the RawPtr memory state only. set_memory(mem, adr_idx); assert(C->alias_type(call->adr_type()) == C->alias_type(adr_type), "call node must be constructed correctly"); }