/* * Copyright (c) 2022, 2023, Arm Limited. All rights reserved. * Copyright (c) 2023, 2024, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ /* * @test * @summary Vectorization test on loop array index computation * @library /test/lib / * * @build jdk.test.whitebox.WhiteBox * compiler.vectorization.runner.VectorizationTestRunner * * @run driver jdk.test.lib.helpers.ClassFileInstaller jdk.test.whitebox.WhiteBox * @run main/othervm -Xbootclasspath/a:. * -XX:+UnlockDiagnosticVMOptions * -XX:+WhiteBoxAPI * compiler.vectorization.runner.LoopArrayIndexComputeTest * * @requires (os.simpleArch == "x64") | (os.simpleArch == "aarch64") * @requires vm.compiler2.enabled */ package compiler.vectorization.runner; import compiler.lib.ir_framework.*; import java.util.Random; public class LoopArrayIndexComputeTest extends VectorizationTestRunner { private static final int SIZE = 6543; private int[] ints; private short[] shorts; private char[] chars; private byte[] bytes; private boolean[] booleans; private int inv1; private int inv2; public LoopArrayIndexComputeTest() { ints = new int[SIZE]; shorts = new short[SIZE]; chars = new char[SIZE]; bytes = new byte[SIZE]; booleans = new boolean[SIZE]; for (int i = 0; i < SIZE; i++) { ints[i] = 499 * i; shorts[i] = (short) (-13 * i + 5); chars[i] = (char) (i << 3); bytes[i] = (byte) (i >> 2 + 3); booleans[i] = (i % 5 == 0); } Random ran = new Random(10); inv1 = Math.abs(ran.nextInt() % 10) + 1; inv2 = Math.abs(ran.nextInt() % 10) + 1; } // ---------------- Linear Indexes ---------------- @Test @IR(applyIfCPUFeatureOr = {"asimd", "true", "sse2", "true"}, counts = {IRNode.STORE_VECTOR, ">0"}) @IR(applyIfCPUFeatureOr = {"asimd", "true", "sse2", "true"}, counts = {IRNode.ADD_VI, ">0"}) public int[] indexPlusConstant() { int[] res = new int[SIZE]; for (int i = 0; i < SIZE / 2; i++) { res[i + 1] = ints[i + 1] + 999; } return res; } @Test @IR(applyIfCPUFeatureOr = {"sve", "true", "avx2", "true"}, counts = {IRNode.STORE_VECTOR, ">0"}) @IR(applyIfCPUFeatureOr = {"sve", "true", "avx2", "true"}, counts = {IRNode.MUL_VI, ">0"}) public int[] indexMinusConstant() { int[] res = new int[SIZE]; for (int i = SIZE / 2; i < SIZE; i++) { res[i - 49] = ints[i - 49] * i; } return res; } @Test @IR(applyIfCPUFeatureOr = {"asimd", "true", "sse4.1", "true"}, counts = {IRNode.STORE_VECTOR, ">0"}) @IR(applyIfCPUFeatureOr = {"asimd", "true", "sse4.1", "true"}, counts = {IRNode.MUL_VI, ">0"}) public int[] indexPlusInvariant() { int[] res = new int[SIZE]; System.arraycopy(ints, 0, res, 0, SIZE); for (int i = 0; i < SIZE / 4; i++) { res[i + inv1] *= ints[i + inv1]; } return res; } @Test @IR(applyIfCPUFeatureOr = {"sve", "true", "avx2", "true"}, counts = {IRNode.STORE_VECTOR, ">0"}) @IR(applyIfCPUFeatureOr = {"sve", "true", "avx2", "true"}, counts = {IRNode.MUL_VI, ">0"}) public int[] indexMinusInvariant() { int[] res = new int[SIZE]; System.arraycopy(ints, 0, res, 0, SIZE); for (int i = SIZE / 3; i < SIZE / 2; i++) { res[i - inv2] *= (ints[i - inv2] + (i >> 2)); } return res; } @Test @IR(applyIfCPUFeatureOr = {"asimd", "true", "sse4.1", "true"}, counts = {IRNode.STORE_VECTOR, ">0"}) @IR(applyIfCPUFeatureOr = {"asimd", "true", "sse4.1", "true"}, counts = {IRNode.MUL_VI, ">0"}) public int[] indexWithInvariantAndConstant() { int[] res = new int[SIZE]; System.arraycopy(ints, 0, res, 0, SIZE); for (int i = 10; i < SIZE / 4; i++) { res[i + inv1 - 1] *= (ints[i + inv1 - 1] + 1); } return res; } @Test @IR(applyIfCPUFeatureOr = {"asimd", "true", "sse2", "true"}, counts = {IRNode.STORE_VECTOR, ">0"}) @IR(applyIfCPUFeatureOr = {"asimd", "true", "sse2", "true"}, counts = {IRNode.SUB_VI, ">0"}) public int[] indexWithTwoInvariants() { int[] res = new int[SIZE]; System.arraycopy(ints, 0, res, 0, SIZE); for (int i = 10; i < SIZE / 4; i++) { res[i + inv1 + inv2] -= ints[i + inv1 + inv2]; } return res; } @Test // No true dependency in read-forward case. @IR(applyIfCPUFeatureOr = {"asimd", "true", "sse2", "true"}, applyIf = {"AlignVector", "false"}, counts = {IRNode.STORE_VECTOR, ">0"}) public int[] indexWithDifferentConstantsPos() { int[] res = new int[SIZE]; for (int i = 0; i < SIZE / 4; i++) { res[i] = ints[i + 1]; } return res; } @Test // Note that this case cannot be vectorized due to data dependence. @IR(failOn = {IRNode.STORE_VECTOR}) public int[] indexWithDifferentConstantsNeg() { int[] res = new int[SIZE]; for (int i = 1; i < SIZE / 4; i++) { res[i] = ints[i - 1]; } return res; } @Test // Note that this case cannot be vectorized due to data dependence. @IR(failOn = {IRNode.STORE_VECTOR}) public int[] indexWithDifferentInvariants() { int[] res = new int[SIZE]; for (int i = SIZE / 4; i < SIZE / 2; i++) { res[i + inv1] = ints[i - inv2]; } return res; } @Test public int indexWithDifferentConstantsLoadOnly() { int res1 = 0; int res2 = 0; for (int i = 0; i < SIZE / 4; i++) { res1 += ints[i + 2]; res2 += ints[i + 15]; } return res1 * res2; } @Test public int indexWithDifferentInvariantsLoadOnly() { int res1 = 0; int res2 = 0; for (int i = SIZE / 4; i < SIZE / 2; i++) { res1 += ints[i + inv1]; res2 += ints[i - inv2]; } return res1 * res2; } @Test public int[] scaledIndex() { int[] res = new int[SIZE]; for (int i = 0; i < SIZE / 3; i++) { res[2 * i] = ints[2 * i]; } return res; } @Test public int[] scaledIndexWithConstantOffset() { int[] res = new int[SIZE]; System.arraycopy(ints, 0, res, 0, SIZE); for (int i = 0; i < SIZE / 4; i++) { res[2 * i + 3] *= ints[2 * i + 3]; } return res; } @Test public int[] scaledIndexWithInvariantOffset() { int[] res = new int[SIZE]; System.arraycopy(ints, 0, res, 0, SIZE); for (int i = 0; i < SIZE / 4; i++) { res[2 * i + inv1] *= ints[2 * i + inv1]; } return res; } @Test // Note that this case cannot be vectorized due to data dependence. @IR(failOn = {IRNode.STORE_VECTOR}) public int[] sameArrayWithDifferentIndex() { int[] res = new int[SIZE]; System.arraycopy(ints, 0, res, 0, SIZE); for (int i = 1, j = 0; i < 100; i++, j++) { res[i] += res[j]; } return res; } // ---------------- Subword Type Arrays ---------------- @Test // No true dependency in read-forward case. @IR(applyIfCPUFeatureOr = {"asimd", "true", "sse2", "true"}, applyIf = {"AlignVector", "false"}, counts = {IRNode.STORE_VECTOR, ">0"}) public short[] shortArrayWithDependencePos() { short[] res = new short[SIZE]; System.arraycopy(shorts, 0, res, 0, SIZE); for (int i = 0; i < SIZE / 2; i++) { res[i] *= shorts[i + 1]; } return res; } @Test // Note that this case cannot be vectorized due to data dependence. @IR(failOn = {IRNode.STORE_VECTOR}) public short[] shortArrayWithDependenceNeg() { short[] res = new short[SIZE]; System.arraycopy(shorts, 0, res, 0, SIZE); for (int i = 1; i < SIZE / 2; i++) { res[i] *= shorts[i - 1]; } return res; } @Test // No true dependency in read-forward case. @IR(applyIfCPUFeatureOr = {"asimd", "true", "sse2", "true"}, applyIf = {"AlignVector", "false"}, counts = {IRNode.STORE_VECTOR, ">0", IRNode.MUL_VS, ">0"}) // expect maximum size public char[] charArrayWithDependencePos() { char[] res = new char[SIZE]; System.arraycopy(chars, 0, res, 0, SIZE); for (int i = 0; i < SIZE / 2; i++) { res[i] *= chars[i + 2]; } return res; } @Test // Data dependency at distance 2: restrict vector size to 2 @IR(applyIfCPUFeatureOr = {"sse2", "true"}, counts = {IRNode.STORE_VECTOR, ">0", IRNode.MUL_VS, IRNode.VECTOR_SIZE_2, ">0"}) // size 2 only public char[] charArrayWithDependenceNeg() { char[] res = new char[SIZE]; System.arraycopy(chars, 0, res, 0, SIZE); for (int i = 2; i < SIZE / 2; i++) { res[i] *= chars[i - 2]; } return res; } @Test // No true dependency in read-forward case. @IR(applyIfCPUFeatureOr = {"asimd", "true", "sse2", "true"}, applyIf = {"AlignVector", "false"}, counts = {IRNode.STORE_VECTOR, ">0"}) public byte[] byteArrayWithDependencePos() { byte[] res = new byte[SIZE]; System.arraycopy(bytes, 0, res, 0, SIZE); for (int i = 0; i < SIZE / 2; i++) { res[i] += bytes[i + 3]; } return res; } @Test // Note that this case cannot be vectorized due to data dependence. @IR(failOn = {IRNode.STORE_VECTOR}) public byte[] byteArrayWithDependenceNeg() { byte[] res = new byte[SIZE]; System.arraycopy(bytes, 0, res, 0, SIZE); for (int i = 3; i < SIZE / 2; i++) { res[i] *= bytes[i - 3]; } return res; } @Test // No true dependency in read-forward case. @IR(applyIfCPUFeatureOr = {"asimd", "true", "sse2", "true"}, applyIf = {"AlignVector", "false"}, counts = {IRNode.STORE_VECTOR, ">0"}) public boolean[] booleanArrayWithDependencePos() { boolean[] res = new boolean[SIZE]; System.arraycopy(booleans, 0, res, 0, SIZE); for (int i = 0; i < SIZE / 2; i++) { res[i] |= booleans[i + 4]; } return res; } @Test // Data dependency at distance 4: restrict vector size to 4 @IR(applyIfCPUFeatureOr = {"asimd", "true", "sse2", "true"}, counts = {IRNode.STORE_VECTOR, ">0", IRNode.OR_VB, IRNode.VECTOR_SIZE_4, ">0"}) // size 4 only public boolean[] booleanArrayWithDependenceNeg() { boolean[] res = new boolean[SIZE]; System.arraycopy(booleans, 0, res, 0, SIZE); for (int i = 4; i < SIZE / 2; i++) { res[i] |= booleans[i - 4]; } return res; } // ---------------- Multiple Operations ---------------- @Test @IR(applyIfCPUFeatureOr = {"asimd", "true", "sse2", "true"}, counts = {IRNode.STORE_VECTOR, ">0"}) public int[] differentIndexWithDifferentTypes() { int[] res1 = new int[SIZE]; short[] res2 = new short[SIZE]; for (int i = 0; i < SIZE / 2; i++) { res1[i + 1] = ints[i + 1]; res2[i + inv2] = shorts[i + inv2]; } return res1; } @Test // Note that this case cannot be vectorized due to data dependence. @IR(failOn = {IRNode.STORE_VECTOR}) public int[] differentIndexWithSameType() { int[] res1 = new int[SIZE]; int[] res2 = new int[SIZE]; for (int i = 0; i < SIZE / 2; i++) { res1[i + 3] = ints[i + 3]; res2[i + inv1] = ints[i + inv1]; } return res2; } }