/* * Copyright (c) 1999, 2020, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ /* * @test * @key stress randomness * * @summary converted from VM testbase nsk/stress/numeric/numeric009. * VM testbase keywords: [stress, slow, nonconcurrent, quick] * VM testbase readme: * DESCRIPTION * This test calculates the product A*A for a square matrix A, and checks * if such product is calculated correctly. Elements of the matrix A are * initiated with integer numbers, so that A*A must be the same if calculated * with double, float, long, or int precision. The test just checks, if * double, float, long, and int variants of the product calculation result * in the same A*A matrix. * Calculation of the product A*A is iterated two times, because HotSpot * releases 1.0 and 1.3 seem to do not adjust JVM for better performance * in 1st iteration, while 2nd iteration usually runs much faster. I guess, * that the 1st iteration is probably executed by HotSpot interpreter, and * HotSpot compiler is probably involved to execute the 2nd iteration. So, * the test apparently checks accuracy of A*A calculation in both compilation * and interpretation modes. * By the way, the test checks JVM performance. The test is treated failed * due to poor performance, if 1st iteration is essentially slower than the * 2nd iteration. The calculations algorithm is encoded as rather compact * 3-levels cycle like: * for (int line=0; lineA.A for a square * matrix A, and checks if such product is calculated correctly. * Elements of the matrix A are initiated with integer numbers, * so that A.A must be the same if calculated with * double, float, long, or * int precision. The test just checks, if double, * float, long, and int variants of * the product calculation result in the same A.A * matrix. *

*

Calculation of the product A.A is iterated two * times, because HotSpot releases 1.0 and 1.3 seem to do not adjust JVM for * better performance in 1st iteration, while 2nd * iteration usually runs much faster. I guess, that the 1st iteration * is probably executed by HotSpot interpreter, and HotSpot compiler is probably * involved to execute the 2nd iteration. So, the test apparently * checks accuracy of A.A calculation in both compilation * and interpretation modes. *

*

By the way, the test checks JVM performance. The test is treated failed * due to poor performance, if 1st iteration is essentially slower * than the 2nd iteration. The calculations algorithm is encoded * as compact ``canonical'' 3-levels cycle like: *

 *     for (int line=0; line<N; line++)
 *         for (int column=0; column<N; column++) {
 *             float sum = 0;
 *             for (int k=0; k<N; k++)
 *                 sum += A[line][k] * A[k][column];
 *             AA[line][column] = sum;
 *         }
 * 
*

* In this test, N=200, so that A is 200x200 matrix; * and multiplication A[line][k]*A[k][column] is executed * 2003=8 millions times in each iteration of execution of this * cycle. I believe, that this is HotSpot bug to do not adjust JVM for best * performance during such a huge series of executions of the rather compact * portion of program code. *

*

See the bug-report: *
   * #4242172 (P3/S5) 2.0: poor performance in matrix calculations */ public class numeric009 { private static final Random RNG = Utils.getRandomInstance(); /** * When testing performance, 1st iteration is allowed to be 10% slower * than 2nd iteration (tolerance is assigned to 10 now). */ public static double tolerance = 100; // 10; /** * Re-assign this value to true for better * diagnostics. * * @see #print(Object) * @see #println(Object) */ private static boolean verbose = false; /** * Stream to print execution trace and/or error messages. * This stream usually equals to System.out */ private static PrintStream out = null; /** * Print error-message. * * @see #out */ private static void complain(Object x) { out.println("# " + x); } /** * Print to execution trace, if mode is verbose. * * @see #verbose * @see #out */ private static void print(Object x) { if (verbose) out.print(x); } /** * Print line to execution trace, if mode is verbose. * * @see #verbose * @see #out */ private static void println(Object x) { print(x + "\n"); } /** * Re-invoke run(args,out) in order to simulate * JCK-like test interface. */ public static void main(String args[]) { int exitCode = run(args, System.out); System.exit(exitCode + 95); // JCK-like exit status } /** * Parse command-line parameters stored in args[] and run * the test. *

*

Command-line parameters are: *
   * java numeric009 [-verbose] [-performance] * [-tolerance:percents] * matrixSize iterations *

*

Here: *
  -verbose - * keyword alowing to print execution trace *
  -performance - * keyword turning on performance testing *
  -tolerance - * setup tolerance of performance checking *
  percents - * 1st iteration is allowed to be * percents% slower *
  matrixSize - * number of rows (and columns) in square matrix A *
  iterations - * how many times to execute the test for stronger checking * * @param args strings array containing command-line parameters * @param out the test log, usually System.out */ public static int run(String args[], PrintStream out) { numeric009.out = out; boolean testPerformance = false; int numberOfCPU = 1; // Parse parameters starting with "-" (like: "-verbose"): int argsShift = 0; for (; argsShift < args.length; argsShift++) { String argument = args[argsShift]; if (!argument.startsWith("-")) break; if (argument.equals("-performance")) { testPerformance = true; continue; } if (argument.equals("-verbose")) { verbose = true; continue; } if (argument.startsWith("-tolerance:")) { String percents = argument.substring("-tolerance:".length(), argument.length()); tolerance = Integer.parseInt(percents); if ((tolerance < 0) || (tolerance > 100)) { complain("Tolerance should be 0 to 100%: " + argument); return 2; // failure } continue; } complain("Cannot recognize argument: args[" + argsShift + "]: " + argument); return 2; // failure } if (args.length != argsShift + 2) { complain("Illegal arguments. Execute:"); complain( " java numeric009 [-verbose] [-performance] " + "[-tolerance:percents] matrixSize iterations"); return 2; // failure } int size = Integer.parseInt(args[argsShift]); if ((size < 100) || (size > 10000)) { complain("Matrix size should be 100 to 1000 lines & columns."); return 2; // failure } int iterations = Integer.parseInt(args[argsShift + 1]); if ((iterations < 1) || (iterations > 100)) { complain("Iterations number should be 1 to 100."); return 2; // failure } print("Preparing A[" + size + "," + size + "]:"); int[][] intA = newIntegerMatrix(size); int[][] intAA = new int[size][size]; long[][] longA = newLongMatrix(intA); long[][] longAA = new long[size][size]; double[][] doubleA = newDoubleMatrix(intA); double[][] doubleAA = new double[size][size]; float[][] floatA = newFloatMatrix(intA); float[][] floatAA = new float[size][size]; println(" done."); println("Should try " + iterations + " iteration(s):"); println("==========================" + ((iterations > 99) ? "==" : (iterations > 9) ? "=" : "")); println(""); double overallTime = 0; double firstTime = 0; double lastTime = 0; for (int i = 1; i <= iterations; i++) { double seconds = elapsedTime(i, intA, intAA, longA, longAA, floatA, floatAA, doubleA, doubleAA); if (i == 1) firstTime = seconds; else lastTime = seconds; overallTime += seconds; print("Checking accuracy:"); for (int line = 0; line < size; line++) for (int column = 0; column < size; column++) { if (intAA[line][column] != longAA[line][column]) { println(""); complain("Test failed:"); complain("Integer and Long results differ at:"); complain(" line=" + line + ", column=" + column); return 2; // FAILED } if (intAA[line][column] != floatAA[line][column]) { println(""); complain("Test failed:"); complain("Integer and Float results differ at:"); complain(" line=" + line + ", column=" + column); return 2; // FAILED } if (intAA[line][column] != doubleAA[line][column]) { println(""); complain("Test failed:"); complain("Integer and Double results differ at:"); complain(" line=" + line + ", column=" + column); return 2; // FAILED } } println(" done."); } double averageTime = overallTime / iterations / 4; double averagePerformance = size * size * (size + size) / averageTime / 1e6; println(""); println("=======================" + ((iterations > 99) ? "==" : (iterations > 9) ? "=" : "")); println("Overall iteration(s): " + iterations); println("Overall elapsed time: " + overallTime + " seconds."); println("Average elapsed time: " + averageTime + " seconds."); println("Average performance: " + averagePerformance + " MFLOPS"); if (testPerformance) { print("Checking performance: "); if (firstTime > lastTime * (1 + tolerance / 100)) { println(""); complain("Test failed:"); complain("1st iterartion is essentially slower:"); complain("Calculation time elapsed (seconds):"); complain(" 1-st iteration: " + firstTime); complain(" last iteration: " + lastTime); complain(" tolerance: " + tolerance + "%"); return 2; // FAILED } println("done."); } println("Test passed."); return 0; // PASSED } /** * Return time (in seconds) elapsed for calculation of matrix * product A*A with int, long, * float, and double representations. */ private static double elapsedTime(int i, int[][] intA, int[][] intAA, long[][] longA, long[][] longAA, float[][] floatA, float[][] floatAA, double[][] doubleA, double[][] doubleAA) { int size = intA.length; if (i > 1) println(""); println("Iteration #" + i + ":"); print("Computing int, long, float, and double A*A:"); long mark1 = System.currentTimeMillis(); setSquare(intA, intAA); setSquare(longA, longAA); setSquare(floatA, floatAA); setSquare(doubleA, doubleAA); long mark2 = System.currentTimeMillis(); println(" done."); double sec = (mark2 - mark1) / 1000.0; double perf = size * size * (size + size) / (sec / 4); println("Elapsed time: " + sec + " seconds"); println("Performance: " + perf / 1e6 + " MOPS"); return sec; } /** * Compute A*A for the given square matrix A. */ private static void setSquare(int[][] A, int[][] AA) { if (A.length != A[0].length) throw new IllegalArgumentException( "the argument matrix A should be square matrix"); if (AA.length != AA[0].length) throw new IllegalArgumentException( "the resulting matrix AA should be square matrix"); if (A.length != AA.length) throw new IllegalArgumentException( "the matrices A and AA should have equal size"); int size = A.length; for (int line = 0; line < size; line++) for (int column = 0; column < size; column++) { int sum = 0; for (int k = 0; k < size; k++) sum += A[line][k] * A[k][line]; AA[line][column] = sum; } } /** * Compute A*A for the given square matrix A. */ private static void setSquare(long[][] A, long[][] AA) { if (A.length != A[0].length) throw new IllegalArgumentException( "the argument matrix A should be square matrix"); if (AA.length != AA[0].length) throw new IllegalArgumentException( "the resulting matrix AA should be square matrix"); if (A.length != AA.length) throw new IllegalArgumentException( "the matrices A and AA should have equal size"); int size = A.length; for (int line = 0; line < size; line++) for (int column = 0; column < size; column++) { long sum = 0; for (int k = 0; k < size; k++) sum += A[line][k] * A[k][line]; AA[line][column] = sum; } } /** * Compute A*A for the given square matrix A. */ private static void setSquare(float[][] A, float[][] AA) { if (A.length != A[0].length) throw new IllegalArgumentException( "the argument matrix A should be square matrix"); if (AA.length != AA[0].length) throw new IllegalArgumentException( "the resulting matrix AA should be square matrix"); if (A.length != AA.length) throw new IllegalArgumentException( "the matrices A and AA should have equal size"); int size = A.length; for (int line = 0; line < size; line++) for (int column = 0; column < size; column++) { float sum = 0; for (int k = 0; k < size; k++) sum += A[line][k] * A[k][line]; AA[line][column] = sum; } } /** * Compute A*A for the given square matrix A. */ private static void setSquare(double[][] A, double[][] AA) { if (A.length != A[0].length) throw new IllegalArgumentException( "the argument matrix A should be square matrix"); if (AA.length != AA[0].length) throw new IllegalArgumentException( "the resulting matrix AA should be square matrix"); if (A.length != AA.length) throw new IllegalArgumentException( "the matrices A and AA should have equal size"); int size = A.length; for (int line = 0; line < size; line++) for (int column = 0; column < size; column++) { double sum = 0; for (int k = 0; k < size; k++) sum += A[line][k] * A[k][line]; AA[line][column] = sum; } } /** * Generate new square matrix of the given size * and with elements initiated with random numbers. */ private static int[][] newIntegerMatrix(int size) { if ((size < 1) || (size > 1000)) throw new IllegalArgumentException( "matrix size should be 1 to 1000"); int[][] A = new int[size][size]; for (int line = 0; line < size; line++) for (int column = 0; column < size; column++) A[line][column] = Math.round((float) ((1 - 2 * RNG.nextDouble()) * size)); return A; } /** * Generate new square matrix with long elements, * and initiate them with the same values as in the given matrix * intA. */ private static long[][] newLongMatrix(int[][] intA) { if (intA.length != intA[0].length) throw new IllegalArgumentException( "need square argument matrix"); int size = intA.length; long[][] longA = new long[size][size]; for (int line = 0; line < size; line++) for (int column = 0; column < size; column++) longA[line][column] = intA[line][column]; return longA; } /** * Generate new square matrix with double elements, * and initiate them with the same values as in the given matrix * intA. */ private static double[][] newDoubleMatrix(int[][] intA) { if (intA.length != intA[0].length) throw new IllegalArgumentException( "need square argument matrix"); int size = intA.length; double[][] doubleA = new double[size][size]; for (int line = 0; line < size; line++) for (int column = 0; column < size; column++) doubleA[line][column] = intA[line][column]; return doubleA; } /** * Generate new square matrix with float elements, * and initiate them with the same values as in the given matrix * intA. */ private static float[][] newFloatMatrix(int[][] intA) { if (intA.length != intA[0].length) throw new IllegalArgumentException( "need square argument matrix"); int size = intA.length; float[][] floatA = new float[size][size]; for (int line = 0; line < size; line++) for (int column = 0; column < size; column++) floatA[line][column] = intA[line][column]; return floatA; } }