/* * Copyright (c) 2000, 2020, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ /* * @test * @key stress * * @summary converted from VM testbase nsk/stress/stack/stack016. * VM testbase keywords: [stress, diehard, stack, nonconcurrent, exclude] * VM testbase comments: 8139875 * VM testbase readme: * DESCRIPTION * The test provokes second stack overflow from within the * stack overflow handler -- repeatedly multiple times, and * in multiple threads. * This test measures a number of recursive invocations until * stack overflow, and then tries to provoke similar stack overflows * in 10 times in each of 10 threads. Each provocation consists of * invoking that recursive method for the given fixed depth * of invocations which is 10 times that depth measured before, * and then trying to invoke that recursive method once again * from within the catch clause just caught StackOverflowError. * The test is deemed passed, if VM have not crashed, and * if exception other than due to stack overflow was not * thrown. * COMMENTS * This test crashes HS versions 2.0, 1.3, and 1.4 on both * Solaris and Win32 platforms. * See the bug: * 4366625 (P4/S4) multiple stack overflow causes HS crash * * @ignore 8139875 * @requires vm.opt.DeoptimizeALot != true * @run main/othervm/timeout=900 nsk.stress.stack.stack016 -eager */ package nsk.stress.stack; import nsk.share.Terminator; import java.io.PrintStream; public class stack016 extends Thread { private final static int THREADS = 10; private final static int CYCLES = 10; private final static int STEP = 10; private final static int RESERVE = 10; private final static int PROBES = STEP * RESERVE; public static void main(String[] args) { int exitCode = run(args, System.out); System.exit(exitCode + 95); } public static int run(String args[], PrintStream out) { verbose = false; boolean eager = false; for (int i = 0; i < args.length; i++) if (args[i].toLowerCase().equals("-verbose")) verbose = true; else if (args[i].toLowerCase().equals("-eager")) eager = true; if (!eager) Terminator.appoint(Terminator.parseAppointment(args)); stack016.out = out; stack016 test = new stack016(); return test.doRun(); } private static boolean verbose; private static PrintStream out; private void display(Object message) { if (!verbose) return; synchronized (out) { out.println(message.toString()); } } private int doRun() { // // Measure recursive depth before stack overflow: // int maxDepth = 0; for (depthToTry = 0; ; depthToTry += STEP) try { trickyRecurse(depthToTry); maxDepth = depthToTry; } catch (Error error) { break; } out.println("Maximal recursion depth: " + maxDepth); // // Run the tested threads: // stack016 threads[] = new stack016[THREADS]; for (int i = 0; i < threads.length; i++) { threads[i] = new stack016(); threads[i].setName("Thread: " + (i + 1) + "/" + THREADS); threads[i].depthToTry = RESERVE * maxDepth; threads[i].start(); } for (int i = 0; i < threads.length; i++) if (threads[i].isAlive()) try { threads[i].join(); } catch (InterruptedException exception) { exception.printStackTrace(out); return 2; } // // Check if unexpected exceptions were thrown: // int exitCode = 0; for (int i = 0; i < threads.length; i++) if (threads[i].thrown != null) { threads[i].thrown.printStackTrace(out); exitCode = 2; } if (exitCode != 0) out.println("# TEST FAILED"); return exitCode; } private int stackTop = 0; private int depthToTry = 0; private Throwable thrown = null; private void trickyRecurse(int depth) { stackTop = depthToTry - depth; if (depth > 0) try { trickyRecurse(depth - 1); } catch (Error error) { if (!(error instanceof StackOverflowError) && !(error instanceof OutOfMemoryError)) throw error; // // Provoke more stack overflow, // if current stack is deep enough: // if (depthToTry - depth < stackTop - PROBES) throw error; recurse(depthToTry); throw new Error("TEST_RFE: try deeper recursion!"); } } private static void recurse(int depth) { if (depth > 0) recurse(depth - 1); } public void run() { String threadName = Thread.currentThread().getName(); for (int i = 1; i <= CYCLES; i++) try { display(threadName + ", iteration: " + i + "/" + CYCLES); trickyRecurse(depthToTry); throw new Error( "TEST_BUG: trickyRecursion() must throw an error anyway!"); } catch (StackOverflowError error) { // It's OK: stack overflow was expected. } catch (OutOfMemoryError oome) { // Also OK, if there is no memory for stack expansion. } catch (Throwable throwable) { if (throwable instanceof ThreadDeath) throw (ThreadDeath) throwable; thrown = throwable; break; } } }