/* * Copyright (c) 2012, 2020, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "jvm.h" #include "classfile/classLoaderDataGraph.hpp" #include "classfile/classListParser.hpp" #include "classfile/classLoaderExt.hpp" #include "classfile/dictionary.hpp" #include "classfile/loaderConstraints.hpp" #include "classfile/javaClasses.inline.hpp" #include "classfile/placeholders.hpp" #include "classfile/symbolTable.hpp" #include "classfile/stringTable.hpp" #include "classfile/systemDictionary.hpp" #include "classfile/systemDictionaryShared.hpp" #include "code/codeCache.hpp" #include "gc/shared/softRefPolicy.hpp" #include "interpreter/bytecodeStream.hpp" #include "interpreter/bytecodes.hpp" #include "logging/log.hpp" #include "logging/logMessage.hpp" #include "memory/archiveUtils.inline.hpp" #include "memory/dynamicArchive.hpp" #include "memory/filemap.hpp" #include "memory/heapShared.inline.hpp" #include "memory/metaspace.hpp" #include "memory/metaspaceClosure.hpp" #include "memory/metaspaceShared.hpp" #include "memory/resourceArea.hpp" #include "memory/universe.hpp" #include "oops/compressedOops.inline.hpp" #include "oops/instanceClassLoaderKlass.hpp" #include "oops/instanceMirrorKlass.hpp" #include "oops/instanceRefKlass.hpp" #include "oops/methodData.hpp" #include "oops/objArrayKlass.hpp" #include "oops/objArrayOop.hpp" #include "oops/oop.inline.hpp" #include "oops/typeArrayKlass.hpp" #include "prims/jvmtiRedefineClasses.hpp" #include "runtime/handles.inline.hpp" #include "runtime/os.hpp" #include "runtime/safepointVerifiers.hpp" #include "runtime/signature.hpp" #include "runtime/timerTrace.hpp" #include "runtime/vmThread.hpp" #include "runtime/vmOperations.hpp" #include "utilities/align.hpp" #include "utilities/bitMap.inline.hpp" #include "utilities/ostream.hpp" #include "utilities/defaultStream.hpp" #include "utilities/hashtable.inline.hpp" #if INCLUDE_G1GC #include "gc/g1/g1CollectedHeap.hpp" #endif ReservedSpace MetaspaceShared::_shared_rs; VirtualSpace MetaspaceShared::_shared_vs; ReservedSpace MetaspaceShared::_symbol_rs; VirtualSpace MetaspaceShared::_symbol_vs; MetaspaceSharedStats MetaspaceShared::_stats; bool MetaspaceShared::_has_error_classes; bool MetaspaceShared::_archive_loading_failed = false; bool MetaspaceShared::_remapped_readwrite = false; address MetaspaceShared::_i2i_entry_code_buffers = NULL; size_t MetaspaceShared::_i2i_entry_code_buffers_size = 0; void* MetaspaceShared::_shared_metaspace_static_top = NULL; intx MetaspaceShared::_relocation_delta; char* MetaspaceShared::_requested_base_address; bool MetaspaceShared::_use_optimized_module_handling = true; // The CDS archive is divided into the following regions: // mc - misc code (the method entry trampolines, c++ vtables) // rw - read-write metadata // ro - read-only metadata and read-only tables // // ca0 - closed archive heap space #0 // ca1 - closed archive heap space #1 (may be empty) // oa0 - open archive heap space #0 // oa1 - open archive heap space #1 (may be empty) // // The mc, rw, and ro regions are linearly allocated, starting from // SharedBaseAddress, in the order of mc->rw->ro. The size of these 3 regions // are page-aligned, and there's no gap between any consecutive regions. // // These 3 regions are populated in the following steps: // [1] All classes are loaded in MetaspaceShared::preload_classes(). All metadata are // temporarily allocated outside of the shared regions. Only the method entry // trampolines are written into the mc region. // [2] C++ vtables are copied into the mc region. // [3] ArchiveCompactor copies RW metadata into the rw region. // [4] ArchiveCompactor copies RO metadata into the ro region. // [5] SymbolTable, StringTable, SystemDictionary, and a few other read-only data // are copied into the ro region as read-only tables. // // The s0/s1 and oa0/oa1 regions are populated inside HeapShared::archive_java_heap_objects. // Their layout is independent of the other 4 regions. char* DumpRegion::expand_top_to(char* newtop) { assert(is_allocatable(), "must be initialized and not packed"); assert(newtop >= _top, "must not grow backwards"); if (newtop > _end) { MetaspaceShared::report_out_of_space(_name, newtop - _top); ShouldNotReachHere(); } if (_rs == MetaspaceShared::shared_rs()) { uintx delta; if (DynamicDumpSharedSpaces) { delta = DynamicArchive::object_delta_uintx(newtop); } else { delta = MetaspaceShared::object_delta_uintx(newtop); } if (delta > MAX_SHARED_DELTA) { // This is just a sanity check and should not appear in any real world usage. This // happens only if you allocate more than 2GB of shared objects and would require // millions of shared classes. vm_exit_during_initialization("Out of memory in the CDS archive", "Please reduce the number of shared classes."); } } MetaspaceShared::commit_to(_rs, _vs, newtop); _top = newtop; return _top; } char* DumpRegion::allocate(size_t num_bytes, size_t alignment) { char* p = (char*)align_up(_top, alignment); char* newtop = p + align_up(num_bytes, alignment); expand_top_to(newtop); memset(p, 0, newtop - p); return p; } void DumpRegion::append_intptr_t(intptr_t n, bool need_to_mark) { assert(is_aligned(_top, sizeof(intptr_t)), "bad alignment"); intptr_t *p = (intptr_t*)_top; char* newtop = _top + sizeof(intptr_t); expand_top_to(newtop); *p = n; if (need_to_mark) { ArchivePtrMarker::mark_pointer(p); } } void DumpRegion::print(size_t total_bytes) const { log_debug(cds)("%-3s space: " SIZE_FORMAT_W(9) " [ %4.1f%% of total] out of " SIZE_FORMAT_W(9) " bytes [%5.1f%% used] at " INTPTR_FORMAT, _name, used(), percent_of(used(), total_bytes), reserved(), percent_of(used(), reserved()), p2i(_base + MetaspaceShared::final_delta())); } void DumpRegion::print_out_of_space_msg(const char* failing_region, size_t needed_bytes) { log_error(cds)("[%-8s] " PTR_FORMAT " - " PTR_FORMAT " capacity =%9d, allocated =%9d", _name, p2i(_base), p2i(_top), int(_end - _base), int(_top - _base)); if (strcmp(_name, failing_region) == 0) { log_error(cds)(" required = %d", int(needed_bytes)); } } void DumpRegion::init(ReservedSpace* rs, VirtualSpace* vs) { _rs = rs; _vs = vs; // Start with 0 committed bytes. The memory will be committed as needed by // MetaspaceShared::commit_to(). if (!_vs->initialize(*_rs, 0)) { fatal("Unable to allocate memory for shared space"); } _base = _top = _rs->base(); _end = _rs->end(); } void DumpRegion::pack(DumpRegion* next) { assert(!is_packed(), "sanity"); _end = (char*)align_up(_top, MetaspaceShared::reserved_space_alignment()); _is_packed = true; if (next != NULL) { next->_rs = _rs; next->_vs = _vs; next->_base = next->_top = this->_end; next->_end = _rs->end(); } } static DumpRegion _mc_region("mc"), _ro_region("ro"), _rw_region("rw"), _symbol_region("symbols"); static size_t _total_closed_archive_region_size = 0, _total_open_archive_region_size = 0; void MetaspaceShared::init_shared_dump_space(DumpRegion* first_space) { first_space->init(&_shared_rs, &_shared_vs); } DumpRegion* MetaspaceShared::misc_code_dump_space() { return &_mc_region; } DumpRegion* MetaspaceShared::read_write_dump_space() { return &_rw_region; } DumpRegion* MetaspaceShared::read_only_dump_space() { return &_ro_region; } void MetaspaceShared::pack_dump_space(DumpRegion* current, DumpRegion* next, ReservedSpace* rs) { current->pack(next); } char* MetaspaceShared::symbol_space_alloc(size_t num_bytes) { return _symbol_region.allocate(num_bytes); } char* MetaspaceShared::misc_code_space_alloc(size_t num_bytes) { return _mc_region.allocate(num_bytes); } char* MetaspaceShared::read_only_space_alloc(size_t num_bytes) { return _ro_region.allocate(num_bytes); } size_t MetaspaceShared::reserved_space_alignment() { return os::vm_allocation_granularity(); } static bool shared_base_valid(char* shared_base) { #ifdef _LP64 return CompressedKlassPointers::is_valid_base((address)shared_base); #else return true; #endif } static bool shared_base_too_high(char* shared_base, size_t cds_total) { if (SharedBaseAddress != 0 && shared_base < (char*)SharedBaseAddress) { // SharedBaseAddress is very high (e.g., 0xffffffffffffff00) so // align_up(SharedBaseAddress, MetaspaceShared::reserved_space_alignment()) has wrapped around. return true; } if (max_uintx - uintx(shared_base) < uintx(cds_total)) { // The end of the archive will wrap around return true; } return false; } static char* compute_shared_base(size_t cds_total) { char* shared_base = (char*)align_up((char*)SharedBaseAddress, MetaspaceShared::reserved_space_alignment()); const char* err = NULL; if (shared_base_too_high(shared_base, cds_total)) { err = "too high"; } else if (!shared_base_valid(shared_base)) { err = "invalid for this platform"; } if (err) { log_warning(cds)("SharedBaseAddress (" INTPTR_FORMAT ") is %s. Reverted to " INTPTR_FORMAT, p2i((void*)SharedBaseAddress), err, p2i((void*)Arguments::default_SharedBaseAddress())); SharedBaseAddress = Arguments::default_SharedBaseAddress(); shared_base = (char*)align_up((char*)SharedBaseAddress, MetaspaceShared::reserved_space_alignment()); } assert(!shared_base_too_high(shared_base, cds_total) && shared_base_valid(shared_base), "Sanity"); return shared_base; } void MetaspaceShared::initialize_dumptime_shared_and_meta_spaces() { assert(DumpSharedSpaces, "should be called for dump time only"); const size_t reserve_alignment = MetaspaceShared::reserved_space_alignment(); #ifdef _LP64 // On 64-bit VM we reserve a 4G range and, if UseCompressedClassPointers=1, // will use that to house both the archives and the ccs. See below for // details. const uint64_t UnscaledClassSpaceMax = (uint64_t(max_juint) + 1); const size_t cds_total = align_down(UnscaledClassSpaceMax, reserve_alignment); #else // We don't support archives larger than 256MB on 32-bit due to limited // virtual address space. size_t cds_total = align_down(256*M, reserve_alignment); #endif char* shared_base = compute_shared_base(cds_total); _requested_base_address = shared_base; // Whether to use SharedBaseAddress as attach address. bool use_requested_base = true; if (shared_base == NULL) { use_requested_base = false; } if (ArchiveRelocationMode == 1) { log_info(cds)("ArchiveRelocationMode == 1: always allocate class space at an alternative address"); use_requested_base = false; } // First try to reserve the space at the specified SharedBaseAddress. assert(!_shared_rs.is_reserved(), "must be"); if (use_requested_base) { _shared_rs = ReservedSpace(cds_total, reserve_alignment, false /* large */, (char*)shared_base); if (_shared_rs.is_reserved()) { assert(_shared_rs.base() == shared_base, "should match"); } else { log_info(cds)("dumptime space reservation: failed to map at " "SharedBaseAddress " PTR_FORMAT, p2i(shared_base)); } } if (!_shared_rs.is_reserved()) { // Get a reserved space anywhere if attaching at the SharedBaseAddress // fails: if (UseCompressedClassPointers) { // If we need to reserve class space as well, let the platform handle // the reservation. LP64_ONLY(_shared_rs = Metaspace::reserve_address_space_for_compressed_classes(cds_total);) NOT_LP64(ShouldNotReachHere();) } else { // anywhere is fine. _shared_rs = ReservedSpace(cds_total, reserve_alignment, false /* large */, (char*)NULL); } } if (!_shared_rs.is_reserved()) { vm_exit_during_initialization("Unable to reserve memory for shared space", err_msg(SIZE_FORMAT " bytes.", cds_total)); } #ifdef _LP64 if (UseCompressedClassPointers) { assert(CompressedKlassPointers::is_valid_base((address)_shared_rs.base()), "Sanity"); // On 64-bit VM, if UseCompressedClassPointers=1, the compressed class space // must be allocated near the cds such as that the compressed Klass pointer // encoding can be used to en/decode pointers from both cds and ccs. Since // Metaspace cannot do this (it knows nothing about cds), we do it for // Metaspace here and pass it the space to use for ccs. // // We do this by reserving space for the ccs behind the archives. Note // however that ccs follows a different alignment // (Metaspace::reserve_alignment), so there may be a gap between ccs and // cds. // We use a similar layout at runtime, see reserve_address_space_for_archives(). // // +-- SharedBaseAddress (default = 0x800000000) // v // +-..---------+---------+ ... +----+----+----+--------+-----------------+ // | Heap | Archive | | MC | RW | RO | [gap] | class space | // +-..---------+---------+ ... +----+----+----+--------+-----------------+ // |<-- MaxHeapSize -->| |<-- UnscaledClassSpaceMax = 4GB -->| // // Note: ccs must follow the archives, and the archives must start at the // encoding base. However, the exact placement of ccs does not matter as // long as it it resides in the encoding range of CompressedKlassPointers // and comes after the archive. // // We do this by splitting up the allocated 4G into 3G of archive space, // followed by 1G for the ccs: // + The upper 1 GB is used as the "temporary compressed class space" // -- preload_classes() will store Klasses into this space. // + The lower 3 GB is used for the archive -- when preload_classes() // is done, ArchiveCompactor will copy the class metadata into this // space, first the RW parts, then the RO parts. // Starting address of ccs must be aligned to Metaspace::reserve_alignment()... size_t class_space_size = align_down(_shared_rs.size() / 4, Metaspace::reserve_alignment()); address class_space_start = (address)align_down(_shared_rs.end() - class_space_size, Metaspace::reserve_alignment()); size_t archive_size = class_space_start - (address)_shared_rs.base(); ReservedSpace tmp_class_space = _shared_rs.last_part(archive_size); _shared_rs = _shared_rs.first_part(archive_size); // ... as does the size of ccs. tmp_class_space = tmp_class_space.first_part(class_space_size); CompressedClassSpaceSize = class_space_size; // Let Metaspace initialize ccs Metaspace::initialize_class_space(tmp_class_space); // and set up CompressedKlassPointers encoding. CompressedKlassPointers::initialize((address)_shared_rs.base(), cds_total); log_info(cds)("narrow_klass_base = " PTR_FORMAT ", narrow_klass_shift = %d", p2i(CompressedKlassPointers::base()), CompressedKlassPointers::shift()); log_info(cds)("Allocated temporary class space: " SIZE_FORMAT " bytes at " PTR_FORMAT, CompressedClassSpaceSize, p2i(tmp_class_space.base())); assert(_shared_rs.end() == tmp_class_space.base() && is_aligned(_shared_rs.base(), MetaspaceShared::reserved_space_alignment()) && is_aligned(tmp_class_space.base(), Metaspace::reserve_alignment()) && is_aligned(tmp_class_space.size(), Metaspace::reserve_alignment()), "Sanity"); } #endif init_shared_dump_space(&_mc_region); SharedBaseAddress = (size_t)_shared_rs.base(); log_info(cds)("Allocated shared space: " SIZE_FORMAT " bytes at " PTR_FORMAT, _shared_rs.size(), p2i(_shared_rs.base())); // We don't want any valid object to be at the very bottom of the archive. // See ArchivePtrMarker::mark_pointer(). MetaspaceShared::misc_code_space_alloc(16); size_t symbol_rs_size = LP64_ONLY(3 * G) NOT_LP64(128 * M); _symbol_rs = ReservedSpace(symbol_rs_size); if (!_symbol_rs.is_reserved()) { vm_exit_during_initialization("Unable to reserve memory for symbols", err_msg(SIZE_FORMAT " bytes.", symbol_rs_size)); } _symbol_region.init(&_symbol_rs, &_symbol_vs); } // Called by universe_post_init() void MetaspaceShared::post_initialize(TRAPS) { if (UseSharedSpaces) { int size = FileMapInfo::get_number_of_shared_paths(); if (size > 0) { SystemDictionaryShared::allocate_shared_data_arrays(size, THREAD); if (!DynamicDumpSharedSpaces) { FileMapInfo* info; if (FileMapInfo::dynamic_info() == NULL) { info = FileMapInfo::current_info(); } else { info = FileMapInfo::dynamic_info(); } ClassLoaderExt::init_paths_start_index(info->app_class_paths_start_index()); ClassLoaderExt::init_app_module_paths_start_index(info->app_module_paths_start_index()); } } } } static GrowableArrayCHeap* _extra_interned_strings = NULL; void MetaspaceShared::read_extra_data(const char* filename, TRAPS) { _extra_interned_strings = new GrowableArrayCHeap(10000); HashtableTextDump reader(filename); reader.check_version("VERSION: 1.0"); while (reader.remain() > 0) { int utf8_length; int prefix_type = reader.scan_prefix(&utf8_length); ResourceMark rm(THREAD); if (utf8_length == 0x7fffffff) { // buf_len will overflown 32-bit value. vm_exit_during_initialization(err_msg("string length too large: %d", utf8_length)); } int buf_len = utf8_length+1; char* utf8_buffer = NEW_RESOURCE_ARRAY(char, buf_len); reader.get_utf8(utf8_buffer, utf8_length); utf8_buffer[utf8_length] = '\0'; if (prefix_type == HashtableTextDump::SymbolPrefix) { SymbolTable::new_permanent_symbol(utf8_buffer); } else{ assert(prefix_type == HashtableTextDump::StringPrefix, "Sanity"); oop s = StringTable::intern(utf8_buffer, THREAD); if (HAS_PENDING_EXCEPTION) { log_warning(cds, heap)("[line %d] extra interned string allocation failed; size too large: %d", reader.last_line_no(), utf8_length); CLEAR_PENDING_EXCEPTION; } else { #if INCLUDE_G1GC if (UseG1GC) { typeArrayOop body = java_lang_String::value(s); const HeapRegion* hr = G1CollectedHeap::heap()->heap_region_containing(body); if (hr->is_humongous()) { // Don't keep it alive, so it will be GC'ed before we dump the strings, in order // to maximize free heap space and minimize fragmentation. log_warning(cds, heap)("[line %d] extra interned string ignored; size too large: %d", reader.last_line_no(), utf8_length); continue; } } #endif // Interned strings are GC'ed if there are no references to it, so let's // add a reference to keep this string alive. assert(s != NULL, "must succeed"); Handle h(THREAD, s); _extra_interned_strings->append(h); } } } } void MetaspaceShared::commit_to(ReservedSpace* rs, VirtualSpace* vs, char* newtop) { Arguments::assert_is_dumping_archive(); char* base = rs->base(); size_t need_committed_size = newtop - base; size_t has_committed_size = vs->committed_size(); if (need_committed_size < has_committed_size) { return; } size_t min_bytes = need_committed_size - has_committed_size; size_t preferred_bytes = 1 * M; size_t uncommitted = vs->reserved_size() - has_committed_size; size_t commit =MAX2(min_bytes, preferred_bytes); commit = MIN2(commit, uncommitted); assert(commit <= uncommitted, "sanity"); bool result = vs->expand_by(commit, false); if (rs == &_shared_rs) { ArchivePtrMarker::expand_ptr_end((address*)vs->high()); } if (!result) { vm_exit_during_initialization(err_msg("Failed to expand shared space to " SIZE_FORMAT " bytes", need_committed_size)); } assert(rs == &_shared_rs || rs == &_symbol_rs, "must be"); const char* which = (rs == &_shared_rs) ? "shared" : "symbol"; log_debug(cds)("Expanding %s spaces by " SIZE_FORMAT_W(7) " bytes [total " SIZE_FORMAT_W(9) " bytes ending at %p]", which, commit, vs->actual_committed_size(), vs->high()); } void MetaspaceShared::initialize_ptr_marker(CHeapBitMap* ptrmap) { ArchivePtrMarker::initialize(ptrmap, (address*)_shared_vs.low(), (address*)_shared_vs.high()); } // Read/write a data stream for restoring/preserving metadata pointers and // miscellaneous data from/to the shared archive file. void MetaspaceShared::serialize(SerializeClosure* soc) { int tag = 0; soc->do_tag(--tag); // Verify the sizes of various metadata in the system. soc->do_tag(sizeof(Method)); soc->do_tag(sizeof(ConstMethod)); soc->do_tag(arrayOopDesc::base_offset_in_bytes(T_BYTE)); soc->do_tag(sizeof(ConstantPool)); soc->do_tag(sizeof(ConstantPoolCache)); soc->do_tag(objArrayOopDesc::base_offset_in_bytes()); soc->do_tag(typeArrayOopDesc::base_offset_in_bytes(T_BYTE)); soc->do_tag(sizeof(Symbol)); // Dump/restore miscellaneous metadata. JavaClasses::serialize_offsets(soc); Universe::serialize(soc); soc->do_tag(--tag); // Dump/restore references to commonly used names and signatures. vmSymbols::serialize(soc); soc->do_tag(--tag); // Dump/restore the symbol/string/subgraph_info tables SymbolTable::serialize_shared_table_header(soc); StringTable::serialize_shared_table_header(soc); HeapShared::serialize_subgraph_info_table_header(soc); SystemDictionaryShared::serialize_dictionary_headers(soc); InstanceMirrorKlass::serialize_offsets(soc); // Dump/restore well known classes (pointers) SystemDictionaryShared::serialize_well_known_klasses(soc); soc->do_tag(--tag); serialize_cloned_cpp_vtptrs(soc); soc->do_tag(--tag); soc->do_tag(666); } address MetaspaceShared::i2i_entry_code_buffers(size_t total_size) { if (DumpSharedSpaces) { if (_i2i_entry_code_buffers == NULL) { _i2i_entry_code_buffers = (address)misc_code_space_alloc(total_size); _i2i_entry_code_buffers_size = total_size; } } else if (UseSharedSpaces) { assert(_i2i_entry_code_buffers != NULL, "must already been initialized"); } else { return NULL; } assert(_i2i_entry_code_buffers_size == total_size, "must not change"); return _i2i_entry_code_buffers; } uintx MetaspaceShared::object_delta_uintx(void* obj) { Arguments::assert_is_dumping_archive(); if (DumpSharedSpaces) { assert(shared_rs()->contains(obj), "must be"); } else { assert(is_in_shared_metaspace(obj) || DynamicArchive::is_in_target_space(obj), "must be"); } address base_address = address(SharedBaseAddress); uintx deltax = address(obj) - base_address; return deltax; } // Global object for holding classes that have been loaded. Since this // is run at a safepoint just before exit, this is the entire set of classes. static GrowableArray* _global_klass_objects; static int global_klass_compare(Klass** a, Klass **b) { return a[0]->name()->fast_compare(b[0]->name()); } GrowableArray* MetaspaceShared::collected_klasses() { return _global_klass_objects; } static void collect_array_classes(Klass* k) { _global_klass_objects->append_if_missing(k); if (k->is_array_klass()) { // Add in the array classes too ArrayKlass* ak = ArrayKlass::cast(k); Klass* h = ak->higher_dimension(); if (h != NULL) { h->array_klasses_do(collect_array_classes); } } } class CollectClassesClosure : public KlassClosure { void do_klass(Klass* k) { if (k->is_instance_klass() && SystemDictionaryShared::is_excluded_class(InstanceKlass::cast(k))) { // Don't add to the _global_klass_objects } else { _global_klass_objects->append_if_missing(k); } if (k->is_array_klass()) { // Add in the array classes too ArrayKlass* ak = ArrayKlass::cast(k); Klass* h = ak->higher_dimension(); if (h != NULL) { h->array_klasses_do(collect_array_classes); } } } }; // Global object for holding symbols that created during class loading. See SymbolTable::new_symbol static GrowableArray* _global_symbol_objects = NULL; static int compare_symbols_by_address(Symbol** a, Symbol** b) { if (a[0] < b[0]) { return -1; } else if (a[0] == b[0]) { ResourceMark rm; log_warning(cds)("Duplicated symbol %s unexpected", (*a)->as_C_string()); return 0; } else { return 1; } } void MetaspaceShared::add_symbol(Symbol* sym) { MutexLocker ml(CDSAddSymbol_lock, Mutex::_no_safepoint_check_flag); if (_global_symbol_objects == NULL) { _global_symbol_objects = new (ResourceObj::C_HEAP, mtSymbol) GrowableArray(2048, mtSymbol); } _global_symbol_objects->append(sym); } GrowableArray* MetaspaceShared::collected_symbols() { return _global_symbol_objects; } static void remove_unshareable_in_classes() { for (int i = 0; i < _global_klass_objects->length(); i++) { Klass* k = _global_klass_objects->at(i); if (!k->is_objArray_klass()) { // InstanceKlass and TypeArrayKlass will in turn call remove_unshareable_info // on their array classes. assert(k->is_instance_klass() || k->is_typeArray_klass(), "must be"); k->remove_unshareable_info(); } } } static void remove_java_mirror_in_classes() { for (int i = 0; i < _global_klass_objects->length(); i++) { Klass* k = _global_klass_objects->at(i); if (!k->is_objArray_klass()) { // InstanceKlass and TypeArrayKlass will in turn call remove_unshareable_info // on their array classes. assert(k->is_instance_klass() || k->is_typeArray_klass(), "must be"); k->remove_java_mirror(); } } } static void clear_basic_type_mirrors() { assert(!HeapShared::is_heap_object_archiving_allowed(), "Sanity"); Universe::set_int_mirror(NULL); Universe::set_float_mirror(NULL); Universe::set_double_mirror(NULL); Universe::set_byte_mirror(NULL); Universe::set_bool_mirror(NULL); Universe::set_char_mirror(NULL); Universe::set_long_mirror(NULL); Universe::set_short_mirror(NULL); Universe::set_void_mirror(NULL); } static void rewrite_nofast_bytecode(const methodHandle& method) { BytecodeStream bcs(method); while (!bcs.is_last_bytecode()) { Bytecodes::Code opcode = bcs.next(); switch (opcode) { case Bytecodes::_getfield: *bcs.bcp() = Bytecodes::_nofast_getfield; break; case Bytecodes::_putfield: *bcs.bcp() = Bytecodes::_nofast_putfield; break; case Bytecodes::_aload_0: *bcs.bcp() = Bytecodes::_nofast_aload_0; break; case Bytecodes::_iload: { if (!bcs.is_wide()) { *bcs.bcp() = Bytecodes::_nofast_iload; } break; } default: break; } } } // Walk all methods in the class list to ensure that they won't be modified at // run time. This includes: // [1] Rewrite all bytecodes as needed, so that the ConstMethod* will not be modified // at run time by RewriteBytecodes/RewriteFrequentPairs // [2] Assign a fingerprint, so one doesn't need to be assigned at run-time. static void rewrite_nofast_bytecodes_and_calculate_fingerprints(Thread* thread) { for (int i = 0; i < _global_klass_objects->length(); i++) { Klass* k = _global_klass_objects->at(i); if (k->is_instance_klass()) { InstanceKlass* ik = InstanceKlass::cast(k); MetaspaceShared::rewrite_nofast_bytecodes_and_calculate_fingerprints(thread, ik); } } } void MetaspaceShared::rewrite_nofast_bytecodes_and_calculate_fingerprints(Thread* thread, InstanceKlass* ik) { for (int i = 0; i < ik->methods()->length(); i++) { methodHandle m(thread, ik->methods()->at(i)); rewrite_nofast_bytecode(m); Fingerprinter fp(m); // The side effect of this call sets method's fingerprint field. fp.fingerprint(); } } // Objects of the Metadata types (such as Klass and ConstantPool) have C++ vtables. // (In GCC this is the field ::_vptr, i.e., first word in the object.) // // Addresses of the vtables and the methods may be different across JVM runs, // if libjvm.so is dynamically loaded at a different base address. // // To ensure that the Metadata objects in the CDS archive always have the correct vtable: // // + at dump time: we redirect the _vptr to point to our own vtables inside // the CDS image // + at run time: we clone the actual contents of the vtables from libjvm.so // into our own tables. // Currently, the archive contain ONLY the following types of objects that have C++ vtables. #define CPP_VTABLE_PATCH_TYPES_DO(f) \ f(ConstantPool) \ f(InstanceKlass) \ f(InstanceClassLoaderKlass) \ f(InstanceMirrorKlass) \ f(InstanceRefKlass) \ f(Method) \ f(ObjArrayKlass) \ f(TypeArrayKlass) class CppVtableInfo { intptr_t _vtable_size; intptr_t _cloned_vtable[1]; public: static int num_slots(int vtable_size) { return 1 + vtable_size; // Need to add the space occupied by _vtable_size; } int vtable_size() { return int(uintx(_vtable_size)); } void set_vtable_size(int n) { _vtable_size = intptr_t(n); } intptr_t* cloned_vtable() { return &_cloned_vtable[0]; } void zero() { memset(_cloned_vtable, 0, sizeof(intptr_t) * vtable_size()); } // Returns the address of the next CppVtableInfo that can be placed immediately after this CppVtableInfo static size_t byte_size(int vtable_size) { CppVtableInfo i; return pointer_delta(&i._cloned_vtable[vtable_size], &i, sizeof(u1)); } }; template class CppVtableCloner : public T { static intptr_t* vtable_of(Metadata& m) { return *((intptr_t**)&m); } static CppVtableInfo* _info; static int get_vtable_length(const char* name); public: // Allocate and initialize the C++ vtable, starting from top, but do not go past end. static intptr_t* allocate(const char* name); // Clone the vtable to ... static intptr_t* clone_vtable(const char* name, CppVtableInfo* info); static void zero_vtable_clone() { assert(DumpSharedSpaces, "dump-time only"); _info->zero(); } static bool is_valid_shared_object(const T* obj) { intptr_t* vptr = *(intptr_t**)obj; return vptr == _info->cloned_vtable(); } }; template CppVtableInfo* CppVtableCloner::_info = NULL; template intptr_t* CppVtableCloner::allocate(const char* name) { assert(is_aligned(_mc_region.top(), sizeof(intptr_t)), "bad alignment"); int n = get_vtable_length(name); _info = (CppVtableInfo*)_mc_region.allocate(CppVtableInfo::byte_size(n), sizeof(intptr_t)); _info->set_vtable_size(n); intptr_t* p = clone_vtable(name, _info); assert((char*)p == _mc_region.top(), "must be"); return _info->cloned_vtable(); } template intptr_t* CppVtableCloner::clone_vtable(const char* name, CppVtableInfo* info) { if (!DumpSharedSpaces) { assert(_info == 0, "_info is initialized only at dump time"); _info = info; // Remember it -- it will be used by MetaspaceShared::is_valid_shared_method() } T tmp; // Allocate temporary dummy metadata object to get to the original vtable. int n = info->vtable_size(); intptr_t* srcvtable = vtable_of(tmp); intptr_t* dstvtable = info->cloned_vtable(); // We already checked (and, if necessary, adjusted n) when the vtables were allocated, so we are // safe to do memcpy. log_debug(cds, vtables)("Copying %3d vtable entries for %s", n, name); memcpy(dstvtable, srcvtable, sizeof(intptr_t) * n); return dstvtable + n; } // To determine the size of the vtable for each type, we use the following // trick by declaring 2 subclasses: // // class CppVtableTesterA: public InstanceKlass {virtual int last_virtual_method() {return 1;} }; // class CppVtableTesterB: public InstanceKlass {virtual void* last_virtual_method() {return NULL}; }; // // CppVtableTesterA and CppVtableTesterB's vtables have the following properties: // - Their size (N+1) is exactly one more than the size of InstanceKlass's vtable (N) // - The first N entries have are exactly the same as in InstanceKlass's vtable. // - Their last entry is different. // // So to determine the value of N, we just walk CppVtableTesterA and CppVtableTesterB's tables // and find the first entry that's different. // // This works on all C++ compilers supported by Oracle, but you may need to tweak it for more // esoteric compilers. template class CppVtableTesterB: public T { public: virtual int last_virtual_method() {return 1;} }; template class CppVtableTesterA : public T { public: virtual void* last_virtual_method() { // Make this different than CppVtableTesterB::last_virtual_method so the C++ // compiler/linker won't alias the two functions. return NULL; } }; template int CppVtableCloner::get_vtable_length(const char* name) { CppVtableTesterA a; CppVtableTesterB b; intptr_t* avtable = vtable_of(a); intptr_t* bvtable = vtable_of(b); // Start at slot 1, because slot 0 may be RTTI (on Solaris/Sparc) int vtable_len = 1; for (; ; vtable_len++) { if (avtable[vtable_len] != bvtable[vtable_len]) { break; } } log_debug(cds, vtables)("Found %3d vtable entries for %s", vtable_len, name); return vtable_len; } #define ALLOC_CPP_VTABLE_CLONE(c) \ _cloned_cpp_vtptrs[c##_Kind] = CppVtableCloner::allocate(#c); \ ArchivePtrMarker::mark_pointer(&_cloned_cpp_vtptrs[c##_Kind]); #define CLONE_CPP_VTABLE(c) \ p = CppVtableCloner::clone_vtable(#c, (CppVtableInfo*)p); #define ZERO_CPP_VTABLE(c) \ CppVtableCloner::zero_vtable_clone(); //------------------------------ for DynamicDumpSharedSpaces - start #define DECLARE_CLONED_VTABLE_KIND(c) c ## _Kind, enum { // E.g., ConstantPool_Kind == 0, InstanceKlass == 1, etc. CPP_VTABLE_PATCH_TYPES_DO(DECLARE_CLONED_VTABLE_KIND) _num_cloned_vtable_kinds }; // This is the index of all the cloned vtables. E.g., for // ConstantPool* cp = ....; // an archived constant pool // InstanceKlass* ik = ....;// an archived class // the following holds true: // _cloned_cpp_vtptrs[ConstantPool_Kind] == ((intptr_t**)cp)[0] // _cloned_cpp_vtptrs[InstanceKlass_Kind] == ((intptr_t**)ik)[0] static intptr_t** _cloned_cpp_vtptrs = NULL; void MetaspaceShared::allocate_cloned_cpp_vtptrs() { assert(DumpSharedSpaces, "must"); size_t vtptrs_bytes = _num_cloned_vtable_kinds * sizeof(intptr_t*); _cloned_cpp_vtptrs = (intptr_t**)_mc_region.allocate(vtptrs_bytes, sizeof(intptr_t*)); } void MetaspaceShared::serialize_cloned_cpp_vtptrs(SerializeClosure* soc) { soc->do_ptr((void**)&_cloned_cpp_vtptrs); } intptr_t* MetaspaceShared::fix_cpp_vtable_for_dynamic_archive(MetaspaceObj::Type msotype, address obj) { Arguments::assert_is_dumping_archive(); int kind = -1; switch (msotype) { case MetaspaceObj::SymbolType: case MetaspaceObj::TypeArrayU1Type: case MetaspaceObj::TypeArrayU2Type: case MetaspaceObj::TypeArrayU4Type: case MetaspaceObj::TypeArrayU8Type: case MetaspaceObj::TypeArrayOtherType: case MetaspaceObj::ConstMethodType: case MetaspaceObj::ConstantPoolCacheType: case MetaspaceObj::AnnotationsType: case MetaspaceObj::MethodCountersType: case MetaspaceObj::RecordComponentType: // These have no vtables. break; case MetaspaceObj::ClassType: { Klass* k = (Klass*)obj; assert(k->is_klass(), "must be"); if (k->is_instance_klass()) { InstanceKlass* ik = InstanceKlass::cast(k); if (ik->is_class_loader_instance_klass()) { kind = InstanceClassLoaderKlass_Kind; } else if (ik->is_reference_instance_klass()) { kind = InstanceRefKlass_Kind; } else if (ik->is_mirror_instance_klass()) { kind = InstanceMirrorKlass_Kind; } else { kind = InstanceKlass_Kind; } } else if (k->is_typeArray_klass()) { kind = TypeArrayKlass_Kind; } else { assert(k->is_objArray_klass(), "must be"); kind = ObjArrayKlass_Kind; } } break; case MetaspaceObj::MethodType: { Method* m = (Method*)obj; assert(m->is_method(), "must be"); kind = Method_Kind; } break; case MetaspaceObj::MethodDataType: // We don't archive MethodData <-- should have been removed in removed_unsharable_info ShouldNotReachHere(); break; case MetaspaceObj::ConstantPoolType: { ConstantPool *cp = (ConstantPool*)obj; assert(cp->is_constantPool(), "must be"); kind = ConstantPool_Kind; } break; default: ShouldNotReachHere(); } if (kind >= 0) { assert(kind < _num_cloned_vtable_kinds, "must be"); return _cloned_cpp_vtptrs[kind]; } else { return NULL; } } //------------------------------ for DynamicDumpSharedSpaces - end // This can be called at both dump time and run time: // - clone the contents of the c++ vtables into the space // allocated by allocate_cpp_vtable_clones() void MetaspaceShared::clone_cpp_vtables(intptr_t* p) { assert(DumpSharedSpaces || UseSharedSpaces, "sanity"); CPP_VTABLE_PATCH_TYPES_DO(CLONE_CPP_VTABLE); } void MetaspaceShared::zero_cpp_vtable_clones_for_writing() { assert(DumpSharedSpaces, "dump-time only"); CPP_VTABLE_PATCH_TYPES_DO(ZERO_CPP_VTABLE); } // Allocate and initialize the C++ vtables, starting from top, but do not go past end. char* MetaspaceShared::allocate_cpp_vtable_clones() { char* cloned_vtables = _mc_region.top(); // This is the beginning of all the cloned vtables assert(DumpSharedSpaces, "dump-time only"); // Layout (each slot is a intptr_t): // [number of slots in the first vtable = n1] // [ slots for the first vtable] // [number of slots in the first second = n2] // [ slots for the second vtable] // ... // The order of the vtables is the same as the CPP_VTAB_PATCH_TYPES_DO macro. CPP_VTABLE_PATCH_TYPES_DO(ALLOC_CPP_VTABLE_CLONE); return cloned_vtables; } bool MetaspaceShared::is_valid_shared_method(const Method* m) { assert(is_in_shared_metaspace(m), "must be"); return CppVtableCloner::is_valid_shared_object(m); } void WriteClosure::do_oop(oop* o) { if (*o == NULL) { _dump_region->append_intptr_t(0); } else { assert(HeapShared::is_heap_object_archiving_allowed(), "Archiving heap object is not allowed"); _dump_region->append_intptr_t( (intptr_t)CompressedOops::encode_not_null(*o)); } } void WriteClosure::do_region(u_char* start, size_t size) { assert((intptr_t)start % sizeof(intptr_t) == 0, "bad alignment"); assert(size % sizeof(intptr_t) == 0, "bad size"); do_tag((int)size); while (size > 0) { _dump_region->append_intptr_t(*(intptr_t*)start, true); start += sizeof(intptr_t); size -= sizeof(intptr_t); } } // This is for dumping detailed statistics for the allocations // in the shared spaces. class DumpAllocStats : public ResourceObj { public: // Here's poor man's enum inheritance #define SHAREDSPACE_OBJ_TYPES_DO(f) \ METASPACE_OBJ_TYPES_DO(f) \ f(SymbolHashentry) \ f(SymbolBucket) \ f(StringHashentry) \ f(StringBucket) \ f(Other) enum Type { // Types are MetaspaceObj::ClassType, MetaspaceObj::SymbolType, etc SHAREDSPACE_OBJ_TYPES_DO(METASPACE_OBJ_TYPE_DECLARE) _number_of_types }; static const char * type_name(Type type) { switch(type) { SHAREDSPACE_OBJ_TYPES_DO(METASPACE_OBJ_TYPE_NAME_CASE) default: ShouldNotReachHere(); return NULL; } } public: enum { RO = 0, RW = 1 }; int _counts[2][_number_of_types]; int _bytes [2][_number_of_types]; DumpAllocStats() { memset(_counts, 0, sizeof(_counts)); memset(_bytes, 0, sizeof(_bytes)); }; void record(MetaspaceObj::Type type, int byte_size, bool read_only) { assert(int(type) >= 0 && type < MetaspaceObj::_number_of_types, "sanity"); int which = (read_only) ? RO : RW; _counts[which][type] ++; _bytes [which][type] += byte_size; } void record_other_type(int byte_size, bool read_only) { int which = (read_only) ? RO : RW; _bytes [which][OtherType] += byte_size; } void print_stats(int ro_all, int rw_all, int mc_all); }; void DumpAllocStats::print_stats(int ro_all, int rw_all, int mc_all) { // Calculate size of data that was not allocated by Metaspace::allocate() MetaspaceSharedStats *stats = MetaspaceShared::stats(); // symbols _counts[RO][SymbolHashentryType] = stats->symbol.hashentry_count; _bytes [RO][SymbolHashentryType] = stats->symbol.hashentry_bytes; _counts[RO][SymbolBucketType] = stats->symbol.bucket_count; _bytes [RO][SymbolBucketType] = stats->symbol.bucket_bytes; // strings _counts[RO][StringHashentryType] = stats->string.hashentry_count; _bytes [RO][StringHashentryType] = stats->string.hashentry_bytes; _counts[RO][StringBucketType] = stats->string.bucket_count; _bytes [RO][StringBucketType] = stats->string.bucket_bytes; // TODO: count things like dictionary, vtable, etc _bytes[RW][OtherType] += mc_all; rw_all += mc_all; // mc is mapped Read/Write // prevent divide-by-zero if (ro_all < 1) { ro_all = 1; } if (rw_all < 1) { rw_all = 1; } int all_ro_count = 0; int all_ro_bytes = 0; int all_rw_count = 0; int all_rw_bytes = 0; // To make fmt_stats be a syntactic constant (for format warnings), use #define. #define fmt_stats "%-20s: %8d %10d %5.1f | %8d %10d %5.1f | %8d %10d %5.1f" const char *sep = "--------------------+---------------------------+---------------------------+--------------------------"; const char *hdr = " ro_cnt ro_bytes % | rw_cnt rw_bytes % | all_cnt all_bytes %"; LogMessage(cds) msg; msg.debug("Detailed metadata info (excluding st regions; rw stats include mc regions):"); msg.debug("%s", hdr); msg.debug("%s", sep); for (int type = 0; type < int(_number_of_types); type ++) { const char *name = type_name((Type)type); int ro_count = _counts[RO][type]; int ro_bytes = _bytes [RO][type]; int rw_count = _counts[RW][type]; int rw_bytes = _bytes [RW][type]; int count = ro_count + rw_count; int bytes = ro_bytes + rw_bytes; double ro_perc = percent_of(ro_bytes, ro_all); double rw_perc = percent_of(rw_bytes, rw_all); double perc = percent_of(bytes, ro_all + rw_all); msg.debug(fmt_stats, name, ro_count, ro_bytes, ro_perc, rw_count, rw_bytes, rw_perc, count, bytes, perc); all_ro_count += ro_count; all_ro_bytes += ro_bytes; all_rw_count += rw_count; all_rw_bytes += rw_bytes; } int all_count = all_ro_count + all_rw_count; int all_bytes = all_ro_bytes + all_rw_bytes; double all_ro_perc = percent_of(all_ro_bytes, ro_all); double all_rw_perc = percent_of(all_rw_bytes, rw_all); double all_perc = percent_of(all_bytes, ro_all + rw_all); msg.debug("%s", sep); msg.debug(fmt_stats, "Total", all_ro_count, all_ro_bytes, all_ro_perc, all_rw_count, all_rw_bytes, all_rw_perc, all_count, all_bytes, all_perc); assert(all_ro_bytes == ro_all, "everything should have been counted"); assert(all_rw_bytes == rw_all, "everything should have been counted"); #undef fmt_stats } // Populate the shared space. class VM_PopulateDumpSharedSpace: public VM_Operation { private: GrowableArray *_closed_archive_heap_regions; GrowableArray *_open_archive_heap_regions; GrowableArray *_closed_archive_heap_oopmaps; GrowableArray *_open_archive_heap_oopmaps; void dump_java_heap_objects() NOT_CDS_JAVA_HEAP_RETURN; void dump_archive_heap_oopmaps() NOT_CDS_JAVA_HEAP_RETURN; void dump_archive_heap_oopmaps(GrowableArray* regions, GrowableArray* oopmaps); void dump_symbols(); char* dump_read_only_tables(); void print_class_stats(); void print_region_stats(FileMapInfo* map_info); void print_bitmap_region_stats(size_t size, size_t total_size); void print_heap_region_stats(GrowableArray *heap_mem, const char *name, size_t total_size); void relocate_to_requested_base_address(CHeapBitMap* ptrmap); public: VMOp_Type type() const { return VMOp_PopulateDumpSharedSpace; } void doit(); // outline because gdb sucks bool allow_nested_vm_operations() const { return true; } }; // class VM_PopulateDumpSharedSpace // ArchiveCompactor -- // // This class is the central piece of shared archive compaction -- all metaspace data are // initially allocated outside of the shared regions. ArchiveCompactor copies the // metaspace data into their final location in the shared regions. class ArchiveCompactor : AllStatic { static const int INITIAL_TABLE_SIZE = 8087; static const int MAX_TABLE_SIZE = 1000000; static DumpAllocStats* _alloc_stats; typedef KVHashtable RelocationTable; static RelocationTable* _new_loc_table; public: static void initialize() { _alloc_stats = new(ResourceObj::C_HEAP, mtInternal)DumpAllocStats; _new_loc_table = new RelocationTable(INITIAL_TABLE_SIZE); } static DumpAllocStats* alloc_stats() { return _alloc_stats; } // Use this when you allocate space with MetaspaceShare::read_only_space_alloc() // outside of ArchiveCompactor::allocate(). These are usually for misc tables // that are allocated in the RO space. class OtherROAllocMark { char* _oldtop; public: OtherROAllocMark() { _oldtop = _ro_region.top(); } ~OtherROAllocMark() { char* newtop = _ro_region.top(); ArchiveCompactor::alloc_stats()->record_other_type(int(newtop - _oldtop), true); } }; static void allocate(MetaspaceClosure::Ref* ref, bool read_only) { address obj = ref->obj(); int bytes = ref->size() * BytesPerWord; char* p; size_t alignment = BytesPerWord; char* oldtop; char* newtop; if (read_only) { oldtop = _ro_region.top(); p = _ro_region.allocate(bytes, alignment); newtop = _ro_region.top(); } else { oldtop = _rw_region.top(); if (ref->msotype() == MetaspaceObj::ClassType) { // Save a pointer immediate in front of an InstanceKlass, so // we can do a quick lookup from InstanceKlass* -> RunTimeSharedClassInfo* // without building another hashtable. See RunTimeSharedClassInfo::get_for() // in systemDictionaryShared.cpp. Klass* klass = (Klass*)obj; if (klass->is_instance_klass()) { SystemDictionaryShared::validate_before_archiving(InstanceKlass::cast(klass)); _rw_region.allocate(sizeof(address), BytesPerWord); } } p = _rw_region.allocate(bytes, alignment); newtop = _rw_region.top(); } memcpy(p, obj, bytes); intptr_t* cloned_vtable = MetaspaceShared::fix_cpp_vtable_for_dynamic_archive(ref->msotype(), (address)p); if (cloned_vtable != NULL) { *(address*)p = (address)cloned_vtable; ArchivePtrMarker::mark_pointer((address*)p); } assert(_new_loc_table->lookup(obj) == NULL, "each object can be relocated at most once"); _new_loc_table->add(obj, (address)p); log_trace(cds)("Copy: " PTR_FORMAT " ==> " PTR_FORMAT " %d", p2i(obj), p2i(p), bytes); if (_new_loc_table->maybe_grow(MAX_TABLE_SIZE)) { log_info(cds, hashtables)("Expanded _new_loc_table to %d", _new_loc_table->table_size()); } _alloc_stats->record(ref->msotype(), int(newtop - oldtop), read_only); } static address get_new_loc(MetaspaceClosure::Ref* ref) { address* pp = _new_loc_table->lookup(ref->obj()); assert(pp != NULL, "must be"); return *pp; } private: // Makes a shallow copy of visited MetaspaceObj's class ShallowCopier: public UniqueMetaspaceClosure { bool _read_only; public: ShallowCopier(bool read_only) : _read_only(read_only) {} virtual bool do_unique_ref(Ref* ref, bool read_only) { if (read_only == _read_only) { allocate(ref, read_only); } return true; // recurse into ref.obj() } }; // Relocate embedded pointers within a MetaspaceObj's shallow copy class ShallowCopyEmbeddedRefRelocator: public UniqueMetaspaceClosure { public: virtual bool do_unique_ref(Ref* ref, bool read_only) { address new_loc = get_new_loc(ref); RefRelocator refer; ref->metaspace_pointers_do_at(&refer, new_loc); return true; // recurse into ref.obj() } virtual void push_special(SpecialRef type, Ref* ref, intptr_t* p) { assert(type == _method_entry_ref, "only special type allowed for now"); address obj = ref->obj(); address new_obj = get_new_loc(ref); size_t offset = pointer_delta(p, obj, sizeof(u1)); intptr_t* new_p = (intptr_t*)(new_obj + offset); assert(*p == *new_p, "must be a copy"); ArchivePtrMarker::mark_pointer((address*)new_p); } }; // Relocate a reference to point to its shallow copy class RefRelocator: public MetaspaceClosure { public: virtual bool do_ref(Ref* ref, bool read_only) { if (ref->not_null()) { ref->update(get_new_loc(ref)); ArchivePtrMarker::mark_pointer(ref->addr()); } return false; // Do not recurse. } }; #ifdef ASSERT class IsRefInArchiveChecker: public MetaspaceClosure { public: virtual bool do_ref(Ref* ref, bool read_only) { if (ref->not_null()) { char* obj = (char*)ref->obj(); assert(_ro_region.contains(obj) || _rw_region.contains(obj), "must be relocated to point to CDS archive"); } return false; // Do not recurse. } }; #endif public: static void copy_and_compact() { ResourceMark rm; log_info(cds)("Scanning all metaspace objects ... "); { // allocate and shallow-copy RW objects, immediately following the MC region log_info(cds)("Allocating RW objects ... "); _mc_region.pack(&_rw_region); ResourceMark rm; ShallowCopier rw_copier(false); iterate_roots(&rw_copier); } { // allocate and shallow-copy of RO object, immediately following the RW region log_info(cds)("Allocating RO objects ... "); _rw_region.pack(&_ro_region); ResourceMark rm; ShallowCopier ro_copier(true); iterate_roots(&ro_copier); } { log_info(cds)("Relocating embedded pointers ... "); ResourceMark rm; ShallowCopyEmbeddedRefRelocator emb_reloc; iterate_roots(&emb_reloc); } { log_info(cds)("Relocating external roots ... "); ResourceMark rm; RefRelocator ext_reloc; iterate_roots(&ext_reloc); } { log_info(cds)("Fixing symbol identity hash ... "); os::init_random(0x12345678); GrowableArray* all_symbols = MetaspaceShared::collected_symbols(); all_symbols->sort(compare_symbols_by_address); for (int i = 0; i < all_symbols->length(); i++) { assert(all_symbols->at(i)->is_permanent(), "archived symbols must be permanent"); all_symbols->at(i)->update_identity_hash(); } } #ifdef ASSERT { log_info(cds)("Verifying external roots ... "); ResourceMark rm; IsRefInArchiveChecker checker; iterate_roots(&checker); } #endif } // We must relocate the System::_well_known_klasses only after we have copied the // java objects in during dump_java_heap_objects(): during the object copy, we operate on // old objects which assert that their klass is the original klass. static void relocate_well_known_klasses() { { log_info(cds)("Relocating SystemDictionary::_well_known_klasses[] ... "); ResourceMark rm; RefRelocator ext_reloc; SystemDictionary::well_known_klasses_do(&ext_reloc); } // NOTE: after this point, we shouldn't have any globals that can reach the old // objects. // We cannot use any of the objects in the heap anymore (except for the // shared strings) because their headers no longer point to valid Klasses. } static void iterate_roots(MetaspaceClosure* it) { // To ensure deterministic contents in the archive, we just need to ensure that // we iterate the MetsapceObjs in a deterministic order. It doesn't matter where // the MetsapceObjs are located originally, as they are copied sequentially into // the archive during the iteration. // // The only issue here is that the symbol table and the system directories may be // randomly ordered, so we copy the symbols and klasses into two arrays and sort // them deterministically. // // During -Xshare:dump, the order of Symbol creation is strictly determined by // the SharedClassListFile (class loading is done in a single thread and the JIT // is disabled). Also, Symbols are allocated in monotonically increasing addresses // (see Symbol::operator new(size_t, int)). So if we iterate the Symbols by // ascending address order, we ensure that all Symbols are copied into deterministic // locations in the archive. GrowableArray* symbols = _global_symbol_objects; for (int i = 0; i < symbols->length(); i++) { it->push(symbols->adr_at(i)); } if (_global_klass_objects != NULL) { // Need to fix up the pointers for (int i = 0; i < _global_klass_objects->length(); i++) { // NOTE -- this requires that the vtable is NOT yet patched, or else we are hosed. it->push(_global_klass_objects->adr_at(i)); } } FileMapInfo::metaspace_pointers_do(it, false); SystemDictionaryShared::dumptime_classes_do(it); Universe::metaspace_pointers_do(it); SymbolTable::metaspace_pointers_do(it); vmSymbols::metaspace_pointers_do(it); it->finish(); } static Klass* get_relocated_klass(Klass* orig_klass) { assert(DumpSharedSpaces, "dump time only"); address* pp = _new_loc_table->lookup((address)orig_klass); assert(pp != NULL, "must be"); Klass* klass = (Klass*)(*pp); assert(klass->is_klass(), "must be"); return klass; } }; DumpAllocStats* ArchiveCompactor::_alloc_stats; ArchiveCompactor::RelocationTable* ArchiveCompactor::_new_loc_table; void VM_PopulateDumpSharedSpace::dump_symbols() { log_info(cds)("Dumping symbol table ..."); NOT_PRODUCT(SymbolTable::verify()); SymbolTable::write_to_archive(); } char* VM_PopulateDumpSharedSpace::dump_read_only_tables() { ArchiveCompactor::OtherROAllocMark mark; log_info(cds)("Removing java_mirror ... "); if (!HeapShared::is_heap_object_archiving_allowed()) { clear_basic_type_mirrors(); } remove_java_mirror_in_classes(); log_info(cds)("done. "); SystemDictionaryShared::write_to_archive(); // Write the other data to the output array. char* start = _ro_region.top(); WriteClosure wc(&_ro_region); MetaspaceShared::serialize(&wc); // Write the bitmaps for patching the archive heap regions _closed_archive_heap_oopmaps = NULL; _open_archive_heap_oopmaps = NULL; dump_archive_heap_oopmaps(); return start; } void VM_PopulateDumpSharedSpace::print_class_stats() { log_info(cds)("Number of classes %d", _global_klass_objects->length()); { int num_type_array = 0, num_obj_array = 0, num_inst = 0; for (int i = 0; i < _global_klass_objects->length(); i++) { Klass* k = _global_klass_objects->at(i); if (k->is_instance_klass()) { num_inst ++; } else if (k->is_objArray_klass()) { num_obj_array ++; } else { assert(k->is_typeArray_klass(), "sanity"); num_type_array ++; } } log_info(cds)(" instance classes = %5d", num_inst); log_info(cds)(" obj array classes = %5d", num_obj_array); log_info(cds)(" type array classes = %5d", num_type_array); } } void VM_PopulateDumpSharedSpace::relocate_to_requested_base_address(CHeapBitMap* ptrmap) { intx addr_delta = MetaspaceShared::final_delta(); if (addr_delta == 0) { ArchivePtrMarker::compact((address)SharedBaseAddress, (address)_ro_region.top()); } else { // We are not able to reserve space at MetaspaceShared::requested_base_address() (due to ASLR). // This means that the current content of the archive is based on a random // address. Let's relocate all the pointers, so that it can be mapped to // MetaspaceShared::requested_base_address() without runtime relocation. // // Note: both the base and dynamic archive are written with // FileMapHeader::_requested_base_address == MetaspaceShared::requested_base_address() // Patch all pointers that are marked by ptrmap within this region, // where we have just dumped all the metaspace data. address patch_base = (address)SharedBaseAddress; address patch_end = (address)_ro_region.top(); size_t size = patch_end - patch_base; // the current value of the pointers to be patched must be within this // range (i.e., must point to valid metaspace objects) address valid_old_base = patch_base; address valid_old_end = patch_end; // after patching, the pointers must point inside this range // (the requested location of the archive, as mapped at runtime). address valid_new_base = (address)MetaspaceShared::requested_base_address(); address valid_new_end = valid_new_base + size; log_debug(cds)("Relocating archive from [" INTPTR_FORMAT " - " INTPTR_FORMAT " ] to " "[" INTPTR_FORMAT " - " INTPTR_FORMAT " ]", p2i(patch_base), p2i(patch_end), p2i(valid_new_base), p2i(valid_new_end)); SharedDataRelocator patcher((address*)patch_base, (address*)patch_end, valid_old_base, valid_old_end, valid_new_base, valid_new_end, addr_delta, ptrmap); ptrmap->iterate(&patcher); ArchivePtrMarker::compact(patcher.max_non_null_offset()); } } void VM_PopulateDumpSharedSpace::doit() { HeapShared::run_full_gc_in_vm_thread(); CHeapBitMap ptrmap; MetaspaceShared::initialize_ptr_marker(&ptrmap); // We should no longer allocate anything from the metaspace, so that: // // (1) Metaspace::allocate might trigger GC if we have run out of // committed metaspace, but we can't GC because we're running // in the VM thread. // (2) ArchiveCompactor needs to work with a stable set of MetaspaceObjs. Metaspace::freeze(); DEBUG_ONLY(SystemDictionaryShared::NoClassLoadingMark nclm); Thread* THREAD = VMThread::vm_thread(); FileMapInfo::check_nonempty_dir_in_shared_path_table(); NOT_PRODUCT(SystemDictionary::verify();) // The following guarantee is meant to ensure that no loader constraints // exist yet, since the constraints table is not shared. This becomes // more important now that we don't re-initialize vtables/itables for // shared classes at runtime, where constraints were previously created. guarantee(SystemDictionary::constraints()->number_of_entries() == 0, "loader constraints are not saved"); guarantee(SystemDictionary::placeholders()->number_of_entries() == 0, "placeholders are not saved"); // At this point, many classes have been loaded. // Gather systemDictionary classes in a global array and do everything to // that so we don't have to walk the SystemDictionary again. SystemDictionaryShared::check_excluded_classes(); _global_klass_objects = new GrowableArray(1000); CollectClassesClosure collect_classes; ClassLoaderDataGraph::loaded_classes_do(&collect_classes); _global_klass_objects->sort(global_klass_compare); print_class_stats(); // Ensure the ConstMethods won't be modified at run-time log_info(cds)("Updating ConstMethods ... "); rewrite_nofast_bytecodes_and_calculate_fingerprints(THREAD); log_info(cds)("done. "); // Remove all references outside the metadata log_info(cds)("Removing unshareable information ... "); remove_unshareable_in_classes(); log_info(cds)("done. "); MetaspaceShared::allocate_cloned_cpp_vtptrs(); char* cloned_vtables = _mc_region.top(); MetaspaceShared::allocate_cpp_vtable_clones(); ArchiveCompactor::initialize(); ArchiveCompactor::copy_and_compact(); dump_symbols(); // Dump supported java heap objects _closed_archive_heap_regions = NULL; _open_archive_heap_regions = NULL; dump_java_heap_objects(); ArchiveCompactor::relocate_well_known_klasses(); char* serialized_data = dump_read_only_tables(); _ro_region.pack(); // The vtable clones contain addresses of the current process. // We don't want to write these addresses into the archive. Same for i2i buffer. MetaspaceShared::zero_cpp_vtable_clones_for_writing(); memset(MetaspaceShared::i2i_entry_code_buffers(), 0, MetaspaceShared::i2i_entry_code_buffers_size()); // relocate the data so that it can be mapped to MetaspaceShared::requested_base_address() // without runtime relocation. relocate_to_requested_base_address(&ptrmap); // Create and write the archive file that maps the shared spaces. FileMapInfo* mapinfo = new FileMapInfo(true); mapinfo->populate_header(os::vm_allocation_granularity()); mapinfo->set_serialized_data(serialized_data); mapinfo->set_cloned_vtables(cloned_vtables); mapinfo->set_i2i_entry_code_buffers(MetaspaceShared::i2i_entry_code_buffers(), MetaspaceShared::i2i_entry_code_buffers_size()); mapinfo->open_for_write(); MetaspaceShared::write_core_archive_regions(mapinfo, _closed_archive_heap_oopmaps, _open_archive_heap_oopmaps); _total_closed_archive_region_size = mapinfo->write_archive_heap_regions( _closed_archive_heap_regions, _closed_archive_heap_oopmaps, MetaspaceShared::first_closed_archive_heap_region, MetaspaceShared::max_closed_archive_heap_region); _total_open_archive_region_size = mapinfo->write_archive_heap_regions( _open_archive_heap_regions, _open_archive_heap_oopmaps, MetaspaceShared::first_open_archive_heap_region, MetaspaceShared::max_open_archive_heap_region); mapinfo->set_final_requested_base((char*)MetaspaceShared::requested_base_address()); mapinfo->set_header_crc(mapinfo->compute_header_crc()); mapinfo->write_header(); print_region_stats(mapinfo); mapinfo->close(); if (log_is_enabled(Info, cds)) { ArchiveCompactor::alloc_stats()->print_stats(int(_ro_region.used()), int(_rw_region.used()), int(_mc_region.used())); } if (PrintSystemDictionaryAtExit) { SystemDictionary::print(); } if (AllowArchivingWithJavaAgent) { warning("This archive was created with AllowArchivingWithJavaAgent. It should be used " "for testing purposes only and should not be used in a production environment"); } // There may be other pending VM operations that operate on the InstanceKlasses, // which will fail because InstanceKlasses::remove_unshareable_info() // has been called. Forget these operations and exit the VM directly. vm_direct_exit(0); } void VM_PopulateDumpSharedSpace::print_region_stats(FileMapInfo *map_info) { // Print statistics of all the regions const size_t bitmap_used = map_info->space_at(MetaspaceShared::bm)->used(); const size_t bitmap_reserved = map_info->space_at(MetaspaceShared::bm)->used_aligned(); const size_t total_reserved = _ro_region.reserved() + _rw_region.reserved() + _mc_region.reserved() + bitmap_reserved + _total_closed_archive_region_size + _total_open_archive_region_size; const size_t total_bytes = _ro_region.used() + _rw_region.used() + _mc_region.used() + bitmap_used + _total_closed_archive_region_size + _total_open_archive_region_size; const double total_u_perc = percent_of(total_bytes, total_reserved); _mc_region.print(total_reserved); _rw_region.print(total_reserved); _ro_region.print(total_reserved); print_bitmap_region_stats(bitmap_used, total_reserved); print_heap_region_stats(_closed_archive_heap_regions, "ca", total_reserved); print_heap_region_stats(_open_archive_heap_regions, "oa", total_reserved); log_debug(cds)("total : " SIZE_FORMAT_W(9) " [100.0%% of total] out of " SIZE_FORMAT_W(9) " bytes [%5.1f%% used]", total_bytes, total_reserved, total_u_perc); } void VM_PopulateDumpSharedSpace::print_bitmap_region_stats(size_t size, size_t total_size) { log_debug(cds)("bm space: " SIZE_FORMAT_W(9) " [ %4.1f%% of total] out of " SIZE_FORMAT_W(9) " bytes [100.0%% used]", size, size/double(total_size)*100.0, size); } void VM_PopulateDumpSharedSpace::print_heap_region_stats(GrowableArray *heap_mem, const char *name, size_t total_size) { int arr_len = heap_mem == NULL ? 0 : heap_mem->length(); for (int i = 0; i < arr_len; i++) { char* start = (char*)heap_mem->at(i).start(); size_t size = heap_mem->at(i).byte_size(); char* top = start + size; log_debug(cds)("%s%d space: " SIZE_FORMAT_W(9) " [ %4.1f%% of total] out of " SIZE_FORMAT_W(9) " bytes [100.0%% used] at " INTPTR_FORMAT, name, i, size, size/double(total_size)*100.0, size, p2i(start)); } } void MetaspaceShared::write_core_archive_regions(FileMapInfo* mapinfo, GrowableArray* closed_oopmaps, GrowableArray* open_oopmaps) { // Make sure NUM_CDS_REGIONS (exported in cds.h) agrees with // MetaspaceShared::n_regions (internal to hotspot). assert(NUM_CDS_REGIONS == MetaspaceShared::n_regions, "sanity"); // mc contains the trampoline code for method entries, which are patched at run time, // so it needs to be read/write. write_region(mapinfo, mc, &_mc_region, /*read_only=*/false,/*allow_exec=*/true); write_region(mapinfo, rw, &_rw_region, /*read_only=*/false,/*allow_exec=*/false); write_region(mapinfo, ro, &_ro_region, /*read_only=*/true, /*allow_exec=*/false); mapinfo->write_bitmap_region(ArchivePtrMarker::ptrmap(), closed_oopmaps, open_oopmaps); } void MetaspaceShared::write_region(FileMapInfo* mapinfo, int region_idx, DumpRegion* dump_region, bool read_only, bool allow_exec) { mapinfo->write_region(region_idx, dump_region->base(), dump_region->used(), read_only, allow_exec); } // Update a Java object to point its Klass* to the new location after // shared archive has been compacted. void MetaspaceShared::relocate_klass_ptr(oop o) { assert(DumpSharedSpaces, "sanity"); Klass* k = ArchiveCompactor::get_relocated_klass(o->klass()); o->set_klass(k); } Klass* MetaspaceShared::get_relocated_klass(Klass *k, bool is_final) { assert(DumpSharedSpaces, "sanity"); k = ArchiveCompactor::get_relocated_klass(k); if (is_final) { k = (Klass*)(address(k) + final_delta()); } return k; } class LinkSharedClassesClosure : public KlassClosure { Thread* THREAD; bool _made_progress; public: LinkSharedClassesClosure(Thread* thread) : THREAD(thread), _made_progress(false) {} void reset() { _made_progress = false; } bool made_progress() const { return _made_progress; } void do_klass(Klass* k) { if (k->is_instance_klass()) { InstanceKlass* ik = InstanceKlass::cast(k); // For dynamic CDS dump, only link classes loaded by the builtin class loaders. bool do_linking = DumpSharedSpaces ? true : !ik->is_shared_unregistered_class(); if (do_linking) { // Link the class to cause the bytecodes to be rewritten and the // cpcache to be created. Class verification is done according // to -Xverify setting. _made_progress |= MetaspaceShared::try_link_class(ik, THREAD); guarantee(!HAS_PENDING_EXCEPTION, "exception in link_class"); if (DumpSharedSpaces) { // The following function is used to resolve all Strings in the statically // dumped classes to archive all the Strings. The archive heap is not supported // for the dynamic archive. ik->constants()->resolve_class_constants(THREAD); } } } } }; void MetaspaceShared::link_and_cleanup_shared_classes(TRAPS) { // We need to iterate because verification may cause additional classes // to be loaded. LinkSharedClassesClosure link_closure(THREAD); do { link_closure.reset(); ClassLoaderDataGraph::unlocked_loaded_classes_do(&link_closure); guarantee(!HAS_PENDING_EXCEPTION, "exception in link_class"); } while (link_closure.made_progress()); } void MetaspaceShared::prepare_for_dumping() { Arguments::check_unsupported_dumping_properties(); ClassLoader::initialize_shared_path(); } // Preload classes from a list, populate the shared spaces and dump to a // file. void MetaspaceShared::preload_and_dump(TRAPS) { { TraceTime timer("Dump Shared Spaces", TRACETIME_LOG(Info, startuptime)); ResourceMark rm(THREAD); char class_list_path_str[JVM_MAXPATHLEN]; // Preload classes to be shared. const char* class_list_path; if (SharedClassListFile == NULL) { // Construct the path to the class list (in jre/lib) // Walk up two directories from the location of the VM and // optionally tack on "lib" (depending on platform) os::jvm_path(class_list_path_str, sizeof(class_list_path_str)); for (int i = 0; i < 3; i++) { char *end = strrchr(class_list_path_str, *os::file_separator()); if (end != NULL) *end = '\0'; } int class_list_path_len = (int)strlen(class_list_path_str); if (class_list_path_len >= 3) { if (strcmp(class_list_path_str + class_list_path_len - 3, "lib") != 0) { if (class_list_path_len < JVM_MAXPATHLEN - 4) { jio_snprintf(class_list_path_str + class_list_path_len, sizeof(class_list_path_str) - class_list_path_len, "%slib", os::file_separator()); class_list_path_len += 4; } } } if (class_list_path_len < JVM_MAXPATHLEN - 10) { jio_snprintf(class_list_path_str + class_list_path_len, sizeof(class_list_path_str) - class_list_path_len, "%sclasslist", os::file_separator()); } class_list_path = class_list_path_str; } else { class_list_path = SharedClassListFile; } log_info(cds)("Loading classes to share ..."); _has_error_classes = false; int class_count = preload_classes(class_list_path, THREAD); if (ExtraSharedClassListFile) { class_count += preload_classes(ExtraSharedClassListFile, THREAD); } log_info(cds)("Loading classes to share: done."); log_info(cds)("Shared spaces: preloaded %d classes", class_count); if (SharedArchiveConfigFile) { log_info(cds)("Reading extra data from %s ...", SharedArchiveConfigFile); read_extra_data(SharedArchiveConfigFile, THREAD); } log_info(cds)("Reading extra data: done."); HeapShared::init_subgraph_entry_fields(THREAD); // Rewrite and link classes log_info(cds)("Rewriting and linking classes ..."); // Link any classes which got missed. This would happen if we have loaded classes that // were not explicitly specified in the classlist. E.g., if an interface implemented by class K // fails verification, all other interfaces that were not specified in the classlist but // are implemented by K are not verified. link_and_cleanup_shared_classes(CATCH); log_info(cds)("Rewriting and linking classes: done"); VM_PopulateDumpSharedSpace op; MutexLocker ml(THREAD, HeapShared::is_heap_object_archiving_allowed() ? Heap_lock : NULL); // needed by HeapShared::run_gc() VMThread::execute(&op); } } int MetaspaceShared::preload_classes(const char* class_list_path, TRAPS) { ClassListParser parser(class_list_path); int class_count = 0; while (parser.parse_one_line()) { Klass* klass = parser.load_current_class(THREAD); if (HAS_PENDING_EXCEPTION) { if (klass == NULL && (PENDING_EXCEPTION->klass()->name() == vmSymbols::java_lang_ClassNotFoundException())) { // print a warning only when the pending exception is class not found log_warning(cds)("Preload Warning: Cannot find %s", parser.current_class_name()); } CLEAR_PENDING_EXCEPTION; } if (klass != NULL) { if (log_is_enabled(Trace, cds)) { ResourceMark rm(THREAD); log_trace(cds)("Shared spaces preloaded: %s", klass->external_name()); } if (klass->is_instance_klass()) { InstanceKlass* ik = InstanceKlass::cast(klass); // Link the class to cause the bytecodes to be rewritten and the // cpcache to be created. The linking is done as soon as classes // are loaded in order that the related data structures (klass and // cpCache) are located together. try_link_class(ik, THREAD); guarantee(!HAS_PENDING_EXCEPTION, "exception in link_class"); } class_count++; } } return class_count; } // Returns true if the class's status has changed bool MetaspaceShared::try_link_class(InstanceKlass* ik, TRAPS) { Arguments::assert_is_dumping_archive(); if (ik->init_state() < InstanceKlass::linked && !SystemDictionaryShared::has_class_failed_verification(ik)) { bool saved = BytecodeVerificationLocal; if (ik->is_shared_unregistered_class() && ik->class_loader() == NULL) { // The verification decision is based on BytecodeVerificationRemote // for non-system classes. Since we are using the NULL classloader // to load non-system classes for customized class loaders during dumping, // we need to temporarily change BytecodeVerificationLocal to be the same as // BytecodeVerificationRemote. Note this can cause the parent system // classes also being verified. The extra overhead is acceptable during // dumping. BytecodeVerificationLocal = BytecodeVerificationRemote; } ik->link_class(THREAD); if (HAS_PENDING_EXCEPTION) { ResourceMark rm(THREAD); log_warning(cds)("Preload Warning: Verification failed for %s", ik->external_name()); CLEAR_PENDING_EXCEPTION; SystemDictionaryShared::set_class_has_failed_verification(ik); _has_error_classes = true; } BytecodeVerificationLocal = saved; return true; } else { return false; } } #if INCLUDE_CDS_JAVA_HEAP void VM_PopulateDumpSharedSpace::dump_java_heap_objects() { // The closed and open archive heap space has maximum two regions. // See FileMapInfo::write_archive_heap_regions() for details. _closed_archive_heap_regions = new GrowableArray(2); _open_archive_heap_regions = new GrowableArray(2); HeapShared::archive_java_heap_objects(_closed_archive_heap_regions, _open_archive_heap_regions); ArchiveCompactor::OtherROAllocMark mark; HeapShared::write_subgraph_info_table(); } void VM_PopulateDumpSharedSpace::dump_archive_heap_oopmaps() { if (HeapShared::is_heap_object_archiving_allowed()) { _closed_archive_heap_oopmaps = new GrowableArray(2); dump_archive_heap_oopmaps(_closed_archive_heap_regions, _closed_archive_heap_oopmaps); _open_archive_heap_oopmaps = new GrowableArray(2); dump_archive_heap_oopmaps(_open_archive_heap_regions, _open_archive_heap_oopmaps); } } void VM_PopulateDumpSharedSpace::dump_archive_heap_oopmaps(GrowableArray* regions, GrowableArray* oopmaps) { for (int i=0; ilength(); i++) { ResourceBitMap oopmap = HeapShared::calculate_oopmap(regions->at(i)); size_t size_in_bits = oopmap.size(); size_t size_in_bytes = oopmap.size_in_bytes(); uintptr_t* buffer = (uintptr_t*)NEW_C_HEAP_ARRAY(char, size_in_bytes, mtInternal); oopmap.write_to(buffer, size_in_bytes); log_info(cds, heap)("Oopmap = " INTPTR_FORMAT " (" SIZE_FORMAT_W(6) " bytes) for heap region " INTPTR_FORMAT " (" SIZE_FORMAT_W(8) " bytes)", p2i(buffer), size_in_bytes, p2i(regions->at(i).start()), regions->at(i).byte_size()); ArchiveHeapOopmapInfo info; info._oopmap = (address)buffer; info._oopmap_size_in_bits = size_in_bits; info._oopmap_size_in_bytes = size_in_bytes; oopmaps->append(info); } } #endif // INCLUDE_CDS_JAVA_HEAP void ReadClosure::do_ptr(void** p) { assert(*p == NULL, "initializing previous initialized pointer."); intptr_t obj = nextPtr(); assert((intptr_t)obj >= 0 || (intptr_t)obj < -100, "hit tag while initializing ptrs."); *p = (void*)obj; } void ReadClosure::do_u4(u4* p) { intptr_t obj = nextPtr(); *p = (u4)(uintx(obj)); } void ReadClosure::do_bool(bool* p) { intptr_t obj = nextPtr(); *p = (bool)(uintx(obj)); } void ReadClosure::do_tag(int tag) { int old_tag; old_tag = (int)(intptr_t)nextPtr(); // do_int(&old_tag); assert(tag == old_tag, "old tag doesn't match"); FileMapInfo::assert_mark(tag == old_tag); } void ReadClosure::do_oop(oop *p) { narrowOop o = (narrowOop)nextPtr(); if (o == 0 || !HeapShared::open_archive_heap_region_mapped()) { p = NULL; } else { assert(HeapShared::is_heap_object_archiving_allowed(), "Archived heap object is not allowed"); assert(HeapShared::open_archive_heap_region_mapped(), "Open archive heap region is not mapped"); *p = HeapShared::decode_from_archive(o); } } void ReadClosure::do_region(u_char* start, size_t size) { assert((intptr_t)start % sizeof(intptr_t) == 0, "bad alignment"); assert(size % sizeof(intptr_t) == 0, "bad size"); do_tag((int)size); while (size > 0) { *(intptr_t*)start = nextPtr(); start += sizeof(intptr_t); size -= sizeof(intptr_t); } } void MetaspaceShared::set_shared_metaspace_range(void* base, void *static_top, void* top) { assert(base <= static_top && static_top <= top, "must be"); _shared_metaspace_static_top = static_top; MetaspaceObj::set_shared_metaspace_range(base, top); } // Return true if given address is in the misc data region bool MetaspaceShared::is_in_shared_region(const void* p, int idx) { return UseSharedSpaces && FileMapInfo::current_info()->is_in_shared_region(p, idx); } bool MetaspaceShared::is_in_trampoline_frame(address addr) { if (UseSharedSpaces && is_in_shared_region(addr, MetaspaceShared::mc)) { return true; } return false; } bool MetaspaceShared::is_shared_dynamic(void* p) { if ((p < MetaspaceObj::shared_metaspace_top()) && (p >= _shared_metaspace_static_top)) { return true; } else { return false; } } void MetaspaceShared::initialize_runtime_shared_and_meta_spaces() { assert(UseSharedSpaces, "Must be called when UseSharedSpaces is enabled"); MapArchiveResult result = MAP_ARCHIVE_OTHER_FAILURE; FileMapInfo* static_mapinfo = open_static_archive(); FileMapInfo* dynamic_mapinfo = NULL; if (static_mapinfo != NULL) { dynamic_mapinfo = open_dynamic_archive(); // First try to map at the requested address result = map_archives(static_mapinfo, dynamic_mapinfo, true); if (result == MAP_ARCHIVE_MMAP_FAILURE) { // Mapping has failed (probably due to ASLR). Let's map at an address chosen // by the OS. log_info(cds)("Try to map archive(s) at an alternative address"); result = map_archives(static_mapinfo, dynamic_mapinfo, false); } } if (result == MAP_ARCHIVE_SUCCESS) { bool dynamic_mapped = (dynamic_mapinfo != NULL && dynamic_mapinfo->is_mapped()); char* cds_base = static_mapinfo->mapped_base(); char* cds_end = dynamic_mapped ? dynamic_mapinfo->mapped_end() : static_mapinfo->mapped_end(); set_shared_metaspace_range(cds_base, static_mapinfo->mapped_end(), cds_end); _relocation_delta = static_mapinfo->relocation_delta(); if (dynamic_mapped) { FileMapInfo::set_shared_path_table(dynamic_mapinfo); } else { FileMapInfo::set_shared_path_table(static_mapinfo); } _requested_base_address = static_mapinfo->requested_base_address(); } else { set_shared_metaspace_range(NULL, NULL, NULL); UseSharedSpaces = false; FileMapInfo::fail_continue("Unable to map shared spaces"); if (PrintSharedArchiveAndExit) { vm_exit_during_initialization("Unable to use shared archive."); } } if (static_mapinfo != NULL && !static_mapinfo->is_mapped()) { delete static_mapinfo; } if (dynamic_mapinfo != NULL && !dynamic_mapinfo->is_mapped()) { delete dynamic_mapinfo; } } FileMapInfo* MetaspaceShared::open_static_archive() { FileMapInfo* mapinfo = new FileMapInfo(true); if (!mapinfo->initialize()) { delete(mapinfo); return NULL; } return mapinfo; } FileMapInfo* MetaspaceShared::open_dynamic_archive() { if (DynamicDumpSharedSpaces) { return NULL; } if (Arguments::GetSharedDynamicArchivePath() == NULL) { return NULL; } FileMapInfo* mapinfo = new FileMapInfo(false); if (!mapinfo->initialize()) { delete(mapinfo); return NULL; } return mapinfo; } // use_requested_addr: // true = map at FileMapHeader::_requested_base_address // false = map at an alternative address picked by OS. MapArchiveResult MetaspaceShared::map_archives(FileMapInfo* static_mapinfo, FileMapInfo* dynamic_mapinfo, bool use_requested_addr) { if (use_requested_addr && static_mapinfo->requested_base_address() == NULL) { log_info(cds)("Archive(s) were created with -XX:SharedBaseAddress=0. Always map at os-selected address."); return MAP_ARCHIVE_MMAP_FAILURE; } PRODUCT_ONLY(if (ArchiveRelocationMode == 1 && use_requested_addr) { // For product build only -- this is for benchmarking the cost of doing relocation. // For debug builds, the check is done below, after reserving the space, for better test coverage // (see comment below). log_info(cds)("ArchiveRelocationMode == 1: always map archive(s) at an alternative address"); return MAP_ARCHIVE_MMAP_FAILURE; }); if (ArchiveRelocationMode == 2 && !use_requested_addr) { log_info(cds)("ArchiveRelocationMode == 2: never map archive(s) at an alternative address"); return MAP_ARCHIVE_MMAP_FAILURE; }; if (dynamic_mapinfo != NULL) { // Ensure that the OS won't be able to allocate new memory spaces between the two // archives, or else it would mess up the simple comparision in MetaspaceObj::is_shared(). assert(static_mapinfo->mapping_end_offset() == dynamic_mapinfo->mapping_base_offset(), "no gap"); } ReservedSpace archive_space_rs, class_space_rs; MapArchiveResult result = MAP_ARCHIVE_OTHER_FAILURE; char* mapped_base_address = reserve_address_space_for_archives(static_mapinfo, dynamic_mapinfo, use_requested_addr, archive_space_rs, class_space_rs); if (mapped_base_address == NULL) { result = MAP_ARCHIVE_MMAP_FAILURE; log_debug(cds)("Failed to reserve spaces (use_requested_addr=%u)", (unsigned)use_requested_addr); } else { #ifdef ASSERT // Some sanity checks after reserving address spaces for archives // and class space. assert(archive_space_rs.is_reserved(), "Sanity"); if (Metaspace::using_class_space()) { // Class space must closely follow the archive space. Both spaces // must be aligned correctly. assert(class_space_rs.is_reserved(), "A class space should have been reserved"); assert(class_space_rs.base() >= archive_space_rs.end(), "class space should follow the cds archive space"); assert(is_aligned(archive_space_rs.base(), MetaspaceShared::reserved_space_alignment()), "Archive space misaligned"); assert(is_aligned(class_space_rs.base(), Metaspace::reserve_alignment()), "class space misaligned"); } #endif // ASSERT log_debug(cds)("Reserved archive_space_rs [" INTPTR_FORMAT " - " INTPTR_FORMAT "] (" SIZE_FORMAT ") bytes", p2i(archive_space_rs.base()), p2i(archive_space_rs.end()), archive_space_rs.size()); log_debug(cds)("Reserved class_space_rs [" INTPTR_FORMAT " - " INTPTR_FORMAT "] (" SIZE_FORMAT ") bytes", p2i(class_space_rs.base()), p2i(class_space_rs.end()), class_space_rs.size()); if (MetaspaceShared::use_windows_memory_mapping()) { // We have now reserved address space for the archives, and will map in // the archive files into this space. // // Special handling for Windows: on Windows we cannot map a file view // into an existing memory mapping. So, we unmap the address range we // just reserved again, which will make it available for mapping the // archives. // Reserving this range has not been for naught however since it makes // us reasonably sure the address range is available. // // But still it may fail, since between unmapping the range and mapping // in the archive someone else may grab the address space. Therefore // there is a fallback in FileMap::map_region() where we just read in // the archive files sequentially instead of mapping it in. We couple // this with use_requested_addr, since we're going to patch all the // pointers anyway so there's no benefit to mmap. if (use_requested_addr) { log_info(cds)("Windows mmap workaround: releasing archive space."); archive_space_rs.release(); } } MapArchiveResult static_result = map_archive(static_mapinfo, mapped_base_address, archive_space_rs); MapArchiveResult dynamic_result = (static_result == MAP_ARCHIVE_SUCCESS) ? map_archive(dynamic_mapinfo, mapped_base_address, archive_space_rs) : MAP_ARCHIVE_OTHER_FAILURE; DEBUG_ONLY(if (ArchiveRelocationMode == 1 && use_requested_addr) { // This is for simulating mmap failures at the requested address. In // debug builds, we do it here (after all archives have possibly been // mapped), so we can thoroughly test the code for failure handling // (releasing all allocated resource, etc). log_info(cds)("ArchiveRelocationMode == 1: always map archive(s) at an alternative address"); if (static_result == MAP_ARCHIVE_SUCCESS) { static_result = MAP_ARCHIVE_MMAP_FAILURE; } if (dynamic_result == MAP_ARCHIVE_SUCCESS) { dynamic_result = MAP_ARCHIVE_MMAP_FAILURE; } }); if (static_result == MAP_ARCHIVE_SUCCESS) { if (dynamic_result == MAP_ARCHIVE_SUCCESS) { result = MAP_ARCHIVE_SUCCESS; } else if (dynamic_result == MAP_ARCHIVE_OTHER_FAILURE) { assert(dynamic_mapinfo != NULL && !dynamic_mapinfo->is_mapped(), "must have failed"); // No need to retry mapping the dynamic archive again, as it will never succeed // (bad file, etc) -- just keep the base archive. log_warning(cds, dynamic)("Unable to use shared archive. The top archive failed to load: %s", dynamic_mapinfo->full_path()); result = MAP_ARCHIVE_SUCCESS; // TODO, we can give the unused space for the dynamic archive to class_space_rs, but there's no // easy API to do that right now. } else { result = MAP_ARCHIVE_MMAP_FAILURE; } } else if (static_result == MAP_ARCHIVE_OTHER_FAILURE) { result = MAP_ARCHIVE_OTHER_FAILURE; } else { result = MAP_ARCHIVE_MMAP_FAILURE; } } if (result == MAP_ARCHIVE_SUCCESS) { SharedBaseAddress = (size_t)mapped_base_address; LP64_ONLY({ if (Metaspace::using_class_space()) { // Set up ccs in metaspace. Metaspace::initialize_class_space(class_space_rs); // Set up compressed Klass pointer encoding: the encoding range must // cover both archive and class space. address cds_base = (address)static_mapinfo->mapped_base(); address ccs_end = (address)class_space_rs.end(); CompressedKlassPointers::initialize(cds_base, ccs_end - cds_base); // map_heap_regions() compares the current narrow oop and klass encodings // with the archived ones, so it must be done after all encodings are determined. static_mapinfo->map_heap_regions(); } }); log_info(cds)("Using optimized module handling %s", MetaspaceShared::use_optimized_module_handling() ? "enabled" : "disabled"); } else { unmap_archive(static_mapinfo); unmap_archive(dynamic_mapinfo); release_reserved_spaces(archive_space_rs, class_space_rs); } return result; } // This will reserve two address spaces suitable to house Klass structures, one // for the cds archives (static archive and optionally dynamic archive) and // optionally one move for ccs. // // Since both spaces must fall within the compressed class pointer encoding // range, they are allocated close to each other. // // Space for archives will be reserved first, followed by a potential gap, // followed by the space for ccs: // // +-- Base address A B End // | | | | // v v v v // +-------------+--------------+ +----------------------+ // | static arc | [dyn. arch] | [gap] | compr. class space | // +-------------+--------------+ +----------------------+ // // (The gap may result from different alignment requirements between metaspace // and CDS) // // If UseCompressedClassPointers is disabled, only one address space will be // reserved: // // +-- Base address End // | | // v v // +-------------+--------------+ // | static arc | [dyn. arch] | // +-------------+--------------+ // // Base address: If use_archive_base_addr address is true, the Base address is // determined by the address stored in the static archive. If // use_archive_base_addr address is false, this base address is determined // by the platform. // // If UseCompressedClassPointers=1, the range encompassing both spaces will be // suitable to en/decode narrow Klass pointers: the base will be valid for // encoding, the range [Base, End) not surpass KlassEncodingMetaspaceMax. // // Return: // // - On success: // - archive_space_rs will be reserved and large enough to host static and // if needed dynamic archive: [Base, A). // archive_space_rs.base and size will be aligned to CDS reserve // granularity. // - class_space_rs: If UseCompressedClassPointers=1, class_space_rs will // be reserved. Its start address will be aligned to metaspace reserve // alignment, which may differ from CDS alignment. It will follow the cds // archive space, close enough such that narrow class pointer encoding // covers both spaces. // If UseCompressedClassPointers=0, class_space_rs remains unreserved. // - On error: NULL is returned and the spaces remain unreserved. char* MetaspaceShared::reserve_address_space_for_archives(FileMapInfo* static_mapinfo, FileMapInfo* dynamic_mapinfo, bool use_archive_base_addr, ReservedSpace& archive_space_rs, ReservedSpace& class_space_rs) { address const base_address = (address) (use_archive_base_addr ? static_mapinfo->requested_base_address() : NULL); const size_t archive_space_alignment = MetaspaceShared::reserved_space_alignment(); // Size and requested location of the archive_space_rs (for both static and dynamic archives) assert(static_mapinfo->mapping_base_offset() == 0, "Must be"); size_t archive_end_offset = (dynamic_mapinfo == NULL) ? static_mapinfo->mapping_end_offset() : dynamic_mapinfo->mapping_end_offset(); size_t archive_space_size = align_up(archive_end_offset, archive_space_alignment); // If a base address is given, it must have valid alignment and be suitable as encoding base. if (base_address != NULL) { assert(is_aligned(base_address, archive_space_alignment), "Archive base address invalid: " PTR_FORMAT ".", p2i(base_address)); if (Metaspace::using_class_space()) { assert(CompressedKlassPointers::is_valid_base(base_address), "Archive base address invalid: " PTR_FORMAT ".", p2i(base_address)); } } if (!Metaspace::using_class_space()) { // Get the simple case out of the way first: // no compressed class space, simple allocation. archive_space_rs = ReservedSpace(archive_space_size, archive_space_alignment, false /* bool large */, (char*)base_address); if (archive_space_rs.is_reserved()) { assert(base_address == NULL || (address)archive_space_rs.base() == base_address, "Sanity"); // Register archive space with NMT. MemTracker::record_virtual_memory_type(archive_space_rs.base(), mtClassShared); return archive_space_rs.base(); } return NULL; } #ifdef _LP64 // Complex case: two spaces adjacent to each other, both to be addressable // with narrow class pointers. // We reserve the whole range spanning both spaces, then split that range up. const size_t class_space_alignment = Metaspace::reserve_alignment(); // To simplify matters, lets assume that metaspace alignment will always be // equal or a multiple of archive alignment. assert(is_power_of_2(class_space_alignment) && is_power_of_2(archive_space_alignment) && class_space_alignment >= archive_space_alignment, "Sanity"); const size_t class_space_size = CompressedClassSpaceSize; assert(CompressedClassSpaceSize > 0 && is_aligned(CompressedClassSpaceSize, class_space_alignment), "CompressedClassSpaceSize malformed: " SIZE_FORMAT, CompressedClassSpaceSize); const size_t ccs_begin_offset = align_up(base_address + archive_space_size, class_space_alignment) - base_address; const size_t gap_size = ccs_begin_offset - archive_space_size; const size_t total_range_size = align_up(archive_space_size + gap_size + class_space_size, os::vm_allocation_granularity()); ReservedSpace total_rs; if (base_address != NULL) { // Reserve at the given archive base address, or not at all. total_rs = ReservedSpace(total_range_size, archive_space_alignment, false /* bool large */, (char*) base_address); } else { // Reserve at any address, but leave it up to the platform to choose a good one. total_rs = Metaspace::reserve_address_space_for_compressed_classes(total_range_size); } if (!total_rs.is_reserved()) { return NULL; } // Paranoid checks: assert(base_address == NULL || (address)total_rs.base() == base_address, "Sanity (" PTR_FORMAT " vs " PTR_FORMAT ")", p2i(base_address), p2i(total_rs.base())); assert(is_aligned(total_rs.base(), archive_space_alignment), "Sanity"); assert(total_rs.size() == total_range_size, "Sanity"); assert(CompressedKlassPointers::is_valid_base((address)total_rs.base()), "Sanity"); // Now split up the space into ccs and cds archive. For simplicity, just leave // the gap reserved at the end of the archive space. archive_space_rs = total_rs.first_part(ccs_begin_offset, (size_t)os::vm_allocation_granularity(), /*split=*/true); class_space_rs = total_rs.last_part(ccs_begin_offset); assert(is_aligned(archive_space_rs.base(), archive_space_alignment), "Sanity"); assert(is_aligned(archive_space_rs.size(), archive_space_alignment), "Sanity"); assert(is_aligned(class_space_rs.base(), class_space_alignment), "Sanity"); assert(is_aligned(class_space_rs.size(), class_space_alignment), "Sanity"); // NMT: fix up the space tags MemTracker::record_virtual_memory_type(archive_space_rs.base(), mtClassShared); MemTracker::record_virtual_memory_type(class_space_rs.base(), mtClass); return archive_space_rs.base(); #else ShouldNotReachHere(); return NULL; #endif } void MetaspaceShared::release_reserved_spaces(ReservedSpace& archive_space_rs, ReservedSpace& class_space_rs) { if (archive_space_rs.is_reserved()) { log_debug(cds)("Released shared space (archive) " INTPTR_FORMAT, p2i(archive_space_rs.base())); archive_space_rs.release(); } if (class_space_rs.is_reserved()) { log_debug(cds)("Released shared space (classes) " INTPTR_FORMAT, p2i(class_space_rs.base())); class_space_rs.release(); } } static int archive_regions[] = {MetaspaceShared::mc, MetaspaceShared::rw, MetaspaceShared::ro}; static int archive_regions_count = 3; MapArchiveResult MetaspaceShared::map_archive(FileMapInfo* mapinfo, char* mapped_base_address, ReservedSpace rs) { assert(UseSharedSpaces, "must be runtime"); if (mapinfo == NULL) { return MAP_ARCHIVE_SUCCESS; // The dynamic archive has not been specified. No error has happened -- trivially succeeded. } mapinfo->set_is_mapped(false); if (mapinfo->alignment() != (size_t)os::vm_allocation_granularity()) { log_error(cds)("Unable to map CDS archive -- os::vm_allocation_granularity() expected: " SIZE_FORMAT " actual: %d", mapinfo->alignment(), os::vm_allocation_granularity()); return MAP_ARCHIVE_OTHER_FAILURE; } MapArchiveResult result = mapinfo->map_regions(archive_regions, archive_regions_count, mapped_base_address, rs); if (result != MAP_ARCHIVE_SUCCESS) { unmap_archive(mapinfo); return result; } if (!mapinfo->validate_shared_path_table()) { unmap_archive(mapinfo); return MAP_ARCHIVE_OTHER_FAILURE; } mapinfo->set_is_mapped(true); return MAP_ARCHIVE_SUCCESS; } void MetaspaceShared::unmap_archive(FileMapInfo* mapinfo) { assert(UseSharedSpaces, "must be runtime"); if (mapinfo != NULL) { mapinfo->unmap_regions(archive_regions, archive_regions_count); mapinfo->set_is_mapped(false); } } // Read the miscellaneous data from the shared file, and // serialize it out to its various destinations. void MetaspaceShared::initialize_shared_spaces() { FileMapInfo *static_mapinfo = FileMapInfo::current_info(); _i2i_entry_code_buffers = static_mapinfo->i2i_entry_code_buffers(); _i2i_entry_code_buffers_size = static_mapinfo->i2i_entry_code_buffers_size(); char* buffer = static_mapinfo->cloned_vtables(); clone_cpp_vtables((intptr_t*)buffer); // Verify various attributes of the archive, plus initialize the // shared string/symbol tables buffer = static_mapinfo->serialized_data(); intptr_t* array = (intptr_t*)buffer; ReadClosure rc(&array); serialize(&rc); // Initialize the run-time symbol table. SymbolTable::create_table(); static_mapinfo->patch_archived_heap_embedded_pointers(); // Close the mapinfo file static_mapinfo->close(); static_mapinfo->unmap_region(MetaspaceShared::bm); FileMapInfo *dynamic_mapinfo = FileMapInfo::dynamic_info(); if (dynamic_mapinfo != NULL) { intptr_t* buffer = (intptr_t*)dynamic_mapinfo->serialized_data(); ReadClosure rc(&buffer); SymbolTable::serialize_shared_table_header(&rc, false); SystemDictionaryShared::serialize_dictionary_headers(&rc, false); dynamic_mapinfo->close(); } if (PrintSharedArchiveAndExit) { if (PrintSharedDictionary) { tty->print_cr("\nShared classes:\n"); SystemDictionaryShared::print_on(tty); } if (FileMapInfo::current_info() == NULL || _archive_loading_failed) { tty->print_cr("archive is invalid"); vm_exit(1); } else { tty->print_cr("archive is valid"); vm_exit(0); } } } // JVM/TI RedefineClasses() support: bool MetaspaceShared::remap_shared_readonly_as_readwrite() { assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint"); if (UseSharedSpaces) { // remap the shared readonly space to shared readwrite, private FileMapInfo* mapinfo = FileMapInfo::current_info(); if (!mapinfo->remap_shared_readonly_as_readwrite()) { return false; } if (FileMapInfo::dynamic_info() != NULL) { mapinfo = FileMapInfo::dynamic_info(); if (!mapinfo->remap_shared_readonly_as_readwrite()) { return false; } } _remapped_readwrite = true; } return true; } void MetaspaceShared::report_out_of_space(const char* name, size_t needed_bytes) { // This is highly unlikely to happen on 64-bits because we have reserved a 4GB space. // On 32-bit we reserve only 256MB so you could run out of space with 100,000 classes // or so. _mc_region.print_out_of_space_msg(name, needed_bytes); _rw_region.print_out_of_space_msg(name, needed_bytes); _ro_region.print_out_of_space_msg(name, needed_bytes); vm_exit_during_initialization(err_msg("Unable to allocate from '%s' region", name), "Please reduce the number of shared classes."); } // This is used to relocate the pointers so that the base archive can be mapped at // MetaspaceShared::requested_base_address() without runtime relocation. intx MetaspaceShared::final_delta() { return intx(MetaspaceShared::requested_base_address()) // We want the base archive to be mapped to here at runtime - intx(SharedBaseAddress); // .. but the base archive is mapped at here at dump time } void MetaspaceShared::print_on(outputStream* st) { if (UseSharedSpaces || DumpSharedSpaces) { st->print("CDS archive(s) mapped at: "); address base; address top; if (UseSharedSpaces) { // Runtime base = (address)MetaspaceObj::shared_metaspace_base(); address static_top = (address)_shared_metaspace_static_top; top = (address)MetaspaceObj::shared_metaspace_top(); st->print("[" PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "), ", p2i(base), p2i(static_top), p2i(top)); } else if (DumpSharedSpaces) { // Dump Time base = (address)_shared_rs.base(); top = (address)_shared_rs.end(); st->print("[" PTR_FORMAT "-" PTR_FORMAT "), ", p2i(base), p2i(top)); } st->print("size " SIZE_FORMAT ", ", top - base); st->print("SharedBaseAddress: " PTR_FORMAT ", ArchiveRelocationMode: %d.", SharedBaseAddress, (int)ArchiveRelocationMode); } else { st->print("CDS disabled."); } st->cr(); }