/* * Copyright (c) 2011, 2017, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "aot/aotLoader.hpp" #include "gc/shared/collectedHeap.hpp" #include "gc/shared/collectorPolicy.hpp" #include "gc/shared/gcLocker.hpp" #include "logging/log.hpp" #include "logging/logStream.hpp" #include "memory/allocation.hpp" #include "memory/binaryTreeDictionary.hpp" #include "memory/filemap.hpp" #include "memory/freeList.hpp" #include "memory/metachunk.hpp" #include "memory/metaspace.hpp" #include "memory/metaspaceGCThresholdUpdater.hpp" #include "memory/metaspaceShared.hpp" #include "memory/metaspaceTracer.hpp" #include "memory/resourceArea.hpp" #include "memory/universe.hpp" #include "runtime/atomic.hpp" #include "runtime/globals.hpp" #include "runtime/init.hpp" #include "runtime/java.hpp" #include "runtime/mutex.hpp" #include "runtime/orderAccess.inline.hpp" #include "services/memTracker.hpp" #include "services/memoryService.hpp" #include "utilities/align.hpp" #include "utilities/copy.hpp" #include "utilities/debug.hpp" #include "utilities/macros.hpp" typedef BinaryTreeDictionary > BlockTreeDictionary; typedef BinaryTreeDictionary > ChunkTreeDictionary; // Set this constant to enable slow integrity checking of the free chunk lists const bool metaspace_slow_verify = false; size_t const allocation_from_dictionary_limit = 4 * K; MetaWord* last_allocated = 0; size_t Metaspace::_compressed_class_space_size; const MetaspaceTracer* Metaspace::_tracer = NULL; DEBUG_ONLY(bool Metaspace::_frozen = false;) // Used in declarations in SpaceManager and ChunkManager enum ChunkIndex { ZeroIndex = 0, SpecializedIndex = ZeroIndex, SmallIndex = SpecializedIndex + 1, MediumIndex = SmallIndex + 1, HumongousIndex = MediumIndex + 1, NumberOfFreeLists = 3, NumberOfInUseLists = 4 }; // Helper, returns a descriptive name for the given index. static const char* chunk_size_name(ChunkIndex index) { switch (index) { case SpecializedIndex: return "specialized"; case SmallIndex: return "small"; case MediumIndex: return "medium"; case HumongousIndex: return "humongous"; default: return "Invalid index"; } } enum ChunkSizes { // in words. ClassSpecializedChunk = 128, SpecializedChunk = 128, ClassSmallChunk = 256, SmallChunk = 512, ClassMediumChunk = 4 * K, MediumChunk = 8 * K }; static ChunkIndex next_chunk_index(ChunkIndex i) { assert(i < NumberOfInUseLists, "Out of bound"); return (ChunkIndex) (i+1); } static const char* scale_unit(size_t scale) { switch(scale) { case 1: return "BYTES"; case K: return "KB"; case M: return "MB"; case G: return "GB"; default: ShouldNotReachHere(); return NULL; } } volatile intptr_t MetaspaceGC::_capacity_until_GC = 0; uint MetaspaceGC::_shrink_factor = 0; bool MetaspaceGC::_should_concurrent_collect = false; typedef class FreeList ChunkList; // Manages the global free lists of chunks. class ChunkManager : public CHeapObj { friend class TestVirtualSpaceNodeTest; // Free list of chunks of different sizes. // SpecializedChunk // SmallChunk // MediumChunk ChunkList _free_chunks[NumberOfFreeLists]; // Return non-humongous chunk list by its index. ChunkList* free_chunks(ChunkIndex index); // Returns non-humongous chunk list for the given chunk word size. ChunkList* find_free_chunks_list(size_t word_size); // HumongousChunk ChunkTreeDictionary _humongous_dictionary; // Returns the humongous chunk dictionary. ChunkTreeDictionary* humongous_dictionary() { return &_humongous_dictionary; } // Size, in metaspace words, of all chunks managed by this ChunkManager size_t _free_chunks_total; // Number of chunks in this ChunkManager size_t _free_chunks_count; // Update counters after a chunk was added or removed removed. void account_for_added_chunk(const Metachunk* c); void account_for_removed_chunk(const Metachunk* c); // Debug support size_t sum_free_chunks(); size_t sum_free_chunks_count(); void locked_verify_free_chunks_total(); void slow_locked_verify_free_chunks_total() { if (metaspace_slow_verify) { locked_verify_free_chunks_total(); } } void locked_verify_free_chunks_count(); void slow_locked_verify_free_chunks_count() { if (metaspace_slow_verify) { locked_verify_free_chunks_count(); } } void verify_free_chunks_count(); struct ChunkManagerStatistics { size_t num_by_type[NumberOfFreeLists]; size_t single_size_by_type[NumberOfFreeLists]; size_t total_size_by_type[NumberOfFreeLists]; size_t num_humongous_chunks; size_t total_size_humongous_chunks; }; void locked_get_statistics(ChunkManagerStatistics* stat) const; void get_statistics(ChunkManagerStatistics* stat) const; static void print_statistics(const ChunkManagerStatistics* stat, outputStream* out, size_t scale); public: ChunkManager(size_t specialized_size, size_t small_size, size_t medium_size) : _free_chunks_total(0), _free_chunks_count(0) { _free_chunks[SpecializedIndex].set_size(specialized_size); _free_chunks[SmallIndex].set_size(small_size); _free_chunks[MediumIndex].set_size(medium_size); } // add or delete (return) a chunk to the global freelist. Metachunk* chunk_freelist_allocate(size_t word_size); // Map a size to a list index assuming that there are lists // for special, small, medium, and humongous chunks. ChunkIndex list_index(size_t size); // Map a given index to the chunk size. size_t size_by_index(ChunkIndex index) const; // Take a chunk from the ChunkManager. The chunk is expected to be in // the chunk manager (the freelist if non-humongous, the dictionary if // humongous). void remove_chunk(Metachunk* chunk); // Return a single chunk of type index to the ChunkManager. void return_single_chunk(ChunkIndex index, Metachunk* chunk); // Add the simple linked list of chunks to the freelist of chunks // of type index. void return_chunk_list(ChunkIndex index, Metachunk* chunk); // Total of the space in the free chunks list size_t free_chunks_total_words(); size_t free_chunks_total_bytes(); // Number of chunks in the free chunks list size_t free_chunks_count(); // Remove from a list by size. Selects list based on size of chunk. Metachunk* free_chunks_get(size_t chunk_word_size); #define index_bounds_check(index) \ assert(index == SpecializedIndex || \ index == SmallIndex || \ index == MediumIndex || \ index == HumongousIndex, "Bad index: %d", (int) index) size_t num_free_chunks(ChunkIndex index) const { index_bounds_check(index); if (index == HumongousIndex) { return _humongous_dictionary.total_free_blocks(); } ssize_t count = _free_chunks[index].count(); return count == -1 ? 0 : (size_t) count; } size_t size_free_chunks_in_bytes(ChunkIndex index) const { index_bounds_check(index); size_t word_size = 0; if (index == HumongousIndex) { word_size = _humongous_dictionary.total_size(); } else { const size_t size_per_chunk_in_words = _free_chunks[index].size(); word_size = size_per_chunk_in_words * num_free_chunks(index); } return word_size * BytesPerWord; } MetaspaceChunkFreeListSummary chunk_free_list_summary() const { return MetaspaceChunkFreeListSummary(num_free_chunks(SpecializedIndex), num_free_chunks(SmallIndex), num_free_chunks(MediumIndex), num_free_chunks(HumongousIndex), size_free_chunks_in_bytes(SpecializedIndex), size_free_chunks_in_bytes(SmallIndex), size_free_chunks_in_bytes(MediumIndex), size_free_chunks_in_bytes(HumongousIndex)); } // Debug support void verify(); void slow_verify() { if (metaspace_slow_verify) { verify(); } } void locked_verify(); void slow_locked_verify() { if (metaspace_slow_verify) { locked_verify(); } } void verify_free_chunks_total(); void locked_print_free_chunks(outputStream* st); void locked_print_sum_free_chunks(outputStream* st); void print_on(outputStream* st) const; // Prints composition for both non-class and (if available) // class chunk manager. static void print_all_chunkmanagers(outputStream* out, size_t scale = 1); }; class SmallBlocks : public CHeapObj { const static uint _small_block_max_size = sizeof(TreeChunk >)/HeapWordSize; const static uint _small_block_min_size = sizeof(Metablock)/HeapWordSize; private: FreeList _small_lists[_small_block_max_size - _small_block_min_size]; FreeList& list_at(size_t word_size) { assert(word_size >= _small_block_min_size, "There are no metaspace objects less than %u words", _small_block_min_size); return _small_lists[word_size - _small_block_min_size]; } public: SmallBlocks() { for (uint i = _small_block_min_size; i < _small_block_max_size; i++) { uint k = i - _small_block_min_size; _small_lists[k].set_size(i); } } size_t total_size() const { size_t result = 0; for (uint i = _small_block_min_size; i < _small_block_max_size; i++) { uint k = i - _small_block_min_size; result = result + _small_lists[k].count() * _small_lists[k].size(); } return result; } static uint small_block_max_size() { return _small_block_max_size; } static uint small_block_min_size() { return _small_block_min_size; } MetaWord* get_block(size_t word_size) { if (list_at(word_size).count() > 0) { MetaWord* new_block = (MetaWord*) list_at(word_size).get_chunk_at_head(); return new_block; } else { return NULL; } } void return_block(Metablock* free_chunk, size_t word_size) { list_at(word_size).return_chunk_at_head(free_chunk, false); assert(list_at(word_size).count() > 0, "Should have a chunk"); } void print_on(outputStream* st) const { st->print_cr("SmallBlocks:"); for (uint i = _small_block_min_size; i < _small_block_max_size; i++) { uint k = i - _small_block_min_size; st->print_cr("small_lists size " SIZE_FORMAT " count " SIZE_FORMAT, _small_lists[k].size(), _small_lists[k].count()); } } }; // Used to manage the free list of Metablocks (a block corresponds // to the allocation of a quantum of metadata). class BlockFreelist : public CHeapObj { BlockTreeDictionary* const _dictionary; SmallBlocks* _small_blocks; // Only allocate and split from freelist if the size of the allocation // is at least 1/4th the size of the available block. const static int WasteMultiplier = 4; // Accessors BlockTreeDictionary* dictionary() const { return _dictionary; } SmallBlocks* small_blocks() { if (_small_blocks == NULL) { _small_blocks = new SmallBlocks(); } return _small_blocks; } public: BlockFreelist(); ~BlockFreelist(); // Get and return a block to the free list MetaWord* get_block(size_t word_size); void return_block(MetaWord* p, size_t word_size); size_t total_size() const { size_t result = dictionary()->total_size(); if (_small_blocks != NULL) { result = result + _small_blocks->total_size(); } return result; } static size_t min_dictionary_size() { return TreeChunk >::min_size(); } void print_on(outputStream* st) const; }; // A VirtualSpaceList node. class VirtualSpaceNode : public CHeapObj { friend class VirtualSpaceList; // Link to next VirtualSpaceNode VirtualSpaceNode* _next; // total in the VirtualSpace MemRegion _reserved; ReservedSpace _rs; VirtualSpace _virtual_space; MetaWord* _top; // count of chunks contained in this VirtualSpace uintx _container_count; // Convenience functions to access the _virtual_space char* low() const { return virtual_space()->low(); } char* high() const { return virtual_space()->high(); } // The first Metachunk will be allocated at the bottom of the // VirtualSpace Metachunk* first_chunk() { return (Metachunk*) bottom(); } // Committed but unused space in the virtual space size_t free_words_in_vs() const; public: VirtualSpaceNode(size_t byte_size); VirtualSpaceNode(ReservedSpace rs) : _top(NULL), _next(NULL), _rs(rs), _container_count(0) {} ~VirtualSpaceNode(); // Convenience functions for logical bottom and end MetaWord* bottom() const { return (MetaWord*) _virtual_space.low(); } MetaWord* end() const { return (MetaWord*) _virtual_space.high(); } bool contains(const void* ptr) { return ptr >= low() && ptr < high(); } size_t reserved_words() const { return _virtual_space.reserved_size() / BytesPerWord; } size_t committed_words() const { return _virtual_space.actual_committed_size() / BytesPerWord; } bool is_pre_committed() const { return _virtual_space.special(); } // address of next available space in _virtual_space; // Accessors VirtualSpaceNode* next() { return _next; } void set_next(VirtualSpaceNode* v) { _next = v; } void set_reserved(MemRegion const v) { _reserved = v; } void set_top(MetaWord* v) { _top = v; } // Accessors MemRegion* reserved() { return &_reserved; } VirtualSpace* virtual_space() const { return (VirtualSpace*) &_virtual_space; } // Returns true if "word_size" is available in the VirtualSpace bool is_available(size_t word_size) { return word_size <= pointer_delta(end(), _top, sizeof(MetaWord)); } MetaWord* top() const { return _top; } void inc_top(size_t word_size) { _top += word_size; } uintx container_count() { return _container_count; } void inc_container_count(); void dec_container_count(); #ifdef ASSERT uintx container_count_slow(); void verify_container_count(); #endif // used and capacity in this single entry in the list size_t used_words_in_vs() const; size_t capacity_words_in_vs() const; bool initialize(); // get space from the virtual space Metachunk* take_from_committed(size_t chunk_word_size); // Allocate a chunk from the virtual space and return it. Metachunk* get_chunk_vs(size_t chunk_word_size); // Expands/shrinks the committed space in a virtual space. Delegates // to Virtualspace bool expand_by(size_t min_words, size_t preferred_words); // In preparation for deleting this node, remove all the chunks // in the node from any freelist. void purge(ChunkManager* chunk_manager); // If an allocation doesn't fit in the current node a new node is created. // Allocate chunks out of the remaining committed space in this node // to avoid wasting that memory. // This always adds up because all the chunk sizes are multiples of // the smallest chunk size. void retire(ChunkManager* chunk_manager); #ifdef ASSERT // Debug support void mangle(); #endif void print_on(outputStream* st) const; void print_map(outputStream* st, bool is_class) const; }; #define assert_is_aligned(value, alignment) \ assert(is_aligned((value), (alignment)), \ SIZE_FORMAT_HEX " is not aligned to " \ SIZE_FORMAT, (size_t)(uintptr_t)value, (alignment)) // Decide if large pages should be committed when the memory is reserved. static bool should_commit_large_pages_when_reserving(size_t bytes) { if (UseLargePages && UseLargePagesInMetaspace && !os::can_commit_large_page_memory()) { size_t words = bytes / BytesPerWord; bool is_class = false; // We never reserve large pages for the class space. if (MetaspaceGC::can_expand(words, is_class) && MetaspaceGC::allowed_expansion() >= words) { return true; } } return false; } // byte_size is the size of the associated virtualspace. VirtualSpaceNode::VirtualSpaceNode(size_t bytes) : _top(NULL), _next(NULL), _rs(), _container_count(0) { assert_is_aligned(bytes, Metaspace::reserve_alignment()); bool large_pages = should_commit_large_pages_when_reserving(bytes); _rs = ReservedSpace(bytes, Metaspace::reserve_alignment(), large_pages); if (_rs.is_reserved()) { assert(_rs.base() != NULL, "Catch if we get a NULL address"); assert(_rs.size() != 0, "Catch if we get a 0 size"); assert_is_aligned(_rs.base(), Metaspace::reserve_alignment()); assert_is_aligned(_rs.size(), Metaspace::reserve_alignment()); MemTracker::record_virtual_memory_type((address)_rs.base(), mtClass); } } void VirtualSpaceNode::purge(ChunkManager* chunk_manager) { Metachunk* chunk = first_chunk(); Metachunk* invalid_chunk = (Metachunk*) top(); while (chunk < invalid_chunk ) { assert(chunk->is_tagged_free(), "Should be tagged free"); MetaWord* next = ((MetaWord*)chunk) + chunk->word_size(); chunk_manager->remove_chunk(chunk); assert(chunk->next() == NULL && chunk->prev() == NULL, "Was not removed from its list"); chunk = (Metachunk*) next; } } void VirtualSpaceNode::print_map(outputStream* st, bool is_class) const { // Format: // // . .. . . .. // SSxSSMMMMMMMMMMMMMMMMsssXX // 112114444444444444444 // . .. . . .. // SSxSSMMMMMMMMMMMMMMMMsssXX // 112114444444444444444 if (bottom() == top()) { return; } // First line: dividers for every med-chunk-sized interval // Second line: a dot for the start of a chunk // Third line: a letter per chunk type (x,s,m,h), uppercase if in use. const size_t spec_chunk_size = is_class ? ClassSpecializedChunk : SpecializedChunk; const size_t small_chunk_size = is_class ? ClassSmallChunk : SmallChunk; const size_t med_chunk_size = is_class ? ClassMediumChunk : MediumChunk; int line_len = 100; const size_t section_len = align_up(spec_chunk_size * line_len, med_chunk_size); line_len = (int)(section_len / spec_chunk_size); char* line1 = (char*)os::malloc(line_len, mtInternal); char* line2 = (char*)os::malloc(line_len, mtInternal); char* line3 = (char*)os::malloc(line_len, mtInternal); int pos = 0; const MetaWord* p = bottom(); const Metachunk* chunk = (const Metachunk*)p; const MetaWord* chunk_end = p + chunk->word_size(); while (p < top()) { if (pos == line_len) { pos = 0; st->fill_to(22); st->print_raw(line1, line_len); st->cr(); st->fill_to(22); st->print_raw(line2, line_len); st->cr(); } if (pos == 0) { st->print(PTR_FORMAT ":", p2i(p)); } if (p == chunk_end) { chunk = (Metachunk*)p; chunk_end = p + chunk->word_size(); } if (p == (const MetaWord*)chunk) { // chunk starts. line1[pos] = '.'; } else { line1[pos] = ' '; } // Line 2: chunk type (x=spec, s=small, m=medium, h=humongous), uppercase if // chunk is in use. const bool chunk_is_free = ((Metachunk*)chunk)->is_tagged_free(); if (chunk->word_size() == spec_chunk_size) { line2[pos] = chunk_is_free ? 'x' : 'X'; } else if (chunk->word_size() == small_chunk_size) { line2[pos] = chunk_is_free ? 's' : 'S'; } else if (chunk->word_size() == med_chunk_size) { line2[pos] = chunk_is_free ? 'm' : 'M'; } else if (chunk->word_size() > med_chunk_size) { line2[pos] = chunk_is_free ? 'h' : 'H'; } else { ShouldNotReachHere(); } p += spec_chunk_size; pos ++; } if (pos > 0) { st->fill_to(22); st->print_raw(line1, pos); st->cr(); st->fill_to(22); st->print_raw(line2, pos); st->cr(); } os::free(line1); os::free(line2); os::free(line3); } #ifdef ASSERT uintx VirtualSpaceNode::container_count_slow() { uintx count = 0; Metachunk* chunk = first_chunk(); Metachunk* invalid_chunk = (Metachunk*) top(); while (chunk < invalid_chunk ) { MetaWord* next = ((MetaWord*)chunk) + chunk->word_size(); // Don't count the chunks on the free lists. Those are // still part of the VirtualSpaceNode but not currently // counted. if (!chunk->is_tagged_free()) { count++; } chunk = (Metachunk*) next; } return count; } #endif // List of VirtualSpaces for metadata allocation. class VirtualSpaceList : public CHeapObj { friend class VirtualSpaceNode; enum VirtualSpaceSizes { VirtualSpaceSize = 256 * K }; // Head of the list VirtualSpaceNode* _virtual_space_list; // virtual space currently being used for allocations VirtualSpaceNode* _current_virtual_space; // Is this VirtualSpaceList used for the compressed class space bool _is_class; // Sum of reserved and committed memory in the virtual spaces size_t _reserved_words; size_t _committed_words; // Number of virtual spaces size_t _virtual_space_count; ~VirtualSpaceList(); VirtualSpaceNode* virtual_space_list() const { return _virtual_space_list; } void set_virtual_space_list(VirtualSpaceNode* v) { _virtual_space_list = v; } void set_current_virtual_space(VirtualSpaceNode* v) { _current_virtual_space = v; } void link_vs(VirtualSpaceNode* new_entry); // Get another virtual space and add it to the list. This // is typically prompted by a failed attempt to allocate a chunk // and is typically followed by the allocation of a chunk. bool create_new_virtual_space(size_t vs_word_size); // Chunk up the unused committed space in the current // virtual space and add the chunks to the free list. void retire_current_virtual_space(); public: VirtualSpaceList(size_t word_size); VirtualSpaceList(ReservedSpace rs); size_t free_bytes(); Metachunk* get_new_chunk(size_t chunk_word_size, size_t suggested_commit_granularity); bool expand_node_by(VirtualSpaceNode* node, size_t min_words, size_t preferred_words); bool expand_by(size_t min_words, size_t preferred_words); VirtualSpaceNode* current_virtual_space() { return _current_virtual_space; } bool is_class() const { return _is_class; } bool initialization_succeeded() { return _virtual_space_list != NULL; } size_t reserved_words() { return _reserved_words; } size_t reserved_bytes() { return reserved_words() * BytesPerWord; } size_t committed_words() { return _committed_words; } size_t committed_bytes() { return committed_words() * BytesPerWord; } void inc_reserved_words(size_t v); void dec_reserved_words(size_t v); void inc_committed_words(size_t v); void dec_committed_words(size_t v); void inc_virtual_space_count(); void dec_virtual_space_count(); bool contains(const void* ptr); // Unlink empty VirtualSpaceNodes and free it. void purge(ChunkManager* chunk_manager); void print_on(outputStream* st) const; void print_map(outputStream* st) const; class VirtualSpaceListIterator : public StackObj { VirtualSpaceNode* _virtual_spaces; public: VirtualSpaceListIterator(VirtualSpaceNode* virtual_spaces) : _virtual_spaces(virtual_spaces) {} bool repeat() { return _virtual_spaces != NULL; } VirtualSpaceNode* get_next() { VirtualSpaceNode* result = _virtual_spaces; if (_virtual_spaces != NULL) { _virtual_spaces = _virtual_spaces->next(); } return result; } }; }; class Metadebug : AllStatic { // Debugging support for Metaspaces static int _allocation_fail_alot_count; public: static void init_allocation_fail_alot_count(); #ifdef ASSERT static bool test_metadata_failure(); #endif }; int Metadebug::_allocation_fail_alot_count = 0; // SpaceManager - used by Metaspace to handle allocations class SpaceManager : public CHeapObj { friend class Metaspace; friend class Metadebug; private: // protects allocations Mutex* const _lock; // Type of metadata allocated. const Metaspace::MetadataType _mdtype; // Type of metaspace const Metaspace::MetaspaceType _space_type; // List of chunks in use by this SpaceManager. Allocations // are done from the current chunk. The list is used for deallocating // chunks when the SpaceManager is freed. Metachunk* _chunks_in_use[NumberOfInUseLists]; Metachunk* _current_chunk; // Maximum number of small chunks to allocate to a SpaceManager static uint const _small_chunk_limit; // Maximum number of specialize chunks to allocate for anonymous // metadata space to a SpaceManager static uint const _anon_metadata_specialize_chunk_limit; // Sum of all space in allocated chunks size_t _allocated_blocks_words; // Sum of all allocated chunks size_t _allocated_chunks_words; size_t _allocated_chunks_count; // Free lists of blocks are per SpaceManager since they // are assumed to be in chunks in use by the SpaceManager // and all chunks in use by a SpaceManager are freed when // the class loader using the SpaceManager is collected. BlockFreelist* _block_freelists; // protects virtualspace and chunk expansions static const char* _expand_lock_name; static const int _expand_lock_rank; static Mutex* const _expand_lock; private: // Accessors Metachunk* chunks_in_use(ChunkIndex index) const { return _chunks_in_use[index]; } void set_chunks_in_use(ChunkIndex index, Metachunk* v) { _chunks_in_use[index] = v; } BlockFreelist* block_freelists() const { return _block_freelists; } Metaspace::MetadataType mdtype() { return _mdtype; } VirtualSpaceList* vs_list() const { return Metaspace::get_space_list(_mdtype); } ChunkManager* chunk_manager() const { return Metaspace::get_chunk_manager(_mdtype); } Metachunk* current_chunk() const { return _current_chunk; } void set_current_chunk(Metachunk* v) { _current_chunk = v; } Metachunk* find_current_chunk(size_t word_size); // Add chunk to the list of chunks in use void add_chunk(Metachunk* v, bool make_current); void retire_current_chunk(); Mutex* lock() const { return _lock; } protected: void initialize(); public: SpaceManager(Metaspace::MetadataType mdtype, Metaspace::MetaspaceType space_type, Mutex* lock); ~SpaceManager(); enum ChunkMultiples { MediumChunkMultiple = 4 }; static size_t specialized_chunk_size(bool is_class) { return is_class ? ClassSpecializedChunk : SpecializedChunk; } static size_t small_chunk_size(bool is_class) { return is_class ? ClassSmallChunk : SmallChunk; } static size_t medium_chunk_size(bool is_class) { return is_class ? ClassMediumChunk : MediumChunk; } static size_t smallest_chunk_size(bool is_class) { return specialized_chunk_size(is_class); } // Accessors bool is_class() const { return _mdtype == Metaspace::ClassType; } size_t specialized_chunk_size() const { return specialized_chunk_size(is_class()); } size_t small_chunk_size() const { return small_chunk_size(is_class()); } size_t medium_chunk_size() const { return medium_chunk_size(is_class()); } size_t smallest_chunk_size() const { return smallest_chunk_size(is_class()); } size_t medium_chunk_bunch() const { return medium_chunk_size() * MediumChunkMultiple; } size_t allocated_blocks_words() const { return _allocated_blocks_words; } size_t allocated_blocks_bytes() const { return _allocated_blocks_words * BytesPerWord; } size_t allocated_chunks_words() const { return _allocated_chunks_words; } size_t allocated_chunks_bytes() const { return _allocated_chunks_words * BytesPerWord; } size_t allocated_chunks_count() const { return _allocated_chunks_count; } bool is_humongous(size_t word_size) { return word_size > medium_chunk_size(); } static Mutex* expand_lock() { return _expand_lock; } // Increment the per Metaspace and global running sums for Metachunks // by the given size. This is used when a Metachunk to added to // the in-use list. void inc_size_metrics(size_t words); // Increment the per Metaspace and global running sums Metablocks by the given // size. This is used when a Metablock is allocated. void inc_used_metrics(size_t words); // Delete the portion of the running sums for this SpaceManager. That is, // the globals running sums for the Metachunks and Metablocks are // decremented for all the Metachunks in-use by this SpaceManager. void dec_total_from_size_metrics(); // Adjust the initial chunk size to match one of the fixed chunk list sizes, // or return the unadjusted size if the requested size is humongous. static size_t adjust_initial_chunk_size(size_t requested, bool is_class_space); size_t adjust_initial_chunk_size(size_t requested) const; // Get the initial chunks size for this metaspace type. size_t get_initial_chunk_size(Metaspace::MetaspaceType type) const; size_t sum_capacity_in_chunks_in_use() const; size_t sum_used_in_chunks_in_use() const; size_t sum_free_in_chunks_in_use() const; size_t sum_waste_in_chunks_in_use() const; size_t sum_waste_in_chunks_in_use(ChunkIndex index ) const; size_t sum_count_in_chunks_in_use(); size_t sum_count_in_chunks_in_use(ChunkIndex i); Metachunk* get_new_chunk(size_t chunk_word_size); // Block allocation and deallocation. // Allocates a block from the current chunk MetaWord* allocate(size_t word_size); // Allocates a block from a small chunk MetaWord* get_small_chunk_and_allocate(size_t word_size); // Helper for allocations MetaWord* allocate_work(size_t word_size); // Returns a block to the per manager freelist void deallocate(MetaWord* p, size_t word_size); // Based on the allocation size and a minimum chunk size, // returned chunk size (for expanding space for chunk allocation). size_t calc_chunk_size(size_t allocation_word_size); // Called when an allocation from the current chunk fails. // Gets a new chunk (may require getting a new virtual space), // and allocates from that chunk. MetaWord* grow_and_allocate(size_t word_size); // Notify memory usage to MemoryService. void track_metaspace_memory_usage(); // debugging support. void dump(outputStream* const out) const; void print_on(outputStream* st) const; void locked_print_chunks_in_use_on(outputStream* st) const; void verify(); void verify_chunk_size(Metachunk* chunk); #ifdef ASSERT void verify_allocated_blocks_words(); #endif // This adjusts the size given to be greater than the minimum allocation size in // words for data in metaspace. Esentially the minimum size is currently 3 words. size_t get_allocation_word_size(size_t word_size) { size_t byte_size = word_size * BytesPerWord; size_t raw_bytes_size = MAX2(byte_size, sizeof(Metablock)); raw_bytes_size = align_up(raw_bytes_size, Metachunk::object_alignment()); size_t raw_word_size = raw_bytes_size / BytesPerWord; assert(raw_word_size * BytesPerWord == raw_bytes_size, "Size problem"); return raw_word_size; } }; uint const SpaceManager::_small_chunk_limit = 4; uint const SpaceManager::_anon_metadata_specialize_chunk_limit = 4; const char* SpaceManager::_expand_lock_name = "SpaceManager chunk allocation lock"; const int SpaceManager::_expand_lock_rank = Monitor::leaf - 1; Mutex* const SpaceManager::_expand_lock = new Mutex(SpaceManager::_expand_lock_rank, SpaceManager::_expand_lock_name, Mutex::_allow_vm_block_flag, Monitor::_safepoint_check_never); void VirtualSpaceNode::inc_container_count() { assert_lock_strong(SpaceManager::expand_lock()); _container_count++; } void VirtualSpaceNode::dec_container_count() { assert_lock_strong(SpaceManager::expand_lock()); _container_count--; } #ifdef ASSERT void VirtualSpaceNode::verify_container_count() { assert(_container_count == container_count_slow(), "Inconsistency in container_count _container_count " UINTX_FORMAT " container_count_slow() " UINTX_FORMAT, _container_count, container_count_slow()); } #endif // BlockFreelist methods BlockFreelist::BlockFreelist() : _dictionary(new BlockTreeDictionary()), _small_blocks(NULL) {} BlockFreelist::~BlockFreelist() { delete _dictionary; if (_small_blocks != NULL) { delete _small_blocks; } } void BlockFreelist::return_block(MetaWord* p, size_t word_size) { assert(word_size >= SmallBlocks::small_block_min_size(), "never return dark matter"); Metablock* free_chunk = ::new (p) Metablock(word_size); if (word_size < SmallBlocks::small_block_max_size()) { small_blocks()->return_block(free_chunk, word_size); } else { dictionary()->return_chunk(free_chunk); } log_trace(gc, metaspace, freelist, blocks)("returning block at " INTPTR_FORMAT " size = " SIZE_FORMAT, p2i(free_chunk), word_size); } MetaWord* BlockFreelist::get_block(size_t word_size) { assert(word_size >= SmallBlocks::small_block_min_size(), "never get dark matter"); // Try small_blocks first. if (word_size < SmallBlocks::small_block_max_size()) { // Don't create small_blocks() until needed. small_blocks() allocates the small block list for // this space manager. MetaWord* new_block = (MetaWord*) small_blocks()->get_block(word_size); if (new_block != NULL) { log_trace(gc, metaspace, freelist, blocks)("getting block at " INTPTR_FORMAT " size = " SIZE_FORMAT, p2i(new_block), word_size); return new_block; } } if (word_size < BlockFreelist::min_dictionary_size()) { // If allocation in small blocks fails, this is Dark Matter. Too small for dictionary. return NULL; } Metablock* free_block = dictionary()->get_chunk(word_size); if (free_block == NULL) { return NULL; } const size_t block_size = free_block->size(); if (block_size > WasteMultiplier * word_size) { return_block((MetaWord*)free_block, block_size); return NULL; } MetaWord* new_block = (MetaWord*)free_block; assert(block_size >= word_size, "Incorrect size of block from freelist"); const size_t unused = block_size - word_size; if (unused >= SmallBlocks::small_block_min_size()) { return_block(new_block + word_size, unused); } log_trace(gc, metaspace, freelist, blocks)("getting block at " INTPTR_FORMAT " size = " SIZE_FORMAT, p2i(new_block), word_size); return new_block; } void BlockFreelist::print_on(outputStream* st) const { dictionary()->print_free_lists(st); if (_small_blocks != NULL) { _small_blocks->print_on(st); } } // VirtualSpaceNode methods VirtualSpaceNode::~VirtualSpaceNode() { _rs.release(); #ifdef ASSERT size_t word_size = sizeof(*this) / BytesPerWord; Copy::fill_to_words((HeapWord*) this, word_size, 0xf1f1f1f1); #endif } size_t VirtualSpaceNode::used_words_in_vs() const { return pointer_delta(top(), bottom(), sizeof(MetaWord)); } // Space committed in the VirtualSpace size_t VirtualSpaceNode::capacity_words_in_vs() const { return pointer_delta(end(), bottom(), sizeof(MetaWord)); } size_t VirtualSpaceNode::free_words_in_vs() const { return pointer_delta(end(), top(), sizeof(MetaWord)); } // Allocates the chunk from the virtual space only. // This interface is also used internally for debugging. Not all // chunks removed here are necessarily used for allocation. Metachunk* VirtualSpaceNode::take_from_committed(size_t chunk_word_size) { // Bottom of the new chunk MetaWord* chunk_limit = top(); assert(chunk_limit != NULL, "Not safe to call this method"); // The virtual spaces are always expanded by the // commit granularity to enforce the following condition. // Without this the is_available check will not work correctly. assert(_virtual_space.committed_size() == _virtual_space.actual_committed_size(), "The committed memory doesn't match the expanded memory."); if (!is_available(chunk_word_size)) { LogTarget(Debug, gc, metaspace, freelist) lt; if (lt.is_enabled()) { LogStream ls(lt); ls.print("VirtualSpaceNode::take_from_committed() not available " SIZE_FORMAT " words ", chunk_word_size); // Dump some information about the virtual space that is nearly full print_on(&ls); } return NULL; } // Take the space (bump top on the current virtual space). inc_top(chunk_word_size); // Initialize the chunk Metachunk* result = ::new (chunk_limit) Metachunk(chunk_word_size, this); return result; } // Expand the virtual space (commit more of the reserved space) bool VirtualSpaceNode::expand_by(size_t min_words, size_t preferred_words) { size_t min_bytes = min_words * BytesPerWord; size_t preferred_bytes = preferred_words * BytesPerWord; size_t uncommitted = virtual_space()->reserved_size() - virtual_space()->actual_committed_size(); if (uncommitted < min_bytes) { return false; } size_t commit = MIN2(preferred_bytes, uncommitted); bool result = virtual_space()->expand_by(commit, false); assert(result, "Failed to commit memory"); return result; } Metachunk* VirtualSpaceNode::get_chunk_vs(size_t chunk_word_size) { assert_lock_strong(SpaceManager::expand_lock()); Metachunk* result = take_from_committed(chunk_word_size); if (result != NULL) { inc_container_count(); } return result; } bool VirtualSpaceNode::initialize() { if (!_rs.is_reserved()) { return false; } // These are necessary restriction to make sure that the virtual space always // grows in steps of Metaspace::commit_alignment(). If both base and size are // aligned only the middle alignment of the VirtualSpace is used. assert_is_aligned(_rs.base(), Metaspace::commit_alignment()); assert_is_aligned(_rs.size(), Metaspace::commit_alignment()); // ReservedSpaces marked as special will have the entire memory // pre-committed. Setting a committed size will make sure that // committed_size and actual_committed_size agrees. size_t pre_committed_size = _rs.special() ? _rs.size() : 0; bool result = virtual_space()->initialize_with_granularity(_rs, pre_committed_size, Metaspace::commit_alignment()); if (result) { assert(virtual_space()->committed_size() == virtual_space()->actual_committed_size(), "Checking that the pre-committed memory was registered by the VirtualSpace"); set_top((MetaWord*)virtual_space()->low()); set_reserved(MemRegion((HeapWord*)_rs.base(), (HeapWord*)(_rs.base() + _rs.size()))); assert(reserved()->start() == (HeapWord*) _rs.base(), "Reserved start was not set properly " PTR_FORMAT " != " PTR_FORMAT, p2i(reserved()->start()), p2i(_rs.base())); assert(reserved()->word_size() == _rs.size() / BytesPerWord, "Reserved size was not set properly " SIZE_FORMAT " != " SIZE_FORMAT, reserved()->word_size(), _rs.size() / BytesPerWord); } return result; } void VirtualSpaceNode::print_on(outputStream* st) const { size_t used = used_words_in_vs(); size_t capacity = capacity_words_in_vs(); VirtualSpace* vs = virtual_space(); st->print_cr(" space @ " PTR_FORMAT " " SIZE_FORMAT "K, " SIZE_FORMAT_W(3) "%% used " "[" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ")", p2i(vs), capacity / K, capacity == 0 ? 0 : used * 100 / capacity, p2i(bottom()), p2i(top()), p2i(end()), p2i(vs->high_boundary())); } #ifdef ASSERT void VirtualSpaceNode::mangle() { size_t word_size = capacity_words_in_vs(); Copy::fill_to_words((HeapWord*) low(), word_size, 0xf1f1f1f1); } #endif // ASSERT // VirtualSpaceList methods // Space allocated from the VirtualSpace VirtualSpaceList::~VirtualSpaceList() { VirtualSpaceListIterator iter(virtual_space_list()); while (iter.repeat()) { VirtualSpaceNode* vsl = iter.get_next(); delete vsl; } } void VirtualSpaceList::inc_reserved_words(size_t v) { assert_lock_strong(SpaceManager::expand_lock()); _reserved_words = _reserved_words + v; } void VirtualSpaceList::dec_reserved_words(size_t v) { assert_lock_strong(SpaceManager::expand_lock()); _reserved_words = _reserved_words - v; } #define assert_committed_below_limit() \ assert(MetaspaceAux::committed_bytes() <= MaxMetaspaceSize, \ "Too much committed memory. Committed: " SIZE_FORMAT \ " limit (MaxMetaspaceSize): " SIZE_FORMAT, \ MetaspaceAux::committed_bytes(), MaxMetaspaceSize); void VirtualSpaceList::inc_committed_words(size_t v) { assert_lock_strong(SpaceManager::expand_lock()); _committed_words = _committed_words + v; assert_committed_below_limit(); } void VirtualSpaceList::dec_committed_words(size_t v) { assert_lock_strong(SpaceManager::expand_lock()); _committed_words = _committed_words - v; assert_committed_below_limit(); } void VirtualSpaceList::inc_virtual_space_count() { assert_lock_strong(SpaceManager::expand_lock()); _virtual_space_count++; } void VirtualSpaceList::dec_virtual_space_count() { assert_lock_strong(SpaceManager::expand_lock()); _virtual_space_count--; } void ChunkManager::remove_chunk(Metachunk* chunk) { size_t word_size = chunk->word_size(); ChunkIndex index = list_index(word_size); if (index != HumongousIndex) { free_chunks(index)->remove_chunk(chunk); } else { humongous_dictionary()->remove_chunk(chunk); } // Chunk has been removed from the chunks free list, update counters. account_for_removed_chunk(chunk); } // Walk the list of VirtualSpaceNodes and delete // nodes with a 0 container_count. Remove Metachunks in // the node from their respective freelists. void VirtualSpaceList::purge(ChunkManager* chunk_manager) { assert(SafepointSynchronize::is_at_safepoint(), "must be called at safepoint for contains to work"); assert_lock_strong(SpaceManager::expand_lock()); // Don't use a VirtualSpaceListIterator because this // list is being changed and a straightforward use of an iterator is not safe. VirtualSpaceNode* purged_vsl = NULL; VirtualSpaceNode* prev_vsl = virtual_space_list(); VirtualSpaceNode* next_vsl = prev_vsl; while (next_vsl != NULL) { VirtualSpaceNode* vsl = next_vsl; DEBUG_ONLY(vsl->verify_container_count();) next_vsl = vsl->next(); // Don't free the current virtual space since it will likely // be needed soon. if (vsl->container_count() == 0 && vsl != current_virtual_space()) { // Unlink it from the list if (prev_vsl == vsl) { // This is the case of the current node being the first node. assert(vsl == virtual_space_list(), "Expected to be the first node"); set_virtual_space_list(vsl->next()); } else { prev_vsl->set_next(vsl->next()); } vsl->purge(chunk_manager); dec_reserved_words(vsl->reserved_words()); dec_committed_words(vsl->committed_words()); dec_virtual_space_count(); purged_vsl = vsl; delete vsl; } else { prev_vsl = vsl; } } #ifdef ASSERT if (purged_vsl != NULL) { // List should be stable enough to use an iterator here. VirtualSpaceListIterator iter(virtual_space_list()); while (iter.repeat()) { VirtualSpaceNode* vsl = iter.get_next(); assert(vsl != purged_vsl, "Purge of vsl failed"); } } #endif } // This function looks at the mmap regions in the metaspace without locking. // The chunks are added with store ordering and not deleted except for at // unloading time during a safepoint. bool VirtualSpaceList::contains(const void* ptr) { // List should be stable enough to use an iterator here because removing virtual // space nodes is only allowed at a safepoint. VirtualSpaceListIterator iter(virtual_space_list()); while (iter.repeat()) { VirtualSpaceNode* vsn = iter.get_next(); if (vsn->contains(ptr)) { return true; } } return false; } void VirtualSpaceList::retire_current_virtual_space() { assert_lock_strong(SpaceManager::expand_lock()); VirtualSpaceNode* vsn = current_virtual_space(); ChunkManager* cm = is_class() ? Metaspace::chunk_manager_class() : Metaspace::chunk_manager_metadata(); vsn->retire(cm); } void VirtualSpaceNode::retire(ChunkManager* chunk_manager) { DEBUG_ONLY(verify_container_count();) for (int i = (int)MediumIndex; i >= (int)ZeroIndex; --i) { ChunkIndex index = (ChunkIndex)i; size_t chunk_size = chunk_manager->size_by_index(index); while (free_words_in_vs() >= chunk_size) { Metachunk* chunk = get_chunk_vs(chunk_size); assert(chunk != NULL, "allocation should have been successful"); chunk_manager->return_single_chunk(index, chunk); } DEBUG_ONLY(verify_container_count();) } assert(free_words_in_vs() == 0, "should be empty now"); } VirtualSpaceList::VirtualSpaceList(size_t word_size) : _is_class(false), _virtual_space_list(NULL), _current_virtual_space(NULL), _reserved_words(0), _committed_words(0), _virtual_space_count(0) { MutexLockerEx cl(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag); create_new_virtual_space(word_size); } VirtualSpaceList::VirtualSpaceList(ReservedSpace rs) : _is_class(true), _virtual_space_list(NULL), _current_virtual_space(NULL), _reserved_words(0), _committed_words(0), _virtual_space_count(0) { MutexLockerEx cl(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag); VirtualSpaceNode* class_entry = new VirtualSpaceNode(rs); bool succeeded = class_entry->initialize(); if (succeeded) { link_vs(class_entry); } } size_t VirtualSpaceList::free_bytes() { return current_virtual_space()->free_words_in_vs() * BytesPerWord; } // Allocate another meta virtual space and add it to the list. bool VirtualSpaceList::create_new_virtual_space(size_t vs_word_size) { assert_lock_strong(SpaceManager::expand_lock()); if (is_class()) { assert(false, "We currently don't support more than one VirtualSpace for" " the compressed class space. The initialization of the" " CCS uses another code path and should not hit this path."); return false; } if (vs_word_size == 0) { assert(false, "vs_word_size should always be at least _reserve_alignment large."); return false; } // Reserve the space size_t vs_byte_size = vs_word_size * BytesPerWord; assert_is_aligned(vs_byte_size, Metaspace::reserve_alignment()); // Allocate the meta virtual space and initialize it. VirtualSpaceNode* new_entry = new VirtualSpaceNode(vs_byte_size); if (!new_entry->initialize()) { delete new_entry; return false; } else { assert(new_entry->reserved_words() == vs_word_size, "Reserved memory size differs from requested memory size"); // ensure lock-free iteration sees fully initialized node OrderAccess::storestore(); link_vs(new_entry); return true; } } void VirtualSpaceList::link_vs(VirtualSpaceNode* new_entry) { if (virtual_space_list() == NULL) { set_virtual_space_list(new_entry); } else { current_virtual_space()->set_next(new_entry); } set_current_virtual_space(new_entry); inc_reserved_words(new_entry->reserved_words()); inc_committed_words(new_entry->committed_words()); inc_virtual_space_count(); #ifdef ASSERT new_entry->mangle(); #endif LogTarget(Trace, gc, metaspace) lt; if (lt.is_enabled()) { LogStream ls(lt); VirtualSpaceNode* vsl = current_virtual_space(); ResourceMark rm; vsl->print_on(&ls); } } bool VirtualSpaceList::expand_node_by(VirtualSpaceNode* node, size_t min_words, size_t preferred_words) { size_t before = node->committed_words(); bool result = node->expand_by(min_words, preferred_words); size_t after = node->committed_words(); // after and before can be the same if the memory was pre-committed. assert(after >= before, "Inconsistency"); inc_committed_words(after - before); return result; } bool VirtualSpaceList::expand_by(size_t min_words, size_t preferred_words) { assert_is_aligned(min_words, Metaspace::commit_alignment_words()); assert_is_aligned(preferred_words, Metaspace::commit_alignment_words()); assert(min_words <= preferred_words, "Invalid arguments"); if (!MetaspaceGC::can_expand(min_words, this->is_class())) { return false; } size_t allowed_expansion_words = MetaspaceGC::allowed_expansion(); if (allowed_expansion_words < min_words) { return false; } size_t max_expansion_words = MIN2(preferred_words, allowed_expansion_words); // Commit more memory from the the current virtual space. bool vs_expanded = expand_node_by(current_virtual_space(), min_words, max_expansion_words); if (vs_expanded) { return true; } retire_current_virtual_space(); // Get another virtual space. size_t grow_vs_words = MAX2((size_t)VirtualSpaceSize, preferred_words); grow_vs_words = align_up(grow_vs_words, Metaspace::reserve_alignment_words()); if (create_new_virtual_space(grow_vs_words)) { if (current_virtual_space()->is_pre_committed()) { // The memory was pre-committed, so we are done here. assert(min_words <= current_virtual_space()->committed_words(), "The new VirtualSpace was pre-committed, so it" "should be large enough to fit the alloc request."); return true; } return expand_node_by(current_virtual_space(), min_words, max_expansion_words); } return false; } Metachunk* VirtualSpaceList::get_new_chunk(size_t chunk_word_size, size_t suggested_commit_granularity) { // Allocate a chunk out of the current virtual space. Metachunk* next = current_virtual_space()->get_chunk_vs(chunk_word_size); if (next != NULL) { return next; } // The expand amount is currently only determined by the requested sizes // and not how much committed memory is left in the current virtual space. size_t min_word_size = align_up(chunk_word_size, Metaspace::commit_alignment_words()); size_t preferred_word_size = align_up(suggested_commit_granularity, Metaspace::commit_alignment_words()); if (min_word_size >= preferred_word_size) { // Can happen when humongous chunks are allocated. preferred_word_size = min_word_size; } bool expanded = expand_by(min_word_size, preferred_word_size); if (expanded) { next = current_virtual_space()->get_chunk_vs(chunk_word_size); assert(next != NULL, "The allocation was expected to succeed after the expansion"); } return next; } void VirtualSpaceList::print_on(outputStream* st) const { VirtualSpaceListIterator iter(virtual_space_list()); while (iter.repeat()) { VirtualSpaceNode* node = iter.get_next(); node->print_on(st); } } void VirtualSpaceList::print_map(outputStream* st) const { VirtualSpaceNode* list = virtual_space_list(); VirtualSpaceListIterator iter(list); unsigned i = 0; while (iter.repeat()) { st->print_cr("Node %u:", i); VirtualSpaceNode* node = iter.get_next(); node->print_map(st, this->is_class()); i ++; } } // MetaspaceGC methods // VM_CollectForMetadataAllocation is the vm operation used to GC. // Within the VM operation after the GC the attempt to allocate the metadata // should succeed. If the GC did not free enough space for the metaspace // allocation, the HWM is increased so that another virtualspace will be // allocated for the metadata. With perm gen the increase in the perm // gen had bounds, MinMetaspaceExpansion and MaxMetaspaceExpansion. The // metaspace policy uses those as the small and large steps for the HWM. // // After the GC the compute_new_size() for MetaspaceGC is called to // resize the capacity of the metaspaces. The current implementation // is based on the flags MinMetaspaceFreeRatio and MaxMetaspaceFreeRatio used // to resize the Java heap by some GC's. New flags can be implemented // if really needed. MinMetaspaceFreeRatio is used to calculate how much // free space is desirable in the metaspace capacity to decide how much // to increase the HWM. MaxMetaspaceFreeRatio is used to decide how much // free space is desirable in the metaspace capacity before decreasing // the HWM. // Calculate the amount to increase the high water mark (HWM). // Increase by a minimum amount (MinMetaspaceExpansion) so that // another expansion is not requested too soon. If that is not // enough to satisfy the allocation, increase by MaxMetaspaceExpansion. // If that is still not enough, expand by the size of the allocation // plus some. size_t MetaspaceGC::delta_capacity_until_GC(size_t bytes) { size_t min_delta = MinMetaspaceExpansion; size_t max_delta = MaxMetaspaceExpansion; size_t delta = align_up(bytes, Metaspace::commit_alignment()); if (delta <= min_delta) { delta = min_delta; } else if (delta <= max_delta) { // Don't want to hit the high water mark on the next // allocation so make the delta greater than just enough // for this allocation. delta = max_delta; } else { // This allocation is large but the next ones are probably not // so increase by the minimum. delta = delta + min_delta; } assert_is_aligned(delta, Metaspace::commit_alignment()); return delta; } size_t MetaspaceGC::capacity_until_GC() { size_t value = OrderAccess::load_acquire(&_capacity_until_GC); assert(value >= MetaspaceSize, "Not initialized properly?"); return value; } bool MetaspaceGC::inc_capacity_until_GC(size_t v, size_t* new_cap_until_GC, size_t* old_cap_until_GC) { assert_is_aligned(v, Metaspace::commit_alignment()); intptr_t capacity_until_GC = _capacity_until_GC; intptr_t new_value = capacity_until_GC + v; if (new_value < capacity_until_GC) { // The addition wrapped around, set new_value to aligned max value. new_value = align_down(max_uintx, Metaspace::commit_alignment()); } intptr_t expected = _capacity_until_GC; intptr_t actual = Atomic::cmpxchg(new_value, &_capacity_until_GC, expected); if (expected != actual) { return false; } if (new_cap_until_GC != NULL) { *new_cap_until_GC = new_value; } if (old_cap_until_GC != NULL) { *old_cap_until_GC = capacity_until_GC; } return true; } size_t MetaspaceGC::dec_capacity_until_GC(size_t v) { assert_is_aligned(v, Metaspace::commit_alignment()); return (size_t)Atomic::sub((intptr_t)v, &_capacity_until_GC); } void MetaspaceGC::initialize() { // Set the high-water mark to MaxMetapaceSize during VM initializaton since // we can't do a GC during initialization. _capacity_until_GC = MaxMetaspaceSize; } void MetaspaceGC::post_initialize() { // Reset the high-water mark once the VM initialization is done. _capacity_until_GC = MAX2(MetaspaceAux::committed_bytes(), MetaspaceSize); } bool MetaspaceGC::can_expand(size_t word_size, bool is_class) { // Check if the compressed class space is full. if (is_class && Metaspace::using_class_space()) { size_t class_committed = MetaspaceAux::committed_bytes(Metaspace::ClassType); if (class_committed + word_size * BytesPerWord > CompressedClassSpaceSize) { return false; } } // Check if the user has imposed a limit on the metaspace memory. size_t committed_bytes = MetaspaceAux::committed_bytes(); if (committed_bytes + word_size * BytesPerWord > MaxMetaspaceSize) { return false; } return true; } size_t MetaspaceGC::allowed_expansion() { size_t committed_bytes = MetaspaceAux::committed_bytes(); size_t capacity_until_gc = capacity_until_GC(); assert(capacity_until_gc >= committed_bytes, "capacity_until_gc: " SIZE_FORMAT " < committed_bytes: " SIZE_FORMAT, capacity_until_gc, committed_bytes); size_t left_until_max = MaxMetaspaceSize - committed_bytes; size_t left_until_GC = capacity_until_gc - committed_bytes; size_t left_to_commit = MIN2(left_until_GC, left_until_max); return left_to_commit / BytesPerWord; } void MetaspaceGC::compute_new_size() { assert(_shrink_factor <= 100, "invalid shrink factor"); uint current_shrink_factor = _shrink_factor; _shrink_factor = 0; // Using committed_bytes() for used_after_gc is an overestimation, since the // chunk free lists are included in committed_bytes() and the memory in an // un-fragmented chunk free list is available for future allocations. // However, if the chunk free lists becomes fragmented, then the memory may // not be available for future allocations and the memory is therefore "in use". // Including the chunk free lists in the definition of "in use" is therefore // necessary. Not including the chunk free lists can cause capacity_until_GC to // shrink below committed_bytes() and this has caused serious bugs in the past. const size_t used_after_gc = MetaspaceAux::committed_bytes(); const size_t capacity_until_GC = MetaspaceGC::capacity_until_GC(); const double minimum_free_percentage = MinMetaspaceFreeRatio / 100.0; const double maximum_used_percentage = 1.0 - minimum_free_percentage; const double min_tmp = used_after_gc / maximum_used_percentage; size_t minimum_desired_capacity = (size_t)MIN2(min_tmp, double(max_uintx)); // Don't shrink less than the initial generation size minimum_desired_capacity = MAX2(minimum_desired_capacity, MetaspaceSize); log_trace(gc, metaspace)("MetaspaceGC::compute_new_size: "); log_trace(gc, metaspace)(" minimum_free_percentage: %6.2f maximum_used_percentage: %6.2f", minimum_free_percentage, maximum_used_percentage); log_trace(gc, metaspace)(" used_after_gc : %6.1fKB", used_after_gc / (double) K); size_t shrink_bytes = 0; if (capacity_until_GC < minimum_desired_capacity) { // If we have less capacity below the metaspace HWM, then // increment the HWM. size_t expand_bytes = minimum_desired_capacity - capacity_until_GC; expand_bytes = align_up(expand_bytes, Metaspace::commit_alignment()); // Don't expand unless it's significant if (expand_bytes >= MinMetaspaceExpansion) { size_t new_capacity_until_GC = 0; bool succeeded = MetaspaceGC::inc_capacity_until_GC(expand_bytes, &new_capacity_until_GC); assert(succeeded, "Should always succesfully increment HWM when at safepoint"); Metaspace::tracer()->report_gc_threshold(capacity_until_GC, new_capacity_until_GC, MetaspaceGCThresholdUpdater::ComputeNewSize); log_trace(gc, metaspace)(" expanding: minimum_desired_capacity: %6.1fKB expand_bytes: %6.1fKB MinMetaspaceExpansion: %6.1fKB new metaspace HWM: %6.1fKB", minimum_desired_capacity / (double) K, expand_bytes / (double) K, MinMetaspaceExpansion / (double) K, new_capacity_until_GC / (double) K); } return; } // No expansion, now see if we want to shrink // We would never want to shrink more than this assert(capacity_until_GC >= minimum_desired_capacity, SIZE_FORMAT " >= " SIZE_FORMAT, capacity_until_GC, minimum_desired_capacity); size_t max_shrink_bytes = capacity_until_GC - minimum_desired_capacity; // Should shrinking be considered? if (MaxMetaspaceFreeRatio < 100) { const double maximum_free_percentage = MaxMetaspaceFreeRatio / 100.0; const double minimum_used_percentage = 1.0 - maximum_free_percentage; const double max_tmp = used_after_gc / minimum_used_percentage; size_t maximum_desired_capacity = (size_t)MIN2(max_tmp, double(max_uintx)); maximum_desired_capacity = MAX2(maximum_desired_capacity, MetaspaceSize); log_trace(gc, metaspace)(" maximum_free_percentage: %6.2f minimum_used_percentage: %6.2f", maximum_free_percentage, minimum_used_percentage); log_trace(gc, metaspace)(" minimum_desired_capacity: %6.1fKB maximum_desired_capacity: %6.1fKB", minimum_desired_capacity / (double) K, maximum_desired_capacity / (double) K); assert(minimum_desired_capacity <= maximum_desired_capacity, "sanity check"); if (capacity_until_GC > maximum_desired_capacity) { // Capacity too large, compute shrinking size shrink_bytes = capacity_until_GC - maximum_desired_capacity; // We don't want shrink all the way back to initSize if people call // System.gc(), because some programs do that between "phases" and then // we'd just have to grow the heap up again for the next phase. So we // damp the shrinking: 0% on the first call, 10% on the second call, 40% // on the third call, and 100% by the fourth call. But if we recompute // size without shrinking, it goes back to 0%. shrink_bytes = shrink_bytes / 100 * current_shrink_factor; shrink_bytes = align_down(shrink_bytes, Metaspace::commit_alignment()); assert(shrink_bytes <= max_shrink_bytes, "invalid shrink size " SIZE_FORMAT " not <= " SIZE_FORMAT, shrink_bytes, max_shrink_bytes); if (current_shrink_factor == 0) { _shrink_factor = 10; } else { _shrink_factor = MIN2(current_shrink_factor * 4, (uint) 100); } log_trace(gc, metaspace)(" shrinking: initThreshold: %.1fK maximum_desired_capacity: %.1fK", MetaspaceSize / (double) K, maximum_desired_capacity / (double) K); log_trace(gc, metaspace)(" shrink_bytes: %.1fK current_shrink_factor: %d new shrink factor: %d MinMetaspaceExpansion: %.1fK", shrink_bytes / (double) K, current_shrink_factor, _shrink_factor, MinMetaspaceExpansion / (double) K); } } // Don't shrink unless it's significant if (shrink_bytes >= MinMetaspaceExpansion && ((capacity_until_GC - shrink_bytes) >= MetaspaceSize)) { size_t new_capacity_until_GC = MetaspaceGC::dec_capacity_until_GC(shrink_bytes); Metaspace::tracer()->report_gc_threshold(capacity_until_GC, new_capacity_until_GC, MetaspaceGCThresholdUpdater::ComputeNewSize); } } // Metadebug methods void Metadebug::init_allocation_fail_alot_count() { if (MetadataAllocationFailALot) { _allocation_fail_alot_count = 1+(long)((double)MetadataAllocationFailALotInterval*os::random()/(max_jint+1.0)); } } #ifdef ASSERT bool Metadebug::test_metadata_failure() { if (MetadataAllocationFailALot && Threads::is_vm_complete()) { if (_allocation_fail_alot_count > 0) { _allocation_fail_alot_count--; } else { log_trace(gc, metaspace, freelist)("Metadata allocation failing for MetadataAllocationFailALot"); init_allocation_fail_alot_count(); return true; } } return false; } #endif // ChunkManager methods size_t ChunkManager::free_chunks_total_words() { return _free_chunks_total; } size_t ChunkManager::free_chunks_total_bytes() { return free_chunks_total_words() * BytesPerWord; } // Update internal accounting after a chunk was added void ChunkManager::account_for_added_chunk(const Metachunk* c) { assert_lock_strong(SpaceManager::expand_lock()); _free_chunks_count ++; _free_chunks_total += c->word_size(); } // Update internal accounting after a chunk was removed void ChunkManager::account_for_removed_chunk(const Metachunk* c) { assert_lock_strong(SpaceManager::expand_lock()); assert(_free_chunks_count >= 1, "ChunkManager::_free_chunks_count: about to go negative (" SIZE_FORMAT ").", _free_chunks_count); assert(_free_chunks_total >= c->word_size(), "ChunkManager::_free_chunks_total: about to go negative" "(now: " SIZE_FORMAT ", decrement value: " SIZE_FORMAT ").", _free_chunks_total, c->word_size()); _free_chunks_count --; _free_chunks_total -= c->word_size(); } size_t ChunkManager::free_chunks_count() { #ifdef ASSERT if (!UseConcMarkSweepGC && !SpaceManager::expand_lock()->is_locked()) { MutexLockerEx cl(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag); // This lock is only needed in debug because the verification // of the _free_chunks_totals walks the list of free chunks slow_locked_verify_free_chunks_count(); } #endif return _free_chunks_count; } ChunkIndex ChunkManager::list_index(size_t size) { if (size_by_index(SpecializedIndex) == size) { return SpecializedIndex; } if (size_by_index(SmallIndex) == size) { return SmallIndex; } const size_t med_size = size_by_index(MediumIndex); if (med_size == size) { return MediumIndex; } assert(size > med_size, "Not a humongous chunk"); return HumongousIndex; } size_t ChunkManager::size_by_index(ChunkIndex index) const { index_bounds_check(index); assert(index != HumongousIndex, "Do not call for humongous chunks."); return _free_chunks[index].size(); } void ChunkManager::locked_verify_free_chunks_total() { assert_lock_strong(SpaceManager::expand_lock()); assert(sum_free_chunks() == _free_chunks_total, "_free_chunks_total " SIZE_FORMAT " is not the" " same as sum " SIZE_FORMAT, _free_chunks_total, sum_free_chunks()); } void ChunkManager::verify_free_chunks_total() { MutexLockerEx cl(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag); locked_verify_free_chunks_total(); } void ChunkManager::locked_verify_free_chunks_count() { assert_lock_strong(SpaceManager::expand_lock()); assert(sum_free_chunks_count() == _free_chunks_count, "_free_chunks_count " SIZE_FORMAT " is not the" " same as sum " SIZE_FORMAT, _free_chunks_count, sum_free_chunks_count()); } void ChunkManager::verify_free_chunks_count() { #ifdef ASSERT MutexLockerEx cl(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag); locked_verify_free_chunks_count(); #endif } void ChunkManager::verify() { MutexLockerEx cl(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag); locked_verify(); } void ChunkManager::locked_verify() { locked_verify_free_chunks_count(); locked_verify_free_chunks_total(); } void ChunkManager::locked_print_free_chunks(outputStream* st) { assert_lock_strong(SpaceManager::expand_lock()); st->print_cr("Free chunk total " SIZE_FORMAT " count " SIZE_FORMAT, _free_chunks_total, _free_chunks_count); } void ChunkManager::locked_print_sum_free_chunks(outputStream* st) { assert_lock_strong(SpaceManager::expand_lock()); st->print_cr("Sum free chunk total " SIZE_FORMAT " count " SIZE_FORMAT, sum_free_chunks(), sum_free_chunks_count()); } ChunkList* ChunkManager::free_chunks(ChunkIndex index) { assert(index == SpecializedIndex || index == SmallIndex || index == MediumIndex, "Bad index: %d", (int)index); return &_free_chunks[index]; } // These methods that sum the free chunk lists are used in printing // methods that are used in product builds. size_t ChunkManager::sum_free_chunks() { assert_lock_strong(SpaceManager::expand_lock()); size_t result = 0; for (ChunkIndex i = ZeroIndex; i < NumberOfFreeLists; i = next_chunk_index(i)) { ChunkList* list = free_chunks(i); if (list == NULL) { continue; } result = result + list->count() * list->size(); } result = result + humongous_dictionary()->total_size(); return result; } size_t ChunkManager::sum_free_chunks_count() { assert_lock_strong(SpaceManager::expand_lock()); size_t count = 0; for (ChunkIndex i = ZeroIndex; i < NumberOfFreeLists; i = next_chunk_index(i)) { ChunkList* list = free_chunks(i); if (list == NULL) { continue; } count = count + list->count(); } count = count + humongous_dictionary()->total_free_blocks(); return count; } ChunkList* ChunkManager::find_free_chunks_list(size_t word_size) { ChunkIndex index = list_index(word_size); assert(index < HumongousIndex, "No humongous list"); return free_chunks(index); } Metachunk* ChunkManager::free_chunks_get(size_t word_size) { assert_lock_strong(SpaceManager::expand_lock()); slow_locked_verify(); Metachunk* chunk = NULL; if (list_index(word_size) != HumongousIndex) { ChunkList* free_list = find_free_chunks_list(word_size); assert(free_list != NULL, "Sanity check"); chunk = free_list->head(); if (chunk == NULL) { return NULL; } // Remove the chunk as the head of the list. free_list->remove_chunk(chunk); log_trace(gc, metaspace, freelist)("ChunkManager::free_chunks_get: free_list " PTR_FORMAT " head " PTR_FORMAT " size " SIZE_FORMAT, p2i(free_list), p2i(chunk), chunk->word_size()); } else { chunk = humongous_dictionary()->get_chunk(word_size); if (chunk == NULL) { return NULL; } log_debug(gc, metaspace, alloc)("Free list allocate humongous chunk size " SIZE_FORMAT " for requested size " SIZE_FORMAT " waste " SIZE_FORMAT, chunk->word_size(), word_size, chunk->word_size() - word_size); } // Chunk has been removed from the chunk manager; update counters. account_for_removed_chunk(chunk); // Remove it from the links to this freelist chunk->set_next(NULL); chunk->set_prev(NULL); // Chunk is no longer on any freelist. Setting to false make container_count_slow() // work. chunk->set_is_tagged_free(false); chunk->container()->inc_container_count(); slow_locked_verify(); return chunk; } Metachunk* ChunkManager::chunk_freelist_allocate(size_t word_size) { assert_lock_strong(SpaceManager::expand_lock()); slow_locked_verify(); // Take from the beginning of the list Metachunk* chunk = free_chunks_get(word_size); if (chunk == NULL) { return NULL; } assert((word_size <= chunk->word_size()) || (list_index(chunk->word_size()) == HumongousIndex), "Non-humongous variable sized chunk"); LogTarget(Debug, gc, metaspace, freelist) lt; if (lt.is_enabled()) { size_t list_count; if (list_index(word_size) < HumongousIndex) { ChunkList* list = find_free_chunks_list(word_size); list_count = list->count(); } else { list_count = humongous_dictionary()->total_count(); } LogStream ls(lt); ls.print("ChunkManager::chunk_freelist_allocate: " PTR_FORMAT " chunk " PTR_FORMAT " size " SIZE_FORMAT " count " SIZE_FORMAT " ", p2i(this), p2i(chunk), chunk->word_size(), list_count); ResourceMark rm; locked_print_free_chunks(&ls); } return chunk; } void ChunkManager::return_single_chunk(ChunkIndex index, Metachunk* chunk) { assert_lock_strong(SpaceManager::expand_lock()); assert(chunk != NULL, "Expected chunk."); assert(chunk->container() != NULL, "Container should have been set."); assert(chunk->is_tagged_free() == false, "Chunk should be in use."); index_bounds_check(index); // Note: mangle *before* returning the chunk to the freelist or dictionary. It does not // matter for the freelist (non-humongous chunks), but the humongous chunk dictionary // keeps tree node pointers in the chunk payload area which mangle will overwrite. NOT_PRODUCT(chunk->mangle(badMetaWordVal);) if (index != HumongousIndex) { // Return non-humongous chunk to freelist. ChunkList* list = free_chunks(index); assert(list->size() == chunk->word_size(), "Wrong chunk type."); list->return_chunk_at_head(chunk); log_trace(gc, metaspace, freelist)("returned one %s chunk at " PTR_FORMAT " to freelist.", chunk_size_name(index), p2i(chunk)); } else { // Return humongous chunk to dictionary. assert(chunk->word_size() > free_chunks(MediumIndex)->size(), "Wrong chunk type."); assert(chunk->word_size() % free_chunks(SpecializedIndex)->size() == 0, "Humongous chunk has wrong alignment."); _humongous_dictionary.return_chunk(chunk); log_trace(gc, metaspace, freelist)("returned one %s chunk at " PTR_FORMAT " (word size " SIZE_FORMAT ") to freelist.", chunk_size_name(index), p2i(chunk), chunk->word_size()); } chunk->container()->dec_container_count(); chunk->set_is_tagged_free(true); // Chunk has been added; update counters. account_for_added_chunk(chunk); } void ChunkManager::return_chunk_list(ChunkIndex index, Metachunk* chunks) { index_bounds_check(index); if (chunks == NULL) { return; } LogTarget(Trace, gc, metaspace, freelist) log; if (log.is_enabled()) { // tracing log.print("returning list of %s chunks...", chunk_size_name(index)); } unsigned num_chunks_returned = 0; size_t size_chunks_returned = 0; Metachunk* cur = chunks; while (cur != NULL) { // Capture the next link before it is changed // by the call to return_chunk_at_head(); Metachunk* next = cur->next(); if (log.is_enabled()) { // tracing num_chunks_returned ++; size_chunks_returned += cur->word_size(); } return_single_chunk(index, cur); cur = next; } if (log.is_enabled()) { // tracing log.print("returned %u %s chunks to freelist, total word size " SIZE_FORMAT ".", num_chunks_returned, chunk_size_name(index), size_chunks_returned); if (index != HumongousIndex) { log.print("updated freelist count: " SIZE_FORMAT ".", free_chunks(index)->size()); } else { log.print("updated dictionary count " SIZE_FORMAT ".", _humongous_dictionary.total_count()); } } } void ChunkManager::print_on(outputStream* out) const { _humongous_dictionary.report_statistics(out); } void ChunkManager::locked_get_statistics(ChunkManagerStatistics* stat) const { assert_lock_strong(SpaceManager::expand_lock()); for (ChunkIndex i = ZeroIndex; i < NumberOfFreeLists; i = next_chunk_index(i)) { stat->num_by_type[i] = num_free_chunks(i); stat->single_size_by_type[i] = size_by_index(i); stat->total_size_by_type[i] = size_free_chunks_in_bytes(i); } stat->num_humongous_chunks = num_free_chunks(HumongousIndex); stat->total_size_humongous_chunks = size_free_chunks_in_bytes(HumongousIndex); } void ChunkManager::get_statistics(ChunkManagerStatistics* stat) const { MutexLockerEx cl(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag); locked_get_statistics(stat); } void ChunkManager::print_statistics(const ChunkManagerStatistics* stat, outputStream* out, size_t scale) { size_t total = 0; assert(scale == 1 || scale == K || scale == M || scale == G, "Invalid scale"); const char* unit = scale_unit(scale); for (ChunkIndex i = ZeroIndex; i < NumberOfFreeLists; i = next_chunk_index(i)) { out->print(" " SIZE_FORMAT " %s (" SIZE_FORMAT " bytes) chunks, total ", stat->num_by_type[i], chunk_size_name(i), stat->single_size_by_type[i]); if (scale == 1) { out->print_cr(SIZE_FORMAT " bytes", stat->total_size_by_type[i]); } else { out->print_cr("%.2f%s", (float)stat->total_size_by_type[i] / scale, unit); } total += stat->total_size_by_type[i]; } total += stat->total_size_humongous_chunks; if (scale == 1) { out->print_cr(" " SIZE_FORMAT " humongous chunks, total " SIZE_FORMAT " bytes", stat->num_humongous_chunks, stat->total_size_humongous_chunks); out->print_cr(" total size: " SIZE_FORMAT " bytes.", total); } else { out->print_cr(" " SIZE_FORMAT " humongous chunks, total %.2f%s", stat->num_humongous_chunks, (float)stat->total_size_humongous_chunks / scale, unit); out->print_cr(" total size: %.2f%s.", (float)total / scale, unit); } } void ChunkManager::print_all_chunkmanagers(outputStream* out, size_t scale) { assert(scale == 1 || scale == K || scale == M || scale == G, "Invalid scale"); // Note: keep lock protection only to retrieving statistics; keep printing // out of lock protection ChunkManagerStatistics stat; out->print_cr("Chunkmanager (non-class):"); const ChunkManager* const non_class_cm = Metaspace::chunk_manager_metadata(); if (non_class_cm != NULL) { non_class_cm->get_statistics(&stat); ChunkManager::print_statistics(&stat, out, scale); } else { out->print_cr("unavailable."); } out->print_cr("Chunkmanager (class):"); const ChunkManager* const class_cm = Metaspace::chunk_manager_class(); if (class_cm != NULL) { class_cm->get_statistics(&stat); ChunkManager::print_statistics(&stat, out, scale); } else { out->print_cr("unavailable."); } } // SpaceManager methods size_t SpaceManager::adjust_initial_chunk_size(size_t requested, bool is_class_space) { size_t chunk_sizes[] = { specialized_chunk_size(is_class_space), small_chunk_size(is_class_space), medium_chunk_size(is_class_space) }; // Adjust up to one of the fixed chunk sizes ... for (size_t i = 0; i < ARRAY_SIZE(chunk_sizes); i++) { if (requested <= chunk_sizes[i]) { return chunk_sizes[i]; } } // ... or return the size as a humongous chunk. return requested; } size_t SpaceManager::adjust_initial_chunk_size(size_t requested) const { return adjust_initial_chunk_size(requested, is_class()); } size_t SpaceManager::get_initial_chunk_size(Metaspace::MetaspaceType type) const { size_t requested; if (is_class()) { switch (type) { case Metaspace::BootMetaspaceType: requested = Metaspace::first_class_chunk_word_size(); break; case Metaspace::AnonymousMetaspaceType: requested = ClassSpecializedChunk; break; case Metaspace::ReflectionMetaspaceType: requested = ClassSpecializedChunk; break; default: requested = ClassSmallChunk; break; } } else { switch (type) { case Metaspace::BootMetaspaceType: requested = Metaspace::first_chunk_word_size(); break; case Metaspace::AnonymousMetaspaceType: requested = SpecializedChunk; break; case Metaspace::ReflectionMetaspaceType: requested = SpecializedChunk; break; default: requested = SmallChunk; break; } } // Adjust to one of the fixed chunk sizes (unless humongous) const size_t adjusted = adjust_initial_chunk_size(requested); assert(adjusted != 0, "Incorrect initial chunk size. Requested: " SIZE_FORMAT " adjusted: " SIZE_FORMAT, requested, adjusted); return adjusted; } size_t SpaceManager::sum_free_in_chunks_in_use() const { MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag); size_t free = 0; for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) { Metachunk* chunk = chunks_in_use(i); while (chunk != NULL) { free += chunk->free_word_size(); chunk = chunk->next(); } } return free; } size_t SpaceManager::sum_waste_in_chunks_in_use() const { MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag); size_t result = 0; for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) { result += sum_waste_in_chunks_in_use(i); } return result; } size_t SpaceManager::sum_waste_in_chunks_in_use(ChunkIndex index) const { size_t result = 0; Metachunk* chunk = chunks_in_use(index); // Count the free space in all the chunk but not the // current chunk from which allocations are still being done. while (chunk != NULL) { if (chunk != current_chunk()) { result += chunk->free_word_size(); } chunk = chunk->next(); } return result; } size_t SpaceManager::sum_capacity_in_chunks_in_use() const { // For CMS use "allocated_chunks_words()" which does not need the // Metaspace lock. For the other collectors sum over the // lists. Use both methods as a check that "allocated_chunks_words()" // is correct. That is, sum_capacity_in_chunks() is too expensive // to use in the product and allocated_chunks_words() should be used // but allow for checking that allocated_chunks_words() returns the same // value as sum_capacity_in_chunks_in_use() which is the definitive // answer. if (UseConcMarkSweepGC) { return allocated_chunks_words(); } else { MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag); size_t sum = 0; for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) { Metachunk* chunk = chunks_in_use(i); while (chunk != NULL) { sum += chunk->word_size(); chunk = chunk->next(); } } return sum; } } size_t SpaceManager::sum_count_in_chunks_in_use() { size_t count = 0; for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) { count = count + sum_count_in_chunks_in_use(i); } return count; } size_t SpaceManager::sum_count_in_chunks_in_use(ChunkIndex i) { size_t count = 0; Metachunk* chunk = chunks_in_use(i); while (chunk != NULL) { count++; chunk = chunk->next(); } return count; } size_t SpaceManager::sum_used_in_chunks_in_use() const { MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag); size_t used = 0; for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) { Metachunk* chunk = chunks_in_use(i); while (chunk != NULL) { used += chunk->used_word_size(); chunk = chunk->next(); } } return used; } void SpaceManager::locked_print_chunks_in_use_on(outputStream* st) const { for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) { Metachunk* chunk = chunks_in_use(i); st->print("SpaceManager: %s " PTR_FORMAT, chunk_size_name(i), p2i(chunk)); if (chunk != NULL) { st->print_cr(" free " SIZE_FORMAT, chunk->free_word_size()); } else { st->cr(); } } chunk_manager()->locked_print_free_chunks(st); chunk_manager()->locked_print_sum_free_chunks(st); } size_t SpaceManager::calc_chunk_size(size_t word_size) { // Decide between a small chunk and a medium chunk. Up to // _small_chunk_limit small chunks can be allocated. // After that a medium chunk is preferred. size_t chunk_word_size; // Special case for anonymous metadata space. // Anonymous metadata space is usually small, with majority within 1K - 2K range and // rarely about 4K (64-bits JVM). // Instead of jumping to SmallChunk after initial chunk exhausted, keeping allocation // from SpecializeChunk up to _anon_metadata_specialize_chunk_limit (4) reduces space waste // from 60+% to around 30%. if (_space_type == Metaspace::AnonymousMetaspaceType && _mdtype == Metaspace::NonClassType && sum_count_in_chunks_in_use(SpecializedIndex) < _anon_metadata_specialize_chunk_limit && word_size + Metachunk::overhead() <= SpecializedChunk) { return SpecializedChunk; } if (chunks_in_use(MediumIndex) == NULL && sum_count_in_chunks_in_use(SmallIndex) < _small_chunk_limit) { chunk_word_size = (size_t) small_chunk_size(); if (word_size + Metachunk::overhead() > small_chunk_size()) { chunk_word_size = medium_chunk_size(); } } else { chunk_word_size = medium_chunk_size(); } // Might still need a humongous chunk. Enforce // humongous allocations sizes to be aligned up to // the smallest chunk size. size_t if_humongous_sized_chunk = align_up(word_size + Metachunk::overhead(), smallest_chunk_size()); chunk_word_size = MAX2((size_t) chunk_word_size, if_humongous_sized_chunk); assert(!SpaceManager::is_humongous(word_size) || chunk_word_size == if_humongous_sized_chunk, "Size calculation is wrong, word_size " SIZE_FORMAT " chunk_word_size " SIZE_FORMAT, word_size, chunk_word_size); Log(gc, metaspace, alloc) log; if (log.is_debug() && SpaceManager::is_humongous(word_size)) { log.debug("Metadata humongous allocation:"); log.debug(" word_size " PTR_FORMAT, word_size); log.debug(" chunk_word_size " PTR_FORMAT, chunk_word_size); log.debug(" chunk overhead " PTR_FORMAT, Metachunk::overhead()); } return chunk_word_size; } void SpaceManager::track_metaspace_memory_usage() { if (is_init_completed()) { if (is_class()) { MemoryService::track_compressed_class_memory_usage(); } MemoryService::track_metaspace_memory_usage(); } } MetaWord* SpaceManager::grow_and_allocate(size_t word_size) { assert(vs_list()->current_virtual_space() != NULL, "Should have been set"); assert(current_chunk() == NULL || current_chunk()->allocate(word_size) == NULL, "Don't need to expand"); MutexLockerEx cl(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag); if (log_is_enabled(Trace, gc, metaspace, freelist)) { size_t words_left = 0; size_t words_used = 0; if (current_chunk() != NULL) { words_left = current_chunk()->free_word_size(); words_used = current_chunk()->used_word_size(); } log_trace(gc, metaspace, freelist)("SpaceManager::grow_and_allocate for " SIZE_FORMAT " words " SIZE_FORMAT " words used " SIZE_FORMAT " words left", word_size, words_used, words_left); } // Get another chunk size_t chunk_word_size = calc_chunk_size(word_size); Metachunk* next = get_new_chunk(chunk_word_size); MetaWord* mem = NULL; // If a chunk was available, add it to the in-use chunk list // and do an allocation from it. if (next != NULL) { // Add to this manager's list of chunks in use. add_chunk(next, false); mem = next->allocate(word_size); } // Track metaspace memory usage statistic. track_metaspace_memory_usage(); return mem; } void SpaceManager::print_on(outputStream* st) const { for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists ; i = next_chunk_index(i) ) { st->print_cr(" chunks_in_use " PTR_FORMAT " chunk size " SIZE_FORMAT, p2i(chunks_in_use(i)), chunks_in_use(i) == NULL ? 0 : chunks_in_use(i)->word_size()); } st->print_cr(" waste: Small " SIZE_FORMAT " Medium " SIZE_FORMAT " Humongous " SIZE_FORMAT, sum_waste_in_chunks_in_use(SmallIndex), sum_waste_in_chunks_in_use(MediumIndex), sum_waste_in_chunks_in_use(HumongousIndex)); // block free lists if (block_freelists() != NULL) { st->print_cr("total in block free lists " SIZE_FORMAT, block_freelists()->total_size()); } } SpaceManager::SpaceManager(Metaspace::MetadataType mdtype, Metaspace::MetaspaceType space_type, Mutex* lock) : _mdtype(mdtype), _space_type(space_type), _allocated_blocks_words(0), _allocated_chunks_words(0), _allocated_chunks_count(0), _block_freelists(NULL), _lock(lock) { initialize(); } void SpaceManager::inc_size_metrics(size_t words) { assert_lock_strong(SpaceManager::expand_lock()); // Total of allocated Metachunks and allocated Metachunks count // for each SpaceManager _allocated_chunks_words = _allocated_chunks_words + words; _allocated_chunks_count++; // Global total of capacity in allocated Metachunks MetaspaceAux::inc_capacity(mdtype(), words); // Global total of allocated Metablocks. // used_words_slow() includes the overhead in each // Metachunk so include it in the used when the // Metachunk is first added (so only added once per // Metachunk). MetaspaceAux::inc_used(mdtype(), Metachunk::overhead()); } void SpaceManager::inc_used_metrics(size_t words) { // Add to the per SpaceManager total Atomic::add(words, &_allocated_blocks_words); // Add to the global total MetaspaceAux::inc_used(mdtype(), words); } void SpaceManager::dec_total_from_size_metrics() { MetaspaceAux::dec_capacity(mdtype(), allocated_chunks_words()); MetaspaceAux::dec_used(mdtype(), allocated_blocks_words()); // Also deduct the overhead per Metachunk MetaspaceAux::dec_used(mdtype(), allocated_chunks_count() * Metachunk::overhead()); } void SpaceManager::initialize() { Metadebug::init_allocation_fail_alot_count(); for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) { _chunks_in_use[i] = NULL; } _current_chunk = NULL; log_trace(gc, metaspace, freelist)("SpaceManager(): " PTR_FORMAT, p2i(this)); } SpaceManager::~SpaceManager() { // This call this->_lock which can't be done while holding expand_lock() assert(sum_capacity_in_chunks_in_use() == allocated_chunks_words(), "sum_capacity_in_chunks_in_use() " SIZE_FORMAT " allocated_chunks_words() " SIZE_FORMAT, sum_capacity_in_chunks_in_use(), allocated_chunks_words()); MutexLockerEx fcl(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag); chunk_manager()->slow_locked_verify(); dec_total_from_size_metrics(); Log(gc, metaspace, freelist) log; if (log.is_trace()) { log.trace("~SpaceManager(): " PTR_FORMAT, p2i(this)); ResourceMark rm; LogStream ls(log.trace()); locked_print_chunks_in_use_on(&ls); if (block_freelists() != NULL) { block_freelists()->print_on(&ls); } } // Add all the chunks in use by this space manager // to the global list of free chunks. // Follow each list of chunks-in-use and add them to the // free lists. Each list is NULL terminated. for (ChunkIndex i = ZeroIndex; i <= HumongousIndex; i = next_chunk_index(i)) { Metachunk* chunks = chunks_in_use(i); chunk_manager()->return_chunk_list(i, chunks); set_chunks_in_use(i, NULL); } chunk_manager()->slow_locked_verify(); if (_block_freelists != NULL) { delete _block_freelists; } } void SpaceManager::deallocate(MetaWord* p, size_t word_size) { assert_lock_strong(_lock); // Allocations and deallocations are in raw_word_size size_t raw_word_size = get_allocation_word_size(word_size); // Lazily create a block_freelist if (block_freelists() == NULL) { _block_freelists = new BlockFreelist(); } block_freelists()->return_block(p, raw_word_size); } // Adds a chunk to the list of chunks in use. void SpaceManager::add_chunk(Metachunk* new_chunk, bool make_current) { assert(new_chunk != NULL, "Should not be NULL"); assert(new_chunk->next() == NULL, "Should not be on a list"); new_chunk->reset_empty(); // Find the correct list and and set the current // chunk for that list. ChunkIndex index = chunk_manager()->list_index(new_chunk->word_size()); if (index != HumongousIndex) { retire_current_chunk(); set_current_chunk(new_chunk); new_chunk->set_next(chunks_in_use(index)); set_chunks_in_use(index, new_chunk); } else { // For null class loader data and DumpSharedSpaces, the first chunk isn't // small, so small will be null. Link this first chunk as the current // chunk. if (make_current) { // Set as the current chunk but otherwise treat as a humongous chunk. set_current_chunk(new_chunk); } // Link at head. The _current_chunk only points to a humongous chunk for // the null class loader metaspace (class and data virtual space managers) // any humongous chunks so will not point to the tail // of the humongous chunks list. new_chunk->set_next(chunks_in_use(HumongousIndex)); set_chunks_in_use(HumongousIndex, new_chunk); assert(new_chunk->word_size() > medium_chunk_size(), "List inconsistency"); } // Add to the running sum of capacity inc_size_metrics(new_chunk->word_size()); assert(new_chunk->is_empty(), "Not ready for reuse"); Log(gc, metaspace, freelist) log; if (log.is_trace()) { log.trace("SpaceManager::add_chunk: " SIZE_FORMAT ") ", sum_count_in_chunks_in_use()); ResourceMark rm; LogStream ls(log.trace()); new_chunk->print_on(&ls); chunk_manager()->locked_print_free_chunks(&ls); } } void SpaceManager::retire_current_chunk() { if (current_chunk() != NULL) { size_t remaining_words = current_chunk()->free_word_size(); if (remaining_words >= BlockFreelist::min_dictionary_size()) { MetaWord* ptr = current_chunk()->allocate(remaining_words); deallocate(ptr, remaining_words); inc_used_metrics(remaining_words); } } } Metachunk* SpaceManager::get_new_chunk(size_t chunk_word_size) { // Get a chunk from the chunk freelist Metachunk* next = chunk_manager()->chunk_freelist_allocate(chunk_word_size); if (next == NULL) { next = vs_list()->get_new_chunk(chunk_word_size, medium_chunk_bunch()); } Log(gc, metaspace, alloc) log; if (log.is_debug() && next != NULL && SpaceManager::is_humongous(next->word_size())) { log.debug(" new humongous chunk word size " PTR_FORMAT, next->word_size()); } return next; } /* * The policy is to allocate up to _small_chunk_limit small chunks * after which only medium chunks are allocated. This is done to * reduce fragmentation. In some cases, this can result in a lot * of small chunks being allocated to the point where it's not * possible to expand. If this happens, there may be no medium chunks * available and OOME would be thrown. Instead of doing that, * if the allocation request size fits in a small chunk, an attempt * will be made to allocate a small chunk. */ MetaWord* SpaceManager::get_small_chunk_and_allocate(size_t word_size) { size_t raw_word_size = get_allocation_word_size(word_size); if (raw_word_size + Metachunk::overhead() > small_chunk_size()) { return NULL; } MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag); MutexLockerEx cl1(expand_lock(), Mutex::_no_safepoint_check_flag); Metachunk* chunk = chunk_manager()->chunk_freelist_allocate(small_chunk_size()); MetaWord* mem = NULL; if (chunk != NULL) { // Add chunk to the in-use chunk list and do an allocation from it. // Add to this manager's list of chunks in use. add_chunk(chunk, false); mem = chunk->allocate(raw_word_size); inc_used_metrics(raw_word_size); // Track metaspace memory usage statistic. track_metaspace_memory_usage(); } return mem; } MetaWord* SpaceManager::allocate(size_t word_size) { MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag); size_t raw_word_size = get_allocation_word_size(word_size); BlockFreelist* fl = block_freelists(); MetaWord* p = NULL; // Allocation from the dictionary is expensive in the sense that // the dictionary has to be searched for a size. Don't allocate // from the dictionary until it starts to get fat. Is this // a reasonable policy? Maybe an skinny dictionary is fast enough // for allocations. Do some profiling. JJJ if (fl != NULL && fl->total_size() > allocation_from_dictionary_limit) { p = fl->get_block(raw_word_size); } if (p == NULL) { p = allocate_work(raw_word_size); } return p; } // Returns the address of spaced allocated for "word_size". // This methods does not know about blocks (Metablocks) MetaWord* SpaceManager::allocate_work(size_t word_size) { assert_lock_strong(_lock); #ifdef ASSERT if (Metadebug::test_metadata_failure()) { return NULL; } #endif // Is there space in the current chunk? MetaWord* result = NULL; if (current_chunk() != NULL) { result = current_chunk()->allocate(word_size); } if (result == NULL) { result = grow_and_allocate(word_size); } if (result != NULL) { inc_used_metrics(word_size); assert(result != (MetaWord*) chunks_in_use(MediumIndex), "Head of the list is being allocated"); } return result; } void SpaceManager::verify() { // If there are blocks in the dictionary, then // verification of chunks does not work since // being in the dictionary alters a chunk. if (block_freelists() != NULL && block_freelists()->total_size() == 0) { for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) { Metachunk* curr = chunks_in_use(i); while (curr != NULL) { curr->verify(); verify_chunk_size(curr); curr = curr->next(); } } } } void SpaceManager::verify_chunk_size(Metachunk* chunk) { assert(is_humongous(chunk->word_size()) || chunk->word_size() == medium_chunk_size() || chunk->word_size() == small_chunk_size() || chunk->word_size() == specialized_chunk_size(), "Chunk size is wrong"); return; } #ifdef ASSERT void SpaceManager::verify_allocated_blocks_words() { // Verification is only guaranteed at a safepoint. assert(SafepointSynchronize::is_at_safepoint() || !Universe::is_fully_initialized(), "Verification can fail if the applications is running"); assert(allocated_blocks_words() == sum_used_in_chunks_in_use(), "allocation total is not consistent " SIZE_FORMAT " vs " SIZE_FORMAT, allocated_blocks_words(), sum_used_in_chunks_in_use()); } #endif void SpaceManager::dump(outputStream* const out) const { size_t curr_total = 0; size_t waste = 0; uint i = 0; size_t used = 0; size_t capacity = 0; // Add up statistics for all chunks in this SpaceManager. for (ChunkIndex index = ZeroIndex; index < NumberOfInUseLists; index = next_chunk_index(index)) { for (Metachunk* curr = chunks_in_use(index); curr != NULL; curr = curr->next()) { out->print("%d) ", i++); curr->print_on(out); curr_total += curr->word_size(); used += curr->used_word_size(); capacity += curr->word_size(); waste += curr->free_word_size() + curr->overhead();; } } if (log_is_enabled(Trace, gc, metaspace, freelist)) { if (block_freelists() != NULL) block_freelists()->print_on(out); } size_t free = current_chunk() == NULL ? 0 : current_chunk()->free_word_size(); // Free space isn't wasted. waste -= free; out->print_cr("total of all chunks " SIZE_FORMAT " used " SIZE_FORMAT " free " SIZE_FORMAT " capacity " SIZE_FORMAT " waste " SIZE_FORMAT, curr_total, used, free, capacity, waste); } // MetaspaceAux size_t MetaspaceAux::_capacity_words[] = {0, 0}; volatile size_t MetaspaceAux::_used_words[] = {0, 0}; size_t MetaspaceAux::free_bytes(Metaspace::MetadataType mdtype) { VirtualSpaceList* list = Metaspace::get_space_list(mdtype); return list == NULL ? 0 : list->free_bytes(); } size_t MetaspaceAux::free_bytes() { return free_bytes(Metaspace::ClassType) + free_bytes(Metaspace::NonClassType); } void MetaspaceAux::dec_capacity(Metaspace::MetadataType mdtype, size_t words) { assert_lock_strong(SpaceManager::expand_lock()); assert(words <= capacity_words(mdtype), "About to decrement below 0: words " SIZE_FORMAT " is greater than _capacity_words[%u] " SIZE_FORMAT, words, mdtype, capacity_words(mdtype)); _capacity_words[mdtype] -= words; } void MetaspaceAux::inc_capacity(Metaspace::MetadataType mdtype, size_t words) { assert_lock_strong(SpaceManager::expand_lock()); // Needs to be atomic _capacity_words[mdtype] += words; } void MetaspaceAux::dec_used(Metaspace::MetadataType mdtype, size_t words) { assert(words <= used_words(mdtype), "About to decrement below 0: words " SIZE_FORMAT " is greater than _used_words[%u] " SIZE_FORMAT, words, mdtype, used_words(mdtype)); // For CMS deallocation of the Metaspaces occurs during the // sweep which is a concurrent phase. Protection by the expand_lock() // is not enough since allocation is on a per Metaspace basis // and protected by the Metaspace lock. Atomic::sub(words, &_used_words[mdtype]); } void MetaspaceAux::inc_used(Metaspace::MetadataType mdtype, size_t words) { // _used_words tracks allocations for // each piece of metadata. Those allocations are // generally done concurrently by different application // threads so must be done atomically. Atomic::add(words, &_used_words[mdtype]); } size_t MetaspaceAux::used_bytes_slow(Metaspace::MetadataType mdtype) { size_t used = 0; ClassLoaderDataGraphMetaspaceIterator iter; while (iter.repeat()) { Metaspace* msp = iter.get_next(); // Sum allocated_blocks_words for each metaspace if (msp != NULL) { used += msp->used_words_slow(mdtype); } } return used * BytesPerWord; } size_t MetaspaceAux::free_bytes_slow(Metaspace::MetadataType mdtype) { size_t free = 0; ClassLoaderDataGraphMetaspaceIterator iter; while (iter.repeat()) { Metaspace* msp = iter.get_next(); if (msp != NULL) { free += msp->free_words_slow(mdtype); } } return free * BytesPerWord; } size_t MetaspaceAux::capacity_bytes_slow(Metaspace::MetadataType mdtype) { if ((mdtype == Metaspace::ClassType) && !Metaspace::using_class_space()) { return 0; } // Don't count the space in the freelists. That space will be // added to the capacity calculation as needed. size_t capacity = 0; ClassLoaderDataGraphMetaspaceIterator iter; while (iter.repeat()) { Metaspace* msp = iter.get_next(); if (msp != NULL) { capacity += msp->capacity_words_slow(mdtype); } } return capacity * BytesPerWord; } size_t MetaspaceAux::capacity_bytes_slow() { #ifdef PRODUCT // Use capacity_bytes() in PRODUCT instead of this function. guarantee(false, "Should not call capacity_bytes_slow() in the PRODUCT"); #endif size_t class_capacity = capacity_bytes_slow(Metaspace::ClassType); size_t non_class_capacity = capacity_bytes_slow(Metaspace::NonClassType); assert(capacity_bytes() == class_capacity + non_class_capacity, "bad accounting: capacity_bytes() " SIZE_FORMAT " class_capacity + non_class_capacity " SIZE_FORMAT " class_capacity " SIZE_FORMAT " non_class_capacity " SIZE_FORMAT, capacity_bytes(), class_capacity + non_class_capacity, class_capacity, non_class_capacity); return class_capacity + non_class_capacity; } size_t MetaspaceAux::reserved_bytes(Metaspace::MetadataType mdtype) { VirtualSpaceList* list = Metaspace::get_space_list(mdtype); return list == NULL ? 0 : list->reserved_bytes(); } size_t MetaspaceAux::committed_bytes(Metaspace::MetadataType mdtype) { VirtualSpaceList* list = Metaspace::get_space_list(mdtype); return list == NULL ? 0 : list->committed_bytes(); } size_t MetaspaceAux::min_chunk_size_words() { return Metaspace::first_chunk_word_size(); } size_t MetaspaceAux::free_chunks_total_words(Metaspace::MetadataType mdtype) { ChunkManager* chunk_manager = Metaspace::get_chunk_manager(mdtype); if (chunk_manager == NULL) { return 0; } chunk_manager->slow_verify(); return chunk_manager->free_chunks_total_words(); } size_t MetaspaceAux::free_chunks_total_bytes(Metaspace::MetadataType mdtype) { return free_chunks_total_words(mdtype) * BytesPerWord; } size_t MetaspaceAux::free_chunks_total_words() { return free_chunks_total_words(Metaspace::ClassType) + free_chunks_total_words(Metaspace::NonClassType); } size_t MetaspaceAux::free_chunks_total_bytes() { return free_chunks_total_words() * BytesPerWord; } bool MetaspaceAux::has_chunk_free_list(Metaspace::MetadataType mdtype) { return Metaspace::get_chunk_manager(mdtype) != NULL; } MetaspaceChunkFreeListSummary MetaspaceAux::chunk_free_list_summary(Metaspace::MetadataType mdtype) { if (!has_chunk_free_list(mdtype)) { return MetaspaceChunkFreeListSummary(); } const ChunkManager* cm = Metaspace::get_chunk_manager(mdtype); return cm->chunk_free_list_summary(); } void MetaspaceAux::print_metaspace_change(size_t prev_metadata_used) { log_info(gc, metaspace)("Metaspace: " SIZE_FORMAT "K->" SIZE_FORMAT "K(" SIZE_FORMAT "K)", prev_metadata_used/K, used_bytes()/K, reserved_bytes()/K); } void MetaspaceAux::print_on(outputStream* out) { Metaspace::MetadataType nct = Metaspace::NonClassType; out->print_cr(" Metaspace " "used " SIZE_FORMAT "K, " "capacity " SIZE_FORMAT "K, " "committed " SIZE_FORMAT "K, " "reserved " SIZE_FORMAT "K", used_bytes()/K, capacity_bytes()/K, committed_bytes()/K, reserved_bytes()/K); if (Metaspace::using_class_space()) { Metaspace::MetadataType ct = Metaspace::ClassType; out->print_cr(" class space " "used " SIZE_FORMAT "K, " "capacity " SIZE_FORMAT "K, " "committed " SIZE_FORMAT "K, " "reserved " SIZE_FORMAT "K", used_bytes(ct)/K, capacity_bytes(ct)/K, committed_bytes(ct)/K, reserved_bytes(ct)/K); } } // Print information for class space and data space separately. // This is almost the same as above. void MetaspaceAux::print_on(outputStream* out, Metaspace::MetadataType mdtype) { size_t free_chunks_capacity_bytes = free_chunks_total_bytes(mdtype); size_t capacity_bytes = capacity_bytes_slow(mdtype); size_t used_bytes = used_bytes_slow(mdtype); size_t free_bytes = free_bytes_slow(mdtype); size_t used_and_free = used_bytes + free_bytes + free_chunks_capacity_bytes; out->print_cr(" Chunk accounting: (used in chunks " SIZE_FORMAT "K + unused in chunks " SIZE_FORMAT "K + " " capacity in free chunks " SIZE_FORMAT "K) = " SIZE_FORMAT "K capacity in allocated chunks " SIZE_FORMAT "K", used_bytes / K, free_bytes / K, free_chunks_capacity_bytes / K, used_and_free / K, capacity_bytes / K); // Accounting can only be correct if we got the values during a safepoint assert(!SafepointSynchronize::is_at_safepoint() || used_and_free == capacity_bytes, "Accounting is wrong"); } // Print total fragmentation for class metaspaces void MetaspaceAux::print_class_waste(outputStream* out) { assert(Metaspace::using_class_space(), "class metaspace not used"); size_t cls_specialized_waste = 0, cls_small_waste = 0, cls_medium_waste = 0; size_t cls_specialized_count = 0, cls_small_count = 0, cls_medium_count = 0, cls_humongous_count = 0; ClassLoaderDataGraphMetaspaceIterator iter; while (iter.repeat()) { Metaspace* msp = iter.get_next(); if (msp != NULL) { cls_specialized_waste += msp->class_vsm()->sum_waste_in_chunks_in_use(SpecializedIndex); cls_specialized_count += msp->class_vsm()->sum_count_in_chunks_in_use(SpecializedIndex); cls_small_waste += msp->class_vsm()->sum_waste_in_chunks_in_use(SmallIndex); cls_small_count += msp->class_vsm()->sum_count_in_chunks_in_use(SmallIndex); cls_medium_waste += msp->class_vsm()->sum_waste_in_chunks_in_use(MediumIndex); cls_medium_count += msp->class_vsm()->sum_count_in_chunks_in_use(MediumIndex); cls_humongous_count += msp->class_vsm()->sum_count_in_chunks_in_use(HumongousIndex); } } out->print_cr(" class: " SIZE_FORMAT " specialized(s) " SIZE_FORMAT ", " SIZE_FORMAT " small(s) " SIZE_FORMAT ", " SIZE_FORMAT " medium(s) " SIZE_FORMAT ", " "large count " SIZE_FORMAT, cls_specialized_count, cls_specialized_waste, cls_small_count, cls_small_waste, cls_medium_count, cls_medium_waste, cls_humongous_count); } // Print total fragmentation for data and class metaspaces separately void MetaspaceAux::print_waste(outputStream* out) { size_t specialized_waste = 0, small_waste = 0, medium_waste = 0; size_t specialized_count = 0, small_count = 0, medium_count = 0, humongous_count = 0; ClassLoaderDataGraphMetaspaceIterator iter; while (iter.repeat()) { Metaspace* msp = iter.get_next(); if (msp != NULL) { specialized_waste += msp->vsm()->sum_waste_in_chunks_in_use(SpecializedIndex); specialized_count += msp->vsm()->sum_count_in_chunks_in_use(SpecializedIndex); small_waste += msp->vsm()->sum_waste_in_chunks_in_use(SmallIndex); small_count += msp->vsm()->sum_count_in_chunks_in_use(SmallIndex); medium_waste += msp->vsm()->sum_waste_in_chunks_in_use(MediumIndex); medium_count += msp->vsm()->sum_count_in_chunks_in_use(MediumIndex); humongous_count += msp->vsm()->sum_count_in_chunks_in_use(HumongousIndex); } } out->print_cr("Total fragmentation waste (words) doesn't count free space"); out->print_cr(" data: " SIZE_FORMAT " specialized(s) " SIZE_FORMAT ", " SIZE_FORMAT " small(s) " SIZE_FORMAT ", " SIZE_FORMAT " medium(s) " SIZE_FORMAT ", " "large count " SIZE_FORMAT, specialized_count, specialized_waste, small_count, small_waste, medium_count, medium_waste, humongous_count); if (Metaspace::using_class_space()) { print_class_waste(out); } } class MetadataStats VALUE_OBJ_CLASS_SPEC { private: size_t _capacity; size_t _used; size_t _free; size_t _waste; public: MetadataStats() : _capacity(0), _used(0), _free(0), _waste(0) { } MetadataStats(size_t capacity, size_t used, size_t free, size_t waste) : _capacity(capacity), _used(used), _free(free), _waste(waste) { } void add(const MetadataStats& stats) { _capacity += stats.capacity(); _used += stats.used(); _free += stats.free(); _waste += stats.waste(); } size_t capacity() const { return _capacity; } size_t used() const { return _used; } size_t free() const { return _free; } size_t waste() const { return _waste; } void print_on(outputStream* out, size_t scale) const; }; void MetadataStats::print_on(outputStream* out, size_t scale) const { const char* unit = scale_unit(scale); out->print_cr("capacity=%10.2f%s used=%10.2f%s free=%10.2f%s waste=%10.2f%s", (float)capacity() / scale, unit, (float)used() / scale, unit, (float)free() / scale, unit, (float)waste() / scale, unit); } class PrintCLDMetaspaceInfoClosure : public CLDClosure { private: outputStream* _out; size_t _scale; size_t _total_count; MetadataStats _total_metadata; MetadataStats _total_class; size_t _total_anon_count; MetadataStats _total_anon_metadata; MetadataStats _total_anon_class; public: PrintCLDMetaspaceInfoClosure(outputStream* out, size_t scale = K) : _out(out), _scale(scale), _total_count(0), _total_anon_count(0) { } ~PrintCLDMetaspaceInfoClosure() { print_summary(); } void do_cld(ClassLoaderData* cld) { assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); if (cld->is_unloading()) return; Metaspace* msp = cld->metaspace_or_null(); if (msp == NULL) { return; } bool anonymous = false; if (cld->is_anonymous()) { _out->print_cr("ClassLoader: for anonymous class"); anonymous = true; } else { ResourceMark rm; _out->print_cr("ClassLoader: %s", cld->loader_name()); } print_metaspace(msp, anonymous); _out->cr(); } private: void print_metaspace(Metaspace* msp, bool anonymous); void print_summary() const; }; void PrintCLDMetaspaceInfoClosure::print_metaspace(Metaspace* msp, bool anonymous){ assert(msp != NULL, "Sanity"); SpaceManager* vsm = msp->vsm(); const char* unit = scale_unit(_scale); size_t capacity = vsm->sum_capacity_in_chunks_in_use() * BytesPerWord; size_t used = vsm->sum_used_in_chunks_in_use() * BytesPerWord; size_t free = vsm->sum_free_in_chunks_in_use() * BytesPerWord; size_t waste = vsm->sum_waste_in_chunks_in_use() * BytesPerWord; _total_count ++; MetadataStats metadata_stats(capacity, used, free, waste); _total_metadata.add(metadata_stats); if (anonymous) { _total_anon_count ++; _total_anon_metadata.add(metadata_stats); } _out->print(" Metadata "); metadata_stats.print_on(_out, _scale); if (Metaspace::using_class_space()) { vsm = msp->class_vsm(); capacity = vsm->sum_capacity_in_chunks_in_use() * BytesPerWord; used = vsm->sum_used_in_chunks_in_use() * BytesPerWord; free = vsm->sum_free_in_chunks_in_use() * BytesPerWord; waste = vsm->sum_waste_in_chunks_in_use() * BytesPerWord; MetadataStats class_stats(capacity, used, free, waste); _total_class.add(class_stats); if (anonymous) { _total_anon_class.add(class_stats); } _out->print(" Class data "); class_stats.print_on(_out, _scale); } } void PrintCLDMetaspaceInfoClosure::print_summary() const { const char* unit = scale_unit(_scale); _out->cr(); _out->print_cr("Summary:"); MetadataStats total; total.add(_total_metadata); total.add(_total_class); _out->print(" Total class loaders=" SIZE_FORMAT_W(6) " ", _total_count); total.print_on(_out, _scale); _out->print(" Metadata "); _total_metadata.print_on(_out, _scale); if (Metaspace::using_class_space()) { _out->print(" Class data "); _total_class.print_on(_out, _scale); } _out->cr(); MetadataStats total_anon; total_anon.add(_total_anon_metadata); total_anon.add(_total_anon_class); _out->print("For anonymous classes=" SIZE_FORMAT_W(6) " ", _total_anon_count); total_anon.print_on(_out, _scale); _out->print(" Metadata "); _total_anon_metadata.print_on(_out, _scale); if (Metaspace::using_class_space()) { _out->print(" Class data "); _total_anon_class.print_on(_out, _scale); } } void MetaspaceAux::print_metadata_for_nmt(outputStream* out, size_t scale) { const char* unit = scale_unit(scale); out->print_cr("Metaspaces:"); out->print_cr(" Metadata space: reserved=" SIZE_FORMAT_W(10) "%s committed=" SIZE_FORMAT_W(10) "%s", reserved_bytes(Metaspace::NonClassType) / scale, unit, committed_bytes(Metaspace::NonClassType) / scale, unit); if (Metaspace::using_class_space()) { out->print_cr(" Class space: reserved=" SIZE_FORMAT_W(10) "%s committed=" SIZE_FORMAT_W(10) "%s", reserved_bytes(Metaspace::ClassType) / scale, unit, committed_bytes(Metaspace::ClassType) / scale, unit); } out->cr(); ChunkManager::print_all_chunkmanagers(out, scale); out->cr(); out->print_cr("Per-classloader metadata:"); out->cr(); PrintCLDMetaspaceInfoClosure cl(out, scale); ClassLoaderDataGraph::cld_do(&cl); } // Dump global metaspace things from the end of ClassLoaderDataGraph void MetaspaceAux::dump(outputStream* out) { out->print_cr("All Metaspace:"); out->print("data space: "); print_on(out, Metaspace::NonClassType); out->print("class space: "); print_on(out, Metaspace::ClassType); print_waste(out); } // Prints an ASCII representation of the given space. void MetaspaceAux::print_metaspace_map(outputStream* out, Metaspace::MetadataType mdtype) { MutexLockerEx cl(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag); const bool for_class = mdtype == Metaspace::ClassType ? true : false; VirtualSpaceList* const vsl = for_class ? Metaspace::class_space_list() : Metaspace::space_list(); if (vsl != NULL) { if (for_class) { if (!Metaspace::using_class_space()) { out->print_cr("No Class Space."); return; } out->print_raw("---- Metaspace Map (Class Space) ----"); } else { out->print_raw("---- Metaspace Map (Non-Class Space) ----"); } // Print legend: out->cr(); out->print_cr("Chunk Types (uppercase chunks are in use): x-specialized, s-small, m-medium, h-humongous."); out->cr(); VirtualSpaceList* const vsl = for_class ? Metaspace::class_space_list() : Metaspace::space_list(); vsl->print_map(out); out->cr(); } } void MetaspaceAux::verify_free_chunks() { Metaspace::chunk_manager_metadata()->verify(); if (Metaspace::using_class_space()) { Metaspace::chunk_manager_class()->verify(); } } void MetaspaceAux::verify_capacity() { #ifdef ASSERT size_t running_sum_capacity_bytes = capacity_bytes(); // For purposes of the running sum of capacity, verify against capacity size_t capacity_in_use_bytes = capacity_bytes_slow(); assert(running_sum_capacity_bytes == capacity_in_use_bytes, "capacity_words() * BytesPerWord " SIZE_FORMAT " capacity_bytes_slow()" SIZE_FORMAT, running_sum_capacity_bytes, capacity_in_use_bytes); for (Metaspace::MetadataType i = Metaspace::ClassType; i < Metaspace:: MetadataTypeCount; i = (Metaspace::MetadataType)(i + 1)) { size_t capacity_in_use_bytes = capacity_bytes_slow(i); assert(capacity_bytes(i) == capacity_in_use_bytes, "capacity_bytes(%u) " SIZE_FORMAT " capacity_bytes_slow(%u)" SIZE_FORMAT, i, capacity_bytes(i), i, capacity_in_use_bytes); } #endif } void MetaspaceAux::verify_used() { #ifdef ASSERT size_t running_sum_used_bytes = used_bytes(); // For purposes of the running sum of used, verify against used size_t used_in_use_bytes = used_bytes_slow(); assert(used_bytes() == used_in_use_bytes, "used_bytes() " SIZE_FORMAT " used_bytes_slow()" SIZE_FORMAT, used_bytes(), used_in_use_bytes); for (Metaspace::MetadataType i = Metaspace::ClassType; i < Metaspace:: MetadataTypeCount; i = (Metaspace::MetadataType)(i + 1)) { size_t used_in_use_bytes = used_bytes_slow(i); assert(used_bytes(i) == used_in_use_bytes, "used_bytes(%u) " SIZE_FORMAT " used_bytes_slow(%u)" SIZE_FORMAT, i, used_bytes(i), i, used_in_use_bytes); } #endif } void MetaspaceAux::verify_metrics() { verify_capacity(); verify_used(); } // Metaspace methods size_t Metaspace::_first_chunk_word_size = 0; size_t Metaspace::_first_class_chunk_word_size = 0; size_t Metaspace::_commit_alignment = 0; size_t Metaspace::_reserve_alignment = 0; Metaspace::Metaspace(Mutex* lock, MetaspaceType type) { initialize(lock, type); } Metaspace::~Metaspace() { delete _vsm; if (using_class_space()) { delete _class_vsm; } } VirtualSpaceList* Metaspace::_space_list = NULL; VirtualSpaceList* Metaspace::_class_space_list = NULL; ChunkManager* Metaspace::_chunk_manager_metadata = NULL; ChunkManager* Metaspace::_chunk_manager_class = NULL; #define VIRTUALSPACEMULTIPLIER 2 #ifdef _LP64 static const uint64_t UnscaledClassSpaceMax = (uint64_t(max_juint) + 1); void Metaspace::set_narrow_klass_base_and_shift(address metaspace_base, address cds_base) { assert(!DumpSharedSpaces, "narrow_klass is set by MetaspaceShared class."); // Figure out the narrow_klass_base and the narrow_klass_shift. The // narrow_klass_base is the lower of the metaspace base and the cds base // (if cds is enabled). The narrow_klass_shift depends on the distance // between the lower base and higher address. address lower_base; address higher_address; #if INCLUDE_CDS if (UseSharedSpaces) { higher_address = MAX2((address)(cds_base + MetaspaceShared::core_spaces_size()), (address)(metaspace_base + compressed_class_space_size())); lower_base = MIN2(metaspace_base, cds_base); } else #endif { higher_address = metaspace_base + compressed_class_space_size(); lower_base = metaspace_base; uint64_t klass_encoding_max = UnscaledClassSpaceMax << LogKlassAlignmentInBytes; // If compressed class space fits in lower 32G, we don't need a base. if (higher_address <= (address)klass_encoding_max) { lower_base = 0; // Effectively lower base is zero. } } Universe::set_narrow_klass_base(lower_base); // CDS uses LogKlassAlignmentInBytes for narrow_klass_shift. See // MetaspaceShared::initialize_dumptime_shared_and_meta_spaces() for // how dump time narrow_klass_shift is set. Although, CDS can work // with zero-shift mode also, to be consistent with AOT it uses // LogKlassAlignmentInBytes for klass shift so archived java heap objects // can be used at same time as AOT code. if (!UseSharedSpaces && (uint64_t)(higher_address - lower_base) <= UnscaledClassSpaceMax) { Universe::set_narrow_klass_shift(0); } else { Universe::set_narrow_klass_shift(LogKlassAlignmentInBytes); } AOTLoader::set_narrow_klass_shift(); } #if INCLUDE_CDS // Return TRUE if the specified metaspace_base and cds_base are close enough // to work with compressed klass pointers. bool Metaspace::can_use_cds_with_metaspace_addr(char* metaspace_base, address cds_base) { assert(cds_base != 0 && UseSharedSpaces, "Only use with CDS"); assert(UseCompressedClassPointers, "Only use with CompressedKlassPtrs"); address lower_base = MIN2((address)metaspace_base, cds_base); address higher_address = MAX2((address)(cds_base + MetaspaceShared::core_spaces_size()), (address)(metaspace_base + compressed_class_space_size())); return ((uint64_t)(higher_address - lower_base) <= UnscaledClassSpaceMax); } #endif // Try to allocate the metaspace at the requested addr. void Metaspace::allocate_metaspace_compressed_klass_ptrs(char* requested_addr, address cds_base) { assert(!DumpSharedSpaces, "compress klass space is allocated by MetaspaceShared class."); assert(using_class_space(), "called improperly"); assert(UseCompressedClassPointers, "Only use with CompressedKlassPtrs"); assert(compressed_class_space_size() < KlassEncodingMetaspaceMax, "Metaspace size is too big"); assert_is_aligned(requested_addr, _reserve_alignment); assert_is_aligned(cds_base, _reserve_alignment); assert_is_aligned(compressed_class_space_size(), _reserve_alignment); // Don't use large pages for the class space. bool large_pages = false; #if !(defined(AARCH64) || defined(AIX)) ReservedSpace metaspace_rs = ReservedSpace(compressed_class_space_size(), _reserve_alignment, large_pages, requested_addr); #else // AARCH64 ReservedSpace metaspace_rs; // Our compressed klass pointers may fit nicely into the lower 32 // bits. if ((uint64_t)requested_addr + compressed_class_space_size() < 4*G) { metaspace_rs = ReservedSpace(compressed_class_space_size(), _reserve_alignment, large_pages, requested_addr); } if (! metaspace_rs.is_reserved()) { // Aarch64: Try to align metaspace so that we can decode a compressed // klass with a single MOVK instruction. We can do this iff the // compressed class base is a multiple of 4G. // Aix: Search for a place where we can find memory. If we need to load // the base, 4G alignment is helpful, too. size_t increment = AARCH64_ONLY(4*)G; for (char *a = align_up(requested_addr, increment); a < (char*)(1024*G); a += increment) { if (a == (char *)(32*G)) { // Go faster from here on. Zero-based is no longer possible. increment = 4*G; } #if INCLUDE_CDS if (UseSharedSpaces && ! can_use_cds_with_metaspace_addr(a, cds_base)) { // We failed to find an aligned base that will reach. Fall // back to using our requested addr. metaspace_rs = ReservedSpace(compressed_class_space_size(), _reserve_alignment, large_pages, requested_addr); break; } #endif metaspace_rs = ReservedSpace(compressed_class_space_size(), _reserve_alignment, large_pages, a); if (metaspace_rs.is_reserved()) break; } } #endif // AARCH64 if (!metaspace_rs.is_reserved()) { #if INCLUDE_CDS if (UseSharedSpaces) { size_t increment = align_up(1*G, _reserve_alignment); // Keep trying to allocate the metaspace, increasing the requested_addr // by 1GB each time, until we reach an address that will no longer allow // use of CDS with compressed klass pointers. char *addr = requested_addr; while (!metaspace_rs.is_reserved() && (addr + increment > addr) && can_use_cds_with_metaspace_addr(addr + increment, cds_base)) { addr = addr + increment; metaspace_rs = ReservedSpace(compressed_class_space_size(), _reserve_alignment, large_pages, addr); } } #endif // If no successful allocation then try to allocate the space anywhere. If // that fails then OOM doom. At this point we cannot try allocating the // metaspace as if UseCompressedClassPointers is off because too much // initialization has happened that depends on UseCompressedClassPointers. // So, UseCompressedClassPointers cannot be turned off at this point. if (!metaspace_rs.is_reserved()) { metaspace_rs = ReservedSpace(compressed_class_space_size(), _reserve_alignment, large_pages); if (!metaspace_rs.is_reserved()) { vm_exit_during_initialization(err_msg("Could not allocate metaspace: " SIZE_FORMAT " bytes", compressed_class_space_size())); } } } // If we got here then the metaspace got allocated. MemTracker::record_virtual_memory_type((address)metaspace_rs.base(), mtClass); #if INCLUDE_CDS // Verify that we can use shared spaces. Otherwise, turn off CDS. if (UseSharedSpaces && !can_use_cds_with_metaspace_addr(metaspace_rs.base(), cds_base)) { FileMapInfo::stop_sharing_and_unmap( "Could not allocate metaspace at a compatible address"); } #endif set_narrow_klass_base_and_shift((address)metaspace_rs.base(), UseSharedSpaces ? (address)cds_base : 0); initialize_class_space(metaspace_rs); LogTarget(Trace, gc, metaspace) lt; if (lt.is_enabled()) { ResourceMark rm; LogStream ls(lt); print_compressed_class_space(&ls, requested_addr); } } void Metaspace::print_compressed_class_space(outputStream* st, const char* requested_addr) { st->print_cr("Narrow klass base: " PTR_FORMAT ", Narrow klass shift: %d", p2i(Universe::narrow_klass_base()), Universe::narrow_klass_shift()); if (_class_space_list != NULL) { address base = (address)_class_space_list->current_virtual_space()->bottom(); st->print("Compressed class space size: " SIZE_FORMAT " Address: " PTR_FORMAT, compressed_class_space_size(), p2i(base)); if (requested_addr != 0) { st->print(" Req Addr: " PTR_FORMAT, p2i(requested_addr)); } st->cr(); } } // For UseCompressedClassPointers the class space is reserved above the top of // the Java heap. The argument passed in is at the base of the compressed space. void Metaspace::initialize_class_space(ReservedSpace rs) { // The reserved space size may be bigger because of alignment, esp with UseLargePages assert(rs.size() >= CompressedClassSpaceSize, SIZE_FORMAT " != " SIZE_FORMAT, rs.size(), CompressedClassSpaceSize); assert(using_class_space(), "Must be using class space"); _class_space_list = new VirtualSpaceList(rs); _chunk_manager_class = new ChunkManager(ClassSpecializedChunk, ClassSmallChunk, ClassMediumChunk); if (!_class_space_list->initialization_succeeded()) { vm_exit_during_initialization("Failed to setup compressed class space virtual space list."); } } #endif void Metaspace::ergo_initialize() { if (DumpSharedSpaces) { // Using large pages when dumping the shared archive is currently not implemented. FLAG_SET_ERGO(bool, UseLargePagesInMetaspace, false); } size_t page_size = os::vm_page_size(); if (UseLargePages && UseLargePagesInMetaspace) { page_size = os::large_page_size(); } _commit_alignment = page_size; _reserve_alignment = MAX2(page_size, (size_t)os::vm_allocation_granularity()); // Do not use FLAG_SET_ERGO to update MaxMetaspaceSize, since this will // override if MaxMetaspaceSize was set on the command line or not. // This information is needed later to conform to the specification of the // java.lang.management.MemoryUsage API. // // Ideally, we would be able to set the default value of MaxMetaspaceSize in // globals.hpp to the aligned value, but this is not possible, since the // alignment depends on other flags being parsed. MaxMetaspaceSize = align_down_bounded(MaxMetaspaceSize, _reserve_alignment); if (MetaspaceSize > MaxMetaspaceSize) { MetaspaceSize = MaxMetaspaceSize; } MetaspaceSize = align_down_bounded(MetaspaceSize, _commit_alignment); assert(MetaspaceSize <= MaxMetaspaceSize, "MetaspaceSize should be limited by MaxMetaspaceSize"); MinMetaspaceExpansion = align_down_bounded(MinMetaspaceExpansion, _commit_alignment); MaxMetaspaceExpansion = align_down_bounded(MaxMetaspaceExpansion, _commit_alignment); CompressedClassSpaceSize = align_down_bounded(CompressedClassSpaceSize, _reserve_alignment); // Initial virtual space size will be calculated at global_initialize() size_t min_metaspace_sz = VIRTUALSPACEMULTIPLIER * InitialBootClassLoaderMetaspaceSize; if (UseCompressedClassPointers) { if ((min_metaspace_sz + CompressedClassSpaceSize) > MaxMetaspaceSize) { if (min_metaspace_sz >= MaxMetaspaceSize) { vm_exit_during_initialization("MaxMetaspaceSize is too small."); } else { FLAG_SET_ERGO(size_t, CompressedClassSpaceSize, MaxMetaspaceSize - min_metaspace_sz); } } } else if (min_metaspace_sz >= MaxMetaspaceSize) { FLAG_SET_ERGO(size_t, InitialBootClassLoaderMetaspaceSize, min_metaspace_sz); } set_compressed_class_space_size(CompressedClassSpaceSize); } void Metaspace::global_initialize() { MetaspaceGC::initialize(); #if INCLUDE_CDS if (DumpSharedSpaces) { MetaspaceShared::initialize_dumptime_shared_and_meta_spaces(); } else if (UseSharedSpaces) { // If any of the archived space fails to map, UseSharedSpaces // is reset to false. Fall through to the // (!DumpSharedSpaces && !UseSharedSpaces) case to set up class // metaspace. MetaspaceShared::initialize_runtime_shared_and_meta_spaces(); } if (!DumpSharedSpaces && !UseSharedSpaces) #endif // INCLUDE_CDS { #ifdef _LP64 if (using_class_space()) { char* base = (char*)align_up(Universe::heap()->reserved_region().end(), _reserve_alignment); allocate_metaspace_compressed_klass_ptrs(base, 0); } #endif // _LP64 } // Initialize these before initializing the VirtualSpaceList _first_chunk_word_size = InitialBootClassLoaderMetaspaceSize / BytesPerWord; _first_chunk_word_size = align_word_size_up(_first_chunk_word_size); // Make the first class chunk bigger than a medium chunk so it's not put // on the medium chunk list. The next chunk will be small and progress // from there. This size calculated by -version. _first_class_chunk_word_size = MIN2((size_t)MediumChunk*6, (CompressedClassSpaceSize/BytesPerWord)*2); _first_class_chunk_word_size = align_word_size_up(_first_class_chunk_word_size); // Arbitrarily set the initial virtual space to a multiple // of the boot class loader size. size_t word_size = VIRTUALSPACEMULTIPLIER * _first_chunk_word_size; word_size = align_up(word_size, Metaspace::reserve_alignment_words()); // Initialize the list of virtual spaces. _space_list = new VirtualSpaceList(word_size); _chunk_manager_metadata = new ChunkManager(SpecializedChunk, SmallChunk, MediumChunk); if (!_space_list->initialization_succeeded()) { vm_exit_during_initialization("Unable to setup metadata virtual space list.", NULL); } _tracer = new MetaspaceTracer(); } void Metaspace::post_initialize() { MetaspaceGC::post_initialize(); } void Metaspace::initialize_first_chunk(MetaspaceType type, MetadataType mdtype) { Metachunk* chunk = get_initialization_chunk(type, mdtype); if (chunk != NULL) { // Add to this manager's list of chunks in use and current_chunk(). get_space_manager(mdtype)->add_chunk(chunk, true); } } Metachunk* Metaspace::get_initialization_chunk(MetaspaceType type, MetadataType mdtype) { size_t chunk_word_size = get_space_manager(mdtype)->get_initial_chunk_size(type); // Get a chunk from the chunk freelist Metachunk* chunk = get_chunk_manager(mdtype)->chunk_freelist_allocate(chunk_word_size); if (chunk == NULL) { chunk = get_space_list(mdtype)->get_new_chunk(chunk_word_size, get_space_manager(mdtype)->medium_chunk_bunch()); } return chunk; } void Metaspace::verify_global_initialization() { assert(space_list() != NULL, "Metadata VirtualSpaceList has not been initialized"); assert(chunk_manager_metadata() != NULL, "Metadata ChunkManager has not been initialized"); if (using_class_space()) { assert(class_space_list() != NULL, "Class VirtualSpaceList has not been initialized"); assert(chunk_manager_class() != NULL, "Class ChunkManager has not been initialized"); } } void Metaspace::initialize(Mutex* lock, MetaspaceType type) { verify_global_initialization(); // Allocate SpaceManager for metadata objects. _vsm = new SpaceManager(NonClassType, type, lock); if (using_class_space()) { // Allocate SpaceManager for classes. _class_vsm = new SpaceManager(ClassType, type, lock); } MutexLockerEx cl(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag); // Allocate chunk for metadata objects initialize_first_chunk(type, NonClassType); // Allocate chunk for class metadata objects if (using_class_space()) { initialize_first_chunk(type, ClassType); } } size_t Metaspace::align_word_size_up(size_t word_size) { size_t byte_size = word_size * wordSize; return ReservedSpace::allocation_align_size_up(byte_size) / wordSize; } MetaWord* Metaspace::allocate(size_t word_size, MetadataType mdtype) { assert(!_frozen, "sanity"); // Don't use class_vsm() unless UseCompressedClassPointers is true. if (is_class_space_allocation(mdtype)) { return class_vsm()->allocate(word_size); } else { return vsm()->allocate(word_size); } } MetaWord* Metaspace::expand_and_allocate(size_t word_size, MetadataType mdtype) { assert(!_frozen, "sanity"); size_t delta_bytes = MetaspaceGC::delta_capacity_until_GC(word_size * BytesPerWord); assert(delta_bytes > 0, "Must be"); size_t before = 0; size_t after = 0; MetaWord* res; bool incremented; // Each thread increments the HWM at most once. Even if the thread fails to increment // the HWM, an allocation is still attempted. This is because another thread must then // have incremented the HWM and therefore the allocation might still succeed. do { incremented = MetaspaceGC::inc_capacity_until_GC(delta_bytes, &after, &before); res = allocate(word_size, mdtype); } while (!incremented && res == NULL); if (incremented) { tracer()->report_gc_threshold(before, after, MetaspaceGCThresholdUpdater::ExpandAndAllocate); log_trace(gc, metaspace)("Increase capacity to GC from " SIZE_FORMAT " to " SIZE_FORMAT, before, after); } return res; } size_t Metaspace::used_words_slow(MetadataType mdtype) const { if (mdtype == ClassType) { return using_class_space() ? class_vsm()->sum_used_in_chunks_in_use() : 0; } else { return vsm()->sum_used_in_chunks_in_use(); // includes overhead! } } size_t Metaspace::free_words_slow(MetadataType mdtype) const { assert(!_frozen, "sanity"); if (mdtype == ClassType) { return using_class_space() ? class_vsm()->sum_free_in_chunks_in_use() : 0; } else { return vsm()->sum_free_in_chunks_in_use(); } } // Space capacity in the Metaspace. It includes // space in the list of chunks from which allocations // have been made. Don't include space in the global freelist and // in the space available in the dictionary which // is already counted in some chunk. size_t Metaspace::capacity_words_slow(MetadataType mdtype) const { if (mdtype == ClassType) { return using_class_space() ? class_vsm()->sum_capacity_in_chunks_in_use() : 0; } else { return vsm()->sum_capacity_in_chunks_in_use(); } } size_t Metaspace::used_bytes_slow(MetadataType mdtype) const { return used_words_slow(mdtype) * BytesPerWord; } size_t Metaspace::capacity_bytes_slow(MetadataType mdtype) const { return capacity_words_slow(mdtype) * BytesPerWord; } size_t Metaspace::allocated_blocks_bytes() const { return vsm()->allocated_blocks_bytes() + (using_class_space() ? class_vsm()->allocated_blocks_bytes() : 0); } size_t Metaspace::allocated_chunks_bytes() const { return vsm()->allocated_chunks_bytes() + (using_class_space() ? class_vsm()->allocated_chunks_bytes() : 0); } void Metaspace::deallocate(MetaWord* ptr, size_t word_size, bool is_class) { assert(!_frozen, "sanity"); assert(!SafepointSynchronize::is_at_safepoint() || Thread::current()->is_VM_thread(), "should be the VM thread"); MutexLockerEx ml(vsm()->lock(), Mutex::_no_safepoint_check_flag); if (is_class && using_class_space()) { class_vsm()->deallocate(ptr, word_size); } else { vsm()->deallocate(ptr, word_size); } } MetaWord* Metaspace::allocate(ClassLoaderData* loader_data, size_t word_size, MetaspaceObj::Type type, TRAPS) { assert(!_frozen, "sanity"); if (HAS_PENDING_EXCEPTION) { assert(false, "Should not allocate with exception pending"); return NULL; // caller does a CHECK_NULL too } assert(loader_data != NULL, "Should never pass around a NULL loader_data. " "ClassLoaderData::the_null_class_loader_data() should have been used."); MetadataType mdtype = (type == MetaspaceObj::ClassType) ? ClassType : NonClassType; // Try to allocate metadata. MetaWord* result = loader_data->metaspace_non_null()->allocate(word_size, mdtype); if (result == NULL) { tracer()->report_metaspace_allocation_failure(loader_data, word_size, type, mdtype); // Allocation failed. if (is_init_completed()) { // Only start a GC if the bootstrapping has completed. // Try to clean out some memory and retry. result = Universe::heap()->collector_policy()->satisfy_failed_metadata_allocation( loader_data, word_size, mdtype); } } if (result == NULL) { SpaceManager* sm; if (is_class_space_allocation(mdtype)) { sm = loader_data->metaspace_non_null()->class_vsm(); } else { sm = loader_data->metaspace_non_null()->vsm(); } result = sm->get_small_chunk_and_allocate(word_size); if (result == NULL) { report_metadata_oome(loader_data, word_size, type, mdtype, CHECK_NULL); } } // Zero initialize. Copy::fill_to_words((HeapWord*)result, word_size, 0); return result; } size_t Metaspace::class_chunk_size(size_t word_size) { assert(using_class_space(), "Has to use class space"); return class_vsm()->calc_chunk_size(word_size); } void Metaspace::report_metadata_oome(ClassLoaderData* loader_data, size_t word_size, MetaspaceObj::Type type, MetadataType mdtype, TRAPS) { tracer()->report_metadata_oom(loader_data, word_size, type, mdtype); // If result is still null, we are out of memory. Log(gc, metaspace, freelist) log; if (log.is_info()) { log.info("Metaspace (%s) allocation failed for size " SIZE_FORMAT, is_class_space_allocation(mdtype) ? "class" : "data", word_size); ResourceMark rm; if (log.is_debug()) { if (loader_data->metaspace_or_null() != NULL) { LogStream ls(log.debug()); loader_data->dump(&ls); } } LogStream ls(log.info()); MetaspaceAux::dump(&ls); MetaspaceAux::print_metaspace_map(&ls, mdtype); ChunkManager::print_all_chunkmanagers(&ls); } bool out_of_compressed_class_space = false; if (is_class_space_allocation(mdtype)) { Metaspace* metaspace = loader_data->metaspace_non_null(); out_of_compressed_class_space = MetaspaceAux::committed_bytes(Metaspace::ClassType) + (metaspace->class_chunk_size(word_size) * BytesPerWord) > CompressedClassSpaceSize; } // -XX:+HeapDumpOnOutOfMemoryError and -XX:OnOutOfMemoryError support const char* space_string = out_of_compressed_class_space ? "Compressed class space" : "Metaspace"; report_java_out_of_memory(space_string); if (JvmtiExport::should_post_resource_exhausted()) { JvmtiExport::post_resource_exhausted( JVMTI_RESOURCE_EXHAUSTED_OOM_ERROR, space_string); } if (!is_init_completed()) { vm_exit_during_initialization("OutOfMemoryError", space_string); } if (out_of_compressed_class_space) { THROW_OOP(Universe::out_of_memory_error_class_metaspace()); } else { THROW_OOP(Universe::out_of_memory_error_metaspace()); } } const char* Metaspace::metadata_type_name(Metaspace::MetadataType mdtype) { switch (mdtype) { case Metaspace::ClassType: return "Class"; case Metaspace::NonClassType: return "Metadata"; default: assert(false, "Got bad mdtype: %d", (int) mdtype); return NULL; } } void Metaspace::purge(MetadataType mdtype) { get_space_list(mdtype)->purge(get_chunk_manager(mdtype)); } void Metaspace::purge() { MutexLockerEx cl(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag); purge(NonClassType); if (using_class_space()) { purge(ClassType); } } void Metaspace::print_on(outputStream* out) const { // Print both class virtual space counts and metaspace. if (Verbose) { vsm()->print_on(out); if (using_class_space()) { class_vsm()->print_on(out); } } } bool Metaspace::contains(const void* ptr) { if (UseSharedSpaces && MetaspaceShared::is_in_shared_space(ptr)) { return true; } return contains_non_shared(ptr); } bool Metaspace::contains_non_shared(const void* ptr) { if (using_class_space() && get_space_list(ClassType)->contains(ptr)) { return true; } return get_space_list(NonClassType)->contains(ptr); } void Metaspace::verify() { vsm()->verify(); if (using_class_space()) { class_vsm()->verify(); } } void Metaspace::dump(outputStream* const out) const { out->print_cr("\nVirtual space manager: " INTPTR_FORMAT, p2i(vsm())); vsm()->dump(out); if (using_class_space()) { out->print_cr("\nClass space manager: " INTPTR_FORMAT, p2i(class_vsm())); class_vsm()->dump(out); } } /////////////// Unit tests /////////////// #ifndef PRODUCT class TestMetaspaceAuxTest : AllStatic { public: static void test_reserved() { size_t reserved = MetaspaceAux::reserved_bytes(); assert(reserved > 0, "assert"); size_t committed = MetaspaceAux::committed_bytes(); assert(committed <= reserved, "assert"); size_t reserved_metadata = MetaspaceAux::reserved_bytes(Metaspace::NonClassType); assert(reserved_metadata > 0, "assert"); assert(reserved_metadata <= reserved, "assert"); if (UseCompressedClassPointers) { size_t reserved_class = MetaspaceAux::reserved_bytes(Metaspace::ClassType); assert(reserved_class > 0, "assert"); assert(reserved_class < reserved, "assert"); } } static void test_committed() { size_t committed = MetaspaceAux::committed_bytes(); assert(committed > 0, "assert"); size_t reserved = MetaspaceAux::reserved_bytes(); assert(committed <= reserved, "assert"); size_t committed_metadata = MetaspaceAux::committed_bytes(Metaspace::NonClassType); assert(committed_metadata > 0, "assert"); assert(committed_metadata <= committed, "assert"); if (UseCompressedClassPointers) { size_t committed_class = MetaspaceAux::committed_bytes(Metaspace::ClassType); assert(committed_class > 0, "assert"); assert(committed_class < committed, "assert"); } } static void test_virtual_space_list_large_chunk() { VirtualSpaceList* vs_list = new VirtualSpaceList(os::vm_allocation_granularity()); MutexLockerEx cl(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag); // A size larger than VirtualSpaceSize (256k) and add one page to make it _not_ be // vm_allocation_granularity aligned on Windows. size_t large_size = (size_t)(2*256*K + (os::vm_page_size()/BytesPerWord)); large_size += (os::vm_page_size()/BytesPerWord); vs_list->get_new_chunk(large_size, 0); } static void test() { test_reserved(); test_committed(); test_virtual_space_list_large_chunk(); } }; void TestMetaspaceAux_test() { TestMetaspaceAuxTest::test(); } class TestVirtualSpaceNodeTest { static void chunk_up(size_t words_left, size_t& num_medium_chunks, size_t& num_small_chunks, size_t& num_specialized_chunks) { num_medium_chunks = words_left / MediumChunk; words_left = words_left % MediumChunk; num_small_chunks = words_left / SmallChunk; words_left = words_left % SmallChunk; // how many specialized chunks can we get? num_specialized_chunks = words_left / SpecializedChunk; assert(words_left % SpecializedChunk == 0, "should be nothing left"); } public: static void test() { MutexLockerEx ml(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag); const size_t vsn_test_size_words = MediumChunk * 4; const size_t vsn_test_size_bytes = vsn_test_size_words * BytesPerWord; // The chunk sizes must be multiples of eachother, or this will fail STATIC_ASSERT(MediumChunk % SmallChunk == 0); STATIC_ASSERT(SmallChunk % SpecializedChunk == 0); { // No committed memory in VSN ChunkManager cm(SpecializedChunk, SmallChunk, MediumChunk); VirtualSpaceNode vsn(vsn_test_size_bytes); vsn.initialize(); vsn.retire(&cm); assert(cm.sum_free_chunks_count() == 0, "did not commit any memory in the VSN"); } { // All of VSN is committed, half is used by chunks ChunkManager cm(SpecializedChunk, SmallChunk, MediumChunk); VirtualSpaceNode vsn(vsn_test_size_bytes); vsn.initialize(); vsn.expand_by(vsn_test_size_words, vsn_test_size_words); vsn.get_chunk_vs(MediumChunk); vsn.get_chunk_vs(MediumChunk); vsn.retire(&cm); assert(cm.sum_free_chunks_count() == 2, "should have been memory left for 2 medium chunks"); assert(cm.sum_free_chunks() == 2*MediumChunk, "sizes should add up"); } const size_t page_chunks = 4 * (size_t)os::vm_page_size() / BytesPerWord; // This doesn't work for systems with vm_page_size >= 16K. if (page_chunks < MediumChunk) { // 4 pages of VSN is committed, some is used by chunks ChunkManager cm(SpecializedChunk, SmallChunk, MediumChunk); VirtualSpaceNode vsn(vsn_test_size_bytes); vsn.initialize(); vsn.expand_by(page_chunks, page_chunks); vsn.get_chunk_vs(SmallChunk); vsn.get_chunk_vs(SpecializedChunk); vsn.retire(&cm); // committed - used = words left to retire const size_t words_left = page_chunks - SmallChunk - SpecializedChunk; size_t num_medium_chunks, num_small_chunks, num_spec_chunks; chunk_up(words_left, num_medium_chunks, num_small_chunks, num_spec_chunks); assert(num_medium_chunks == 0, "should not get any medium chunks"); assert(cm.sum_free_chunks_count() == (num_small_chunks + num_spec_chunks), "should be space for 3 chunks"); assert(cm.sum_free_chunks() == words_left, "sizes should add up"); } { // Half of VSN is committed, a humongous chunk is used ChunkManager cm(SpecializedChunk, SmallChunk, MediumChunk); VirtualSpaceNode vsn(vsn_test_size_bytes); vsn.initialize(); vsn.expand_by(MediumChunk * 2, MediumChunk * 2); vsn.get_chunk_vs(MediumChunk + SpecializedChunk); // Humongous chunks will be aligned up to MediumChunk + SpecializedChunk vsn.retire(&cm); const size_t words_left = MediumChunk * 2 - (MediumChunk + SpecializedChunk); size_t num_medium_chunks, num_small_chunks, num_spec_chunks; chunk_up(words_left, num_medium_chunks, num_small_chunks, num_spec_chunks); assert(num_medium_chunks == 0, "should not get any medium chunks"); assert(cm.sum_free_chunks_count() == (num_small_chunks + num_spec_chunks), "should be space for 3 chunks"); assert(cm.sum_free_chunks() == words_left, "sizes should add up"); } } #define assert_is_available_positive(word_size) \ assert(vsn.is_available(word_size), \ #word_size ": " PTR_FORMAT " bytes were not available in " \ "VirtualSpaceNode [" PTR_FORMAT ", " PTR_FORMAT ")", \ (uintptr_t)(word_size * BytesPerWord), p2i(vsn.bottom()), p2i(vsn.end())); #define assert_is_available_negative(word_size) \ assert(!vsn.is_available(word_size), \ #word_size ": " PTR_FORMAT " bytes should not be available in " \ "VirtualSpaceNode [" PTR_FORMAT ", " PTR_FORMAT ")", \ (uintptr_t)(word_size * BytesPerWord), p2i(vsn.bottom()), p2i(vsn.end())); static void test_is_available_positive() { // Reserve some memory. VirtualSpaceNode vsn(os::vm_allocation_granularity()); assert(vsn.initialize(), "Failed to setup VirtualSpaceNode"); // Commit some memory. size_t commit_word_size = os::vm_allocation_granularity() / BytesPerWord; bool expanded = vsn.expand_by(commit_word_size, commit_word_size); assert(expanded, "Failed to commit"); // Check that is_available accepts the committed size. assert_is_available_positive(commit_word_size); // Check that is_available accepts half the committed size. size_t expand_word_size = commit_word_size / 2; assert_is_available_positive(expand_word_size); } static void test_is_available_negative() { // Reserve some memory. VirtualSpaceNode vsn(os::vm_allocation_granularity()); assert(vsn.initialize(), "Failed to setup VirtualSpaceNode"); // Commit some memory. size_t commit_word_size = os::vm_allocation_granularity() / BytesPerWord; bool expanded = vsn.expand_by(commit_word_size, commit_word_size); assert(expanded, "Failed to commit"); // Check that is_available doesn't accept a too large size. size_t two_times_commit_word_size = commit_word_size * 2; assert_is_available_negative(two_times_commit_word_size); } static void test_is_available_overflow() { // Reserve some memory. VirtualSpaceNode vsn(os::vm_allocation_granularity()); assert(vsn.initialize(), "Failed to setup VirtualSpaceNode"); // Commit some memory. size_t commit_word_size = os::vm_allocation_granularity() / BytesPerWord; bool expanded = vsn.expand_by(commit_word_size, commit_word_size); assert(expanded, "Failed to commit"); // Calculate a size that will overflow the virtual space size. void* virtual_space_max = (void*)(uintptr_t)-1; size_t bottom_to_max = pointer_delta(virtual_space_max, vsn.bottom(), 1); size_t overflow_size = bottom_to_max + BytesPerWord; size_t overflow_word_size = overflow_size / BytesPerWord; // Check that is_available can handle the overflow. assert_is_available_negative(overflow_word_size); } static void test_is_available() { TestVirtualSpaceNodeTest::test_is_available_positive(); TestVirtualSpaceNodeTest::test_is_available_negative(); TestVirtualSpaceNodeTest::test_is_available_overflow(); } }; void TestVirtualSpaceNode_test() { TestVirtualSpaceNodeTest::test(); TestVirtualSpaceNodeTest::test_is_available(); } // The following test is placed here instead of a gtest / unittest file // because the ChunkManager class is only available in this file. void ChunkManager_test_list_index() { ChunkManager manager(ClassSpecializedChunk, ClassSmallChunk, ClassMediumChunk); // Test previous bug where a query for a humongous class metachunk, // incorrectly matched the non-class medium metachunk size. { assert(MediumChunk > ClassMediumChunk, "Precondition for test"); ChunkIndex index = manager.list_index(MediumChunk); assert(index == HumongousIndex, "Requested size is larger than ClassMediumChunk," " so should return HumongousIndex. Got index: %d", (int)index); } // Check the specified sizes as well. { ChunkIndex index = manager.list_index(ClassSpecializedChunk); assert(index == SpecializedIndex, "Wrong index returned. Got index: %d", (int)index); } { ChunkIndex index = manager.list_index(ClassSmallChunk); assert(index == SmallIndex, "Wrong index returned. Got index: %d", (int)index); } { ChunkIndex index = manager.list_index(ClassMediumChunk); assert(index == MediumIndex, "Wrong index returned. Got index: %d", (int)index); } { ChunkIndex index = manager.list_index(ClassMediumChunk + 1); assert(index == HumongousIndex, "Wrong index returned. Got index: %d", (int)index); } } #endif // !PRODUCT #ifdef ASSERT // ChunkManagerReturnTest stresses taking/returning chunks from the ChunkManager. It takes and // returns chunks from/to the ChunkManager while keeping track of the expected ChunkManager // content. class ChunkManagerReturnTestImpl { VirtualSpaceNode _vsn; ChunkManager _cm; // The expected content of the chunk manager. unsigned _chunks_in_chunkmanager; size_t _words_in_chunkmanager; // A fixed size pool of chunks. Chunks may be in the chunk manager (free) or not (in use). static const int num_chunks = 256; Metachunk* _pool[num_chunks]; // Helper, return a random position into the chunk pool. static int get_random_position() { return os::random() % num_chunks; } // Asserts that ChunkManager counters match expectations. void assert_counters() { assert(_vsn.container_count() == num_chunks - _chunks_in_chunkmanager, "vsn counter mismatch."); assert(_cm.free_chunks_count() == _chunks_in_chunkmanager, "cm counter mismatch."); assert(_cm.free_chunks_total_words() == _words_in_chunkmanager, "cm counter mismatch."); } // Get a random chunk size. Equal chance to get spec/med/small chunk size or // a humongous chunk size. The latter itself is random in the range of [med+spec..4*med). size_t get_random_chunk_size() { const size_t sizes [] = { SpecializedChunk, SmallChunk, MediumChunk }; const int rand = os::random() % 4; if (rand < 3) { return sizes[rand]; } else { // Note: this affects the max. size of space (see _vsn initialization in ctor). return align_up(MediumChunk + 1 + (os::random() % (MediumChunk * 4)), SpecializedChunk); } } // Starting at pool index +1, find the next chunk tagged as either free or in use, depending // on . Search wraps. Returns its position, or -1 if no matching chunk was found. int next_matching_chunk(int start, bool is_free) const { assert(start >= 0 && start < num_chunks, "invalid parameter"); int pos = start; do { if (++pos == num_chunks) { pos = 0; } if (_pool[pos]->is_tagged_free() == is_free) { return pos; } } while (pos != start); return -1; } // A structure to keep information about a chunk list including which // chunks are part of this list. This is needed to keep information about a chunk list // we will to return to the ChunkManager, because the original list will be destroyed. struct AChunkList { Metachunk* head; Metachunk* all[num_chunks]; size_t size; int num; ChunkIndex index; }; // Assemble, from the in-use chunks (not in the chunk manager) in the pool, // a random chunk list of max. length of chunks with the same // ChunkIndex (chunk size). // Returns false if list cannot be assembled. List is returned in the // structure. Returned list may be smaller than . bool assemble_random_chunklist(AChunkList* out, int list_size) { // Choose a random in-use chunk from the pool... const int headpos = next_matching_chunk(get_random_position(), false); if (headpos == -1) { return false; } Metachunk* const head = _pool[headpos]; out->all[0] = head; assert(head->is_tagged_free() == false, "Chunk state mismatch"); // ..then go from there, chain it up with up to list_size - 1 number of other // in-use chunks of the same index. const ChunkIndex index = _cm.list_index(head->word_size()); int num_added = 1; size_t size_added = head->word_size(); int pos = headpos; Metachunk* tail = head; do { pos = next_matching_chunk(pos, false); if (pos != headpos) { Metachunk* c = _pool[pos]; assert(c->is_tagged_free() == false, "Chunk state mismatch"); if (index == _cm.list_index(c->word_size())) { tail->set_next(c); c->set_prev(tail); tail = c; out->all[num_added] = c; num_added ++; size_added += c->word_size(); } } } while (num_added < list_size && pos != headpos); out->head = head; out->index = index; out->size = size_added; out->num = num_added; return true; } // Take a single random chunk from the ChunkManager. bool take_single_random_chunk_from_chunkmanager() { assert_counters(); _cm.locked_verify(); int pos = next_matching_chunk(get_random_position(), true); if (pos == -1) { return false; } Metachunk* c = _pool[pos]; assert(c->is_tagged_free(), "Chunk state mismatch"); // Note: instead of using ChunkManager::remove_chunk on this one chunk, we call // ChunkManager::free_chunks_get() with this chunk's word size. We really want // to exercise ChunkManager::free_chunks_get() because that one gets called for // normal chunk allocation. Metachunk* c2 = _cm.free_chunks_get(c->word_size()); assert(c2 != NULL, "Unexpected."); assert(!c2->is_tagged_free(), "Chunk state mismatch"); assert(c2->next() == NULL && c2->prev() == NULL, "Chunk should be outside of a list."); _chunks_in_chunkmanager --; _words_in_chunkmanager -= c->word_size(); assert_counters(); _cm.locked_verify(); return true; } // Returns a single random chunk to the chunk manager. Returns false if that // was not possible (all chunks are already in the chunk manager). bool return_single_random_chunk_to_chunkmanager() { assert_counters(); _cm.locked_verify(); int pos = next_matching_chunk(get_random_position(), false); if (pos == -1) { return false; } Metachunk* c = _pool[pos]; assert(c->is_tagged_free() == false, "wrong chunk information"); _cm.return_single_chunk(_cm.list_index(c->word_size()), c); _chunks_in_chunkmanager ++; _words_in_chunkmanager += c->word_size(); assert(c->is_tagged_free() == true, "wrong chunk information"); assert_counters(); _cm.locked_verify(); return true; } // Return a random chunk list to the chunk manager. Returns the length of the // returned list. int return_random_chunk_list_to_chunkmanager(int list_size) { assert_counters(); _cm.locked_verify(); AChunkList aChunkList; if (!assemble_random_chunklist(&aChunkList, list_size)) { return 0; } // Before returning chunks are returned, they should be tagged in use. for (int i = 0; i < aChunkList.num; i ++) { assert(!aChunkList.all[i]->is_tagged_free(), "chunk state mismatch."); } _cm.return_chunk_list(aChunkList.index, aChunkList.head); _chunks_in_chunkmanager += aChunkList.num; _words_in_chunkmanager += aChunkList.size; // After all chunks are returned, check that they are now tagged free. for (int i = 0; i < aChunkList.num; i ++) { assert(aChunkList.all[i]->is_tagged_free(), "chunk state mismatch."); } assert_counters(); _cm.locked_verify(); return aChunkList.num; } public: ChunkManagerReturnTestImpl() : _vsn(align_up(MediumChunk * num_chunks * 5 * sizeof(MetaWord), Metaspace::reserve_alignment())) , _cm(SpecializedChunk, SmallChunk, MediumChunk) , _chunks_in_chunkmanager(0) , _words_in_chunkmanager(0) { MutexLockerEx ml(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag); // Allocate virtual space and allocate random chunks. Keep these chunks in the _pool. These chunks are // "in use", because not yet added to any chunk manager. _vsn.initialize(); _vsn.expand_by(_vsn.reserved_words(), _vsn.reserved_words()); for (int i = 0; i < num_chunks; i ++) { const size_t size = get_random_chunk_size(); _pool[i] = _vsn.get_chunk_vs(size); assert(_pool[i] != NULL, "allocation failed"); } assert_counters(); _cm.locked_verify(); } // Test entry point. // Return some chunks to the chunk manager (return phase). Take some chunks out (take phase). Repeat. // Chunks are choosen randomly. Number of chunks to return or taken are choosen randomly, but affected // by the argument: a factor of 0.0 will cause the test to quickly alternate between // returning and taking, whereas a factor of 1.0 will take/return all chunks from/to the // chunks manager, thereby emptying or filling it completely. void do_test(float phase_length_factor) { MutexLockerEx ml(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag); assert_counters(); // Execute n operations, and operation being the move of a single chunk to/from the chunk manager. const int num_max_ops = num_chunks * 100; int num_ops = num_max_ops; const int average_phase_length = (int)(phase_length_factor * num_chunks); int num_ops_until_switch = MAX2(1, (average_phase_length + os::random() % 8 - 4)); bool return_phase = true; while (num_ops > 0) { int chunks_moved = 0; if (return_phase) { // Randomly switch between returning a single chunk or a random length chunk list. if (os::random() % 2 == 0) { if (return_single_random_chunk_to_chunkmanager()) { chunks_moved = 1; } } else { const int list_length = MAX2(1, (os::random() % num_ops_until_switch)); chunks_moved = return_random_chunk_list_to_chunkmanager(list_length); } } else { // Breath out. if (take_single_random_chunk_from_chunkmanager()) { chunks_moved = 1; } } num_ops -= chunks_moved; num_ops_until_switch -= chunks_moved; if (chunks_moved == 0 || num_ops_until_switch <= 0) { return_phase = !return_phase; num_ops_until_switch = MAX2(1, (average_phase_length + os::random() % 8 - 4)); } } } }; void* setup_chunkmanager_returntests() { ChunkManagerReturnTestImpl* p = new ChunkManagerReturnTestImpl(); return p; } void teardown_chunkmanager_returntests(void* p) { delete (ChunkManagerReturnTestImpl*) p; } void run_chunkmanager_returntests(void* p, float phase_length) { ChunkManagerReturnTestImpl* test = (ChunkManagerReturnTestImpl*) p; test->do_test(phase_length); } // The following test is placed here instead of a gtest / unittest file // because the ChunkManager class is only available in this file. class SpaceManagerTest : AllStatic { friend void SpaceManager_test_adjust_initial_chunk_size(); static void test_adjust_initial_chunk_size(bool is_class) { const size_t smallest = SpaceManager::smallest_chunk_size(is_class); const size_t normal = SpaceManager::small_chunk_size(is_class); const size_t medium = SpaceManager::medium_chunk_size(is_class); #define test_adjust_initial_chunk_size(value, expected, is_class_value) \ do { \ size_t v = value; \ size_t e = expected; \ assert(SpaceManager::adjust_initial_chunk_size(v, (is_class_value)) == e, \ "Expected: " SIZE_FORMAT " got: " SIZE_FORMAT, e, v); \ } while (0) // Smallest (specialized) test_adjust_initial_chunk_size(1, smallest, is_class); test_adjust_initial_chunk_size(smallest - 1, smallest, is_class); test_adjust_initial_chunk_size(smallest, smallest, is_class); // Small test_adjust_initial_chunk_size(smallest + 1, normal, is_class); test_adjust_initial_chunk_size(normal - 1, normal, is_class); test_adjust_initial_chunk_size(normal, normal, is_class); // Medium test_adjust_initial_chunk_size(normal + 1, medium, is_class); test_adjust_initial_chunk_size(medium - 1, medium, is_class); test_adjust_initial_chunk_size(medium, medium, is_class); // Humongous test_adjust_initial_chunk_size(medium + 1, medium + 1, is_class); #undef test_adjust_initial_chunk_size } static void test_adjust_initial_chunk_size() { test_adjust_initial_chunk_size(false); test_adjust_initial_chunk_size(true); } }; void SpaceManager_test_adjust_initial_chunk_size() { SpaceManagerTest::test_adjust_initial_chunk_size(); } #endif // ASSERT