/* * Copyright (c) 2011, 2018, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "gc/g1/g1AllocRegion.inline.hpp" #include "gc/g1/g1EvacStats.inline.hpp" #include "gc/g1/g1CollectedHeap.inline.hpp" #include "logging/log.hpp" #include "logging/logStream.hpp" #include "memory/resourceArea.hpp" #include "runtime/orderAccess.hpp" #include "utilities/align.hpp" G1CollectedHeap* G1AllocRegion::_g1h = NULL; HeapRegion* G1AllocRegion::_dummy_region = NULL; void G1AllocRegion::setup(G1CollectedHeap* g1h, HeapRegion* dummy_region) { assert(_dummy_region == NULL, "should be set once"); assert(dummy_region != NULL, "pre-condition"); assert(dummy_region->free() == 0, "pre-condition"); // Make sure that any allocation attempt on this region will fail // and will not trigger any asserts. assert(dummy_region->allocate_no_bot_updates(1) == NULL, "should fail"); assert(dummy_region->allocate(1) == NULL, "should fail"); DEBUG_ONLY(size_t assert_tmp); assert(dummy_region->par_allocate_no_bot_updates(1, 1, &assert_tmp) == NULL, "should fail"); assert(dummy_region->par_allocate(1, 1, &assert_tmp) == NULL, "should fail"); _g1h = g1h; _dummy_region = dummy_region; } size_t G1AllocRegion::fill_up_remaining_space(HeapRegion* alloc_region) { assert(alloc_region != NULL && alloc_region != _dummy_region, "pre-condition"); size_t result = 0; // Other threads might still be trying to allocate using a CAS out // of the region we are trying to retire, as they can do so without // holding the lock. So, we first have to make sure that noone else // can allocate out of it by doing a maximal allocation. Even if our // CAS attempt fails a few times, we'll succeed sooner or later // given that failed CAS attempts mean that the region is getting // closed to being full. size_t free_word_size = alloc_region->free() / HeapWordSize; // This is the minimum free chunk we can turn into a dummy // object. If the free space falls below this, then noone can // allocate in this region anyway (all allocation requests will be // of a size larger than this) so we won't have to perform the dummy // allocation. size_t min_word_size_to_fill = CollectedHeap::min_fill_size(); while (free_word_size >= min_word_size_to_fill) { HeapWord* dummy = par_allocate(alloc_region, free_word_size); if (dummy != NULL) { // If the allocation was successful we should fill in the space. CollectedHeap::fill_with_object(dummy, free_word_size); alloc_region->set_pre_dummy_top(dummy); result += free_word_size * HeapWordSize; break; } free_word_size = alloc_region->free() / HeapWordSize; // It's also possible that someone else beats us to the // allocation and they fill up the region. In that case, we can // just get out of the loop. } result += alloc_region->free(); assert(alloc_region->free() / HeapWordSize < min_word_size_to_fill, "post-condition"); return result; } size_t G1AllocRegion::retire_internal(HeapRegion* alloc_region, bool fill_up) { // We never have to check whether the active region is empty or not, // and potentially free it if it is, given that it's guaranteed that // it will never be empty. size_t waste = 0; assert_alloc_region(!alloc_region->is_empty(), "the alloc region should never be empty"); if (fill_up) { waste = fill_up_remaining_space(alloc_region); } assert_alloc_region(alloc_region->used() >= _used_bytes_before, "invariant"); size_t allocated_bytes = alloc_region->used() - _used_bytes_before; retire_region(alloc_region, allocated_bytes); _used_bytes_before = 0; return waste; } size_t G1AllocRegion::retire(bool fill_up) { assert_alloc_region(_alloc_region != NULL, "not initialized properly"); size_t waste = 0; trace("retiring"); HeapRegion* alloc_region = _alloc_region; if (alloc_region != _dummy_region) { waste = retire_internal(alloc_region, fill_up); reset_alloc_region(); } trace("retired"); return waste; } HeapWord* G1AllocRegion::new_alloc_region_and_allocate(size_t word_size, bool force) { assert_alloc_region(_alloc_region == _dummy_region, "pre-condition"); assert_alloc_region(_used_bytes_before == 0, "pre-condition"); trace("attempting region allocation"); HeapRegion* new_alloc_region = allocate_new_region(word_size, force); if (new_alloc_region != NULL) { new_alloc_region->reset_pre_dummy_top(); // Need to do this before the allocation _used_bytes_before = new_alloc_region->used(); HeapWord* result = allocate(new_alloc_region, word_size); assert_alloc_region(result != NULL, "the allocation should succeeded"); OrderAccess::storestore(); // Note that we first perform the allocation and then we store the // region in _alloc_region. This is the reason why an active region // can never be empty. update_alloc_region(new_alloc_region); trace("region allocation successful"); return result; } else { trace("region allocation failed"); return NULL; } ShouldNotReachHere(); } void G1AllocRegion::init() { trace("initializing"); assert_alloc_region(_alloc_region == NULL && _used_bytes_before == 0, "pre-condition"); assert_alloc_region(_dummy_region != NULL, "should have been set"); _alloc_region = _dummy_region; _count = 0; trace("initialized"); } void G1AllocRegion::set(HeapRegion* alloc_region) { trace("setting"); // We explicitly check that the region is not empty to make sure we // maintain the "the alloc region cannot be empty" invariant. assert_alloc_region(alloc_region != NULL && !alloc_region->is_empty(), "pre-condition"); assert_alloc_region(_alloc_region == _dummy_region && _used_bytes_before == 0 && _count == 0, "pre-condition"); _used_bytes_before = alloc_region->used(); _alloc_region = alloc_region; _count += 1; trace("set"); } void G1AllocRegion::update_alloc_region(HeapRegion* alloc_region) { trace("update"); // We explicitly check that the region is not empty to make sure we // maintain the "the alloc region cannot be empty" invariant. assert_alloc_region(alloc_region != NULL && !alloc_region->is_empty(), "pre-condition"); _alloc_region = alloc_region; _count += 1; trace("updated"); } HeapRegion* G1AllocRegion::release() { trace("releasing"); HeapRegion* alloc_region = _alloc_region; retire(false /* fill_up */); assert_alloc_region(_alloc_region == _dummy_region, "post-condition of retire()"); _alloc_region = NULL; trace("released"); return (alloc_region == _dummy_region) ? NULL : alloc_region; } #ifndef PRODUCT void G1AllocRegion::trace(const char* str, size_t min_word_size, size_t desired_word_size, size_t actual_word_size, HeapWord* result) { // All the calls to trace that set either just the size or the size // and the result are considered part of detailed tracing and are // skipped during other tracing. Log(gc, alloc, region) log; if (!log.is_debug()) { return; } bool detailed_info = log.is_trace(); if ((actual_word_size == 0 && result == NULL) || detailed_info) { ResourceMark rm; LogStream ls_trace(log.trace()); LogStream ls_debug(log.debug()); outputStream* out = detailed_info ? &ls_trace : &ls_debug; out->print("%s: %u ", _name, _count); if (_alloc_region == NULL) { out->print("NULL"); } else if (_alloc_region == _dummy_region) { out->print("DUMMY"); } else { out->print(HR_FORMAT, HR_FORMAT_PARAMS(_alloc_region)); } out->print(" : %s", str); if (detailed_info) { if (result != NULL) { out->print(" min " SIZE_FORMAT " desired " SIZE_FORMAT " actual " SIZE_FORMAT " " PTR_FORMAT, min_word_size, desired_word_size, actual_word_size, p2i(result)); } else if (min_word_size != 0) { out->print(" min " SIZE_FORMAT " desired " SIZE_FORMAT, min_word_size, desired_word_size); } } out->cr(); } } #endif // PRODUCT G1AllocRegion::G1AllocRegion(const char* name, bool bot_updates) : _alloc_region(NULL), _count(0), _used_bytes_before(0), _bot_updates(bot_updates), _name(name) { } HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size, bool force) { return _g1h->new_mutator_alloc_region(word_size, force); } void MutatorAllocRegion::retire_region(HeapRegion* alloc_region, size_t allocated_bytes) { _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes); } void MutatorAllocRegion::init() { assert(_retained_alloc_region == NULL, "Pre-condition"); G1AllocRegion::init(); _wasted_bytes = 0; } bool MutatorAllocRegion::should_retain(HeapRegion* region) { size_t free_bytes = region->free(); if (free_bytes < MinTLABSize) { return false; } if (_retained_alloc_region != NULL && free_bytes < _retained_alloc_region->free()) { return false; } return true; } size_t MutatorAllocRegion::retire(bool fill_up) { size_t waste = 0; trace("retiring"); HeapRegion* current_region = get(); if (current_region != NULL) { // Retain the current region if it fits a TLAB and has more // free than the currently retained region. if (should_retain(current_region)) { trace("mutator retained"); if (_retained_alloc_region != NULL) { waste = retire_internal(_retained_alloc_region, true); } _retained_alloc_region = current_region; } else { waste = retire_internal(current_region, fill_up); } reset_alloc_region(); } _wasted_bytes += waste; trace("retired"); return waste; } size_t MutatorAllocRegion::used_in_alloc_regions() { size_t used = 0; HeapRegion* hr = get(); if (hr != NULL) { used += hr->used(); } hr = _retained_alloc_region; if (hr != NULL) { used += hr->used(); } return used; } HeapRegion* MutatorAllocRegion::release() { HeapRegion* ret = G1AllocRegion::release(); // The retained alloc region must be retired and this must be // done after the above call to release the mutator alloc region, // since it might update the _retained_alloc_region member. if (_retained_alloc_region != NULL) { _wasted_bytes += retire_internal(_retained_alloc_region, false); _retained_alloc_region = NULL; } log_debug(gc, alloc, region)("Mutator Allocation stats, regions: %u, wasted size: " SIZE_FORMAT "%s (%4.1f%%)", count(), byte_size_in_proper_unit(_wasted_bytes), proper_unit_for_byte_size(_wasted_bytes), percent_of(_wasted_bytes, count() * HeapRegion::GrainBytes)); return ret; } HeapRegion* G1GCAllocRegion::allocate_new_region(size_t word_size, bool force) { assert(!force, "not supported for GC alloc regions"); return _g1h->new_gc_alloc_region(word_size, _purpose); } void G1GCAllocRegion::retire_region(HeapRegion* alloc_region, size_t allocated_bytes) { _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes, _purpose); } size_t G1GCAllocRegion::retire(bool fill_up) { HeapRegion* retired = get(); size_t end_waste = G1AllocRegion::retire(fill_up); // Do not count retirement of the dummy allocation region. if (retired != NULL) { _stats->add_region_end_waste(end_waste / HeapWordSize); } return end_waste; } HeapRegion* OldGCAllocRegion::release() { HeapRegion* cur = get(); if (cur != NULL) { // Determine how far we are from the next card boundary. If it is smaller than // the minimum object size we can allocate into, expand into the next card. HeapWord* top = cur->top(); HeapWord* aligned_top = align_up(top, BOTConstants::N_bytes); size_t to_allocate_words = pointer_delta(aligned_top, top, HeapWordSize); if (to_allocate_words != 0) { // We are not at a card boundary. Fill up, possibly into the next, taking the // end of the region and the minimum object size into account. to_allocate_words = MIN2(pointer_delta(cur->end(), cur->top(), HeapWordSize), MAX2(to_allocate_words, G1CollectedHeap::min_fill_size())); // Skip allocation if there is not enough space to allocate even the smallest // possible object. In this case this region will not be retained, so the // original problem cannot occur. if (to_allocate_words >= G1CollectedHeap::min_fill_size()) { HeapWord* dummy = attempt_allocation(to_allocate_words); CollectedHeap::fill_with_object(dummy, to_allocate_words); } } } return G1AllocRegion::release(); }