/* * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012, 2019 SAP SE. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef OS_CPU_LINUX_PPC_ATOMIC_LINUX_PPC_HPP #define OS_CPU_LINUX_PPC_ATOMIC_LINUX_PPC_HPP #ifndef PPC64 #error "Atomic currently only implemented for PPC64" #endif #include "orderAccess_linux_ppc.hpp" #include "utilities/debug.hpp" // Implementation of class atomic // // machine barrier instructions: // // - sync two-way memory barrier, aka fence // - lwsync orders Store|Store, // Load|Store, // Load|Load, // but not Store|Load // - eieio orders memory accesses for device memory (only) // - isync invalidates speculatively executed instructions // From the POWER ISA 2.06 documentation: // "[...] an isync instruction prevents the execution of // instructions following the isync until instructions // preceding the isync have completed, [...]" // From IBM's AIX assembler reference: // "The isync [...] instructions causes the processor to // refetch any instructions that might have been fetched // prior to the isync instruction. The instruction isync // causes the processor to wait for all previous instructions // to complete. Then any instructions already fetched are // discarded and instruction processing continues in the // environment established by the previous instructions." // // semantic barrier instructions: // (as defined in orderAccess.hpp) // // - release orders Store|Store, (maps to lwsync) // Load|Store // - acquire orders Load|Store, (maps to lwsync) // Load|Load // - fence orders Store|Store, (maps to sync) // Load|Store, // Load|Load, // Store|Load // inline void pre_membar(atomic_memory_order order) { switch (order) { case memory_order_relaxed: case memory_order_acquire: break; case memory_order_release: case memory_order_acq_rel: __asm__ __volatile__ ("lwsync" : : : "memory"); break; default /*conservative*/ : __asm__ __volatile__ ("sync" : : : "memory"); break; } } inline void post_membar(atomic_memory_order order) { switch (order) { case memory_order_relaxed: case memory_order_release: break; case memory_order_acquire: case memory_order_acq_rel: __asm__ __volatile__ ("isync" : : : "memory"); break; default /*conservative*/ : __asm__ __volatile__ ("sync" : : : "memory"); break; } } template struct Atomic::PlatformAdd { template D add_and_fetch(D volatile* dest, I add_value, atomic_memory_order order) const; template D fetch_and_add(D volatile* dest, I add_value, atomic_memory_order order) const { return add_and_fetch(dest, add_value, order) - add_value; } }; template<> template inline D Atomic::PlatformAdd<4>::add_and_fetch(D volatile* dest, I add_value, atomic_memory_order order) const { STATIC_ASSERT(4 == sizeof(I)); STATIC_ASSERT(4 == sizeof(D)); D result; pre_membar(order); __asm__ __volatile__ ( "1: lwarx %0, 0, %2 \n" " add %0, %0, %1 \n" " stwcx. %0, 0, %2 \n" " bne- 1b \n" : /*%0*/"=&r" (result) : /*%1*/"r" (add_value), /*%2*/"r" (dest) : "cc", "memory" ); post_membar(order); return result; } template<> template inline D Atomic::PlatformAdd<8>::add_and_fetch(D volatile* dest, I add_value, atomic_memory_order order) const { STATIC_ASSERT(8 == sizeof(I)); STATIC_ASSERT(8 == sizeof(D)); D result; pre_membar(order); __asm__ __volatile__ ( "1: ldarx %0, 0, %2 \n" " add %0, %0, %1 \n" " stdcx. %0, 0, %2 \n" " bne- 1b \n" : /*%0*/"=&r" (result) : /*%1*/"r" (add_value), /*%2*/"r" (dest) : "cc", "memory" ); post_membar(order); return result; } template<> template inline T Atomic::PlatformXchg<4>::operator()(T volatile* dest, T exchange_value, atomic_memory_order order) const { // Note that xchg doesn't necessarily do an acquire // (see synchronizer.cpp). T old_value; const uint64_t zero = 0; pre_membar(order); __asm__ __volatile__ ( /* atomic loop */ "1: \n" " lwarx %[old_value], %[dest], %[zero] \n" " stwcx. %[exchange_value], %[dest], %[zero] \n" " bne- 1b \n" /* exit */ "2: \n" /* out */ : [old_value] "=&r" (old_value), "=m" (*dest) /* in */ : [dest] "b" (dest), [zero] "r" (zero), [exchange_value] "r" (exchange_value), "m" (*dest) /* clobber */ : "cc", "memory" ); post_membar(order); return old_value; } template<> template inline T Atomic::PlatformXchg<8>::operator()(T volatile* dest, T exchange_value, atomic_memory_order order) const { STATIC_ASSERT(8 == sizeof(T)); // Note that xchg doesn't necessarily do an acquire // (see synchronizer.cpp). T old_value; const uint64_t zero = 0; pre_membar(order); __asm__ __volatile__ ( /* atomic loop */ "1: \n" " ldarx %[old_value], %[dest], %[zero] \n" " stdcx. %[exchange_value], %[dest], %[zero] \n" " bne- 1b \n" /* exit */ "2: \n" /* out */ : [old_value] "=&r" (old_value), "=m" (*dest) /* in */ : [dest] "b" (dest), [zero] "r" (zero), [exchange_value] "r" (exchange_value), "m" (*dest) /* clobber */ : "cc", "memory" ); post_membar(order); return old_value; } template<> template inline T Atomic::PlatformCmpxchg<1>::operator()(T volatile* dest, T compare_value, T exchange_value, atomic_memory_order order) const { STATIC_ASSERT(1 == sizeof(T)); // Note that cmpxchg guarantees a two-way memory barrier across // the cmpxchg, so it's really a a 'fence_cmpxchg_fence' if not // specified otherwise (see atomic.hpp). // Using 32 bit internally. volatile int *dest_base = (volatile int*)((uintptr_t)dest & ~3); #ifdef VM_LITTLE_ENDIAN const unsigned int shift_amount = ((uintptr_t)dest & 3) * 8; #else const unsigned int shift_amount = ((~(uintptr_t)dest) & 3) * 8; #endif const unsigned int masked_compare_val = ((unsigned int)(unsigned char)compare_value), masked_exchange_val = ((unsigned int)(unsigned char)exchange_value), xor_value = (masked_compare_val ^ masked_exchange_val) << shift_amount; unsigned int old_value, value32; pre_membar(order); __asm__ __volatile__ ( /* simple guard */ " lbz %[old_value], 0(%[dest]) \n" " cmpw %[masked_compare_val], %[old_value] \n" " bne- 2f \n" /* atomic loop */ "1: \n" " lwarx %[value32], 0, %[dest_base] \n" /* extract byte and compare */ " srd %[old_value], %[value32], %[shift_amount] \n" " clrldi %[old_value], %[old_value], 56 \n" " cmpw %[masked_compare_val], %[old_value] \n" " bne- 2f \n" /* replace byte and try to store */ " xor %[value32], %[xor_value], %[value32] \n" " stwcx. %[value32], 0, %[dest_base] \n" " bne- 1b \n" /* exit */ "2: \n" /* out */ : [old_value] "=&r" (old_value), [value32] "=&r" (value32), "=m" (*dest), "=m" (*dest_base) /* in */ : [dest] "b" (dest), [dest_base] "b" (dest_base), [shift_amount] "r" (shift_amount), [masked_compare_val] "r" (masked_compare_val), [xor_value] "r" (xor_value), "m" (*dest), "m" (*dest_base) /* clobber */ : "cc", "memory" ); post_membar(order); return PrimitiveConversions::cast((unsigned char)old_value); } template<> template inline T Atomic::PlatformCmpxchg<4>::operator()(T volatile* dest, T compare_value, T exchange_value, atomic_memory_order order) const { STATIC_ASSERT(4 == sizeof(T)); // Note that cmpxchg guarantees a two-way memory barrier across // the cmpxchg, so it's really a a 'fence_cmpxchg_fence' if not // specified otherwise (see atomic.hpp). T old_value; const uint64_t zero = 0; pre_membar(order); __asm__ __volatile__ ( /* simple guard */ " lwz %[old_value], 0(%[dest]) \n" " cmpw %[compare_value], %[old_value] \n" " bne- 2f \n" /* atomic loop */ "1: \n" " lwarx %[old_value], %[dest], %[zero] \n" " cmpw %[compare_value], %[old_value] \n" " bne- 2f \n" " stwcx. %[exchange_value], %[dest], %[zero] \n" " bne- 1b \n" /* exit */ "2: \n" /* out */ : [old_value] "=&r" (old_value), "=m" (*dest) /* in */ : [dest] "b" (dest), [zero] "r" (zero), [compare_value] "r" (compare_value), [exchange_value] "r" (exchange_value), "m" (*dest) /* clobber */ : "cc", "memory" ); post_membar(order); return old_value; } template<> template inline T Atomic::PlatformCmpxchg<8>::operator()(T volatile* dest, T compare_value, T exchange_value, atomic_memory_order order) const { STATIC_ASSERT(8 == sizeof(T)); // Note that cmpxchg guarantees a two-way memory barrier across // the cmpxchg, so it's really a a 'fence_cmpxchg_fence' if not // specified otherwise (see atomic.hpp). T old_value; const uint64_t zero = 0; pre_membar(order); __asm__ __volatile__ ( /* simple guard */ " ld %[old_value], 0(%[dest]) \n" " cmpd %[compare_value], %[old_value] \n" " bne- 2f \n" /* atomic loop */ "1: \n" " ldarx %[old_value], %[dest], %[zero] \n" " cmpd %[compare_value], %[old_value] \n" " bne- 2f \n" " stdcx. %[exchange_value], %[dest], %[zero] \n" " bne- 1b \n" /* exit */ "2: \n" /* out */ : [old_value] "=&r" (old_value), "=m" (*dest) /* in */ : [dest] "b" (dest), [zero] "r" (zero), [compare_value] "r" (compare_value), [exchange_value] "r" (exchange_value), "m" (*dest) /* clobber */ : "cc", "memory" ); post_membar(order); return old_value; } template struct Atomic::PlatformOrderedLoad { template T operator()(const volatile T* p) const { T t = Atomic::load(p); // Use twi-isync for load_acquire (faster than lwsync). __asm__ __volatile__ ("twi 0,%0,0\n isync\n" : : "r" (t) : "memory"); return t; } }; #endif // OS_CPU_LINUX_PPC_ATOMIC_LINUX_PPC_HPP