/* * Copyright 1999-2009 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. * */ #include "incls/_precompiled.incl" #include "incls/_compileBroker.cpp.incl" #ifdef DTRACE_ENABLED // Only bother with this argument setup if dtrace is available HS_DTRACE_PROBE_DECL8(hotspot, method__compile__begin, char*, intptr_t, char*, intptr_t, char*, intptr_t, char*, intptr_t); HS_DTRACE_PROBE_DECL9(hotspot, method__compile__end, char*, intptr_t, char*, intptr_t, char*, intptr_t, char*, intptr_t, bool); #define DTRACE_METHOD_COMPILE_BEGIN_PROBE(compiler, method) \ { \ char* comp_name = (char*)(compiler)->name(); \ symbolOop klass_name = (method)->klass_name(); \ symbolOop name = (method)->name(); \ symbolOop signature = (method)->signature(); \ HS_DTRACE_PROBE8(hotspot, method__compile__begin, \ comp_name, strlen(comp_name), \ klass_name->bytes(), klass_name->utf8_length(), \ name->bytes(), name->utf8_length(), \ signature->bytes(), signature->utf8_length()); \ } #define DTRACE_METHOD_COMPILE_END_PROBE(compiler, method, success) \ { \ char* comp_name = (char*)(compiler)->name(); \ symbolOop klass_name = (method)->klass_name(); \ symbolOop name = (method)->name(); \ symbolOop signature = (method)->signature(); \ HS_DTRACE_PROBE9(hotspot, method__compile__end, \ comp_name, strlen(comp_name), \ klass_name->bytes(), klass_name->utf8_length(), \ name->bytes(), name->utf8_length(), \ signature->bytes(), signature->utf8_length(), (success)); \ } #else // ndef DTRACE_ENABLED #define DTRACE_METHOD_COMPILE_BEGIN_PROBE(compiler, method) #define DTRACE_METHOD_COMPILE_END_PROBE(compiler, method, success) #endif // ndef DTRACE_ENABLED bool CompileBroker::_initialized = false; volatile bool CompileBroker::_should_block = false; // The installed compiler(s) AbstractCompiler* CompileBroker::_compilers[2]; // These counters are used for assigning id's to each compilation uint CompileBroker::_compilation_id = 0; uint CompileBroker::_osr_compilation_id = 0; // Debugging information int CompileBroker::_last_compile_type = no_compile; int CompileBroker::_last_compile_level = CompLevel_none; char CompileBroker::_last_method_compiled[CompileBroker::name_buffer_length]; // Performance counters PerfCounter* CompileBroker::_perf_total_compilation = NULL; PerfCounter* CompileBroker::_perf_osr_compilation = NULL; PerfCounter* CompileBroker::_perf_standard_compilation = NULL; PerfCounter* CompileBroker::_perf_total_bailout_count = NULL; PerfCounter* CompileBroker::_perf_total_invalidated_count = NULL; PerfCounter* CompileBroker::_perf_total_compile_count = NULL; PerfCounter* CompileBroker::_perf_total_osr_compile_count = NULL; PerfCounter* CompileBroker::_perf_total_standard_compile_count = NULL; PerfCounter* CompileBroker::_perf_sum_osr_bytes_compiled = NULL; PerfCounter* CompileBroker::_perf_sum_standard_bytes_compiled = NULL; PerfCounter* CompileBroker::_perf_sum_nmethod_size = NULL; PerfCounter* CompileBroker::_perf_sum_nmethod_code_size = NULL; PerfStringVariable* CompileBroker::_perf_last_method = NULL; PerfStringVariable* CompileBroker::_perf_last_failed_method = NULL; PerfStringVariable* CompileBroker::_perf_last_invalidated_method = NULL; PerfVariable* CompileBroker::_perf_last_compile_type = NULL; PerfVariable* CompileBroker::_perf_last_compile_size = NULL; PerfVariable* CompileBroker::_perf_last_failed_type = NULL; PerfVariable* CompileBroker::_perf_last_invalidated_type = NULL; // Timers and counters for generating statistics elapsedTimer CompileBroker::_t_total_compilation; elapsedTimer CompileBroker::_t_osr_compilation; elapsedTimer CompileBroker::_t_standard_compilation; int CompileBroker::_total_bailout_count = 0; int CompileBroker::_total_invalidated_count = 0; int CompileBroker::_total_compile_count = 0; int CompileBroker::_total_osr_compile_count = 0; int CompileBroker::_total_standard_compile_count = 0; int CompileBroker::_sum_osr_bytes_compiled = 0; int CompileBroker::_sum_standard_bytes_compiled = 0; int CompileBroker::_sum_nmethod_size = 0; int CompileBroker::_sum_nmethod_code_size = 0; CompileQueue* CompileBroker::_method_queue = NULL; CompileTask* CompileBroker::_task_free_list = NULL; GrowableArray* CompileBroker::_method_threads = NULL; // CompileTaskWrapper // // Assign this task to the current thread. Deallocate the task // when the compilation is complete. class CompileTaskWrapper : StackObj { public: CompileTaskWrapper(CompileTask* task); ~CompileTaskWrapper(); }; CompileTaskWrapper::CompileTaskWrapper(CompileTask* task) { CompilerThread* thread = CompilerThread::current(); thread->set_task(task); CompileLog* log = thread->log(); if (log != NULL) task->log_task_start(log); } CompileTaskWrapper::~CompileTaskWrapper() { CompilerThread* thread = CompilerThread::current(); CompileTask* task = thread->task(); CompileLog* log = thread->log(); if (log != NULL) task->log_task_done(log); thread->set_task(NULL); task->set_code_handle(NULL); DEBUG_ONLY(thread->set_env((ciEnv*)badAddress)); if (task->is_blocking()) { MutexLocker notifier(task->lock(), thread); task->mark_complete(); // Notify the waiting thread that the compilation has completed. task->lock()->notify_all(); } else { task->mark_complete(); // By convention, the compiling thread is responsible for // recycling a non-blocking CompileTask. CompileBroker::free_task(task); } } // ------------------------------------------------------------------ // CompileTask::initialize void CompileTask::initialize(int compile_id, methodHandle method, int osr_bci, int comp_level, methodHandle hot_method, int hot_count, const char* comment, bool is_blocking) { assert(!_lock->is_locked(), "bad locking"); _compile_id = compile_id; _method = JNIHandles::make_global(method); _osr_bci = osr_bci; _is_blocking = is_blocking; _comp_level = comp_level; _num_inlined_bytecodes = 0; _is_complete = false; _is_success = false; _code_handle = NULL; _hot_method = NULL; _hot_count = hot_count; _time_queued = 0; // tidy _comment = comment; if (LogCompilation) { _time_queued = os::elapsed_counter(); if (hot_method.not_null()) { if (hot_method == method) { _hot_method = _method; } else { _hot_method = JNIHandles::make_global(hot_method); } } } _next = NULL; } // ------------------------------------------------------------------ // CompileTask::code/set_code nmethod* CompileTask::code() const { if (_code_handle == NULL) return NULL; return _code_handle->code(); } void CompileTask::set_code(nmethod* nm) { if (_code_handle == NULL && nm == NULL) return; guarantee(_code_handle != NULL, ""); _code_handle->set_code(nm); if (nm == NULL) _code_handle = NULL; // drop the handle also } // ------------------------------------------------------------------ // CompileTask::free void CompileTask::free() { set_code(NULL); assert(!_lock->is_locked(), "Should not be locked when freed"); if (_hot_method != NULL && _hot_method != _method) { JNIHandles::destroy_global(_hot_method); } JNIHandles::destroy_global(_method); } // ------------------------------------------------------------------ // CompileTask::print void CompileTask::print() { tty->print("print("method="); ((methodOop)JNIHandles::resolve(_method))->print_name(tty); tty->print_cr(" osr_bci=%d is_blocking=%s is_complete=%s is_success=%s>", _osr_bci, bool_to_str(_is_blocking), bool_to_str(_is_complete), bool_to_str(_is_success)); } // ------------------------------------------------------------------ // CompileTask::print_line_on_error // // This function is called by fatal error handler when the thread // causing troubles is a compiler thread. // // Do not grab any lock, do not allocate memory. // // Otherwise it's the same as CompileTask::print_line() // void CompileTask::print_line_on_error(outputStream* st, char* buf, int buflen) { methodOop method = (methodOop)JNIHandles::resolve(_method); // print compiler name st->print("%s:", CompileBroker::compiler(comp_level())->name()); // print compilation number st->print("%3d", compile_id()); // print method attributes const bool is_osr = osr_bci() != CompileBroker::standard_entry_bci; { const char blocking_char = is_blocking() ? 'b' : ' '; const char compile_type = is_osr ? '%' : ' '; const char sync_char = method->is_synchronized() ? 's' : ' '; const char exception_char = method->has_exception_handler() ? '!' : ' '; const char tier_char = is_highest_tier_compile(comp_level()) ? ' ' : ('0' + comp_level()); st->print("%c%c%c%c%c ", compile_type, sync_char, exception_char, blocking_char, tier_char); } // Use buf to get method name and signature if (method != NULL) st->print("%s", method->name_and_sig_as_C_string(buf, buflen)); // print osr_bci if any if (is_osr) st->print(" @ %d", osr_bci()); // print method size st->print_cr(" (%d bytes)", method->code_size()); } // ------------------------------------------------------------------ // CompileTask::print_line void CompileTask::print_line() { Thread *thread = Thread::current(); methodHandle method(thread, (methodOop)JNIHandles::resolve(method_handle())); ResourceMark rm(thread); ttyLocker ttyl; // keep the following output all in one block // print compiler name if requested if (CIPrintCompilerName) tty->print("%s:", CompileBroker::compiler(comp_level())->name()); // print compilation number tty->print("%3d", compile_id()); // print method attributes const bool is_osr = osr_bci() != CompileBroker::standard_entry_bci; { const char blocking_char = is_blocking() ? 'b' : ' '; const char compile_type = is_osr ? '%' : ' '; const char sync_char = method->is_synchronized() ? 's' : ' '; const char exception_char = method->has_exception_handler() ? '!' : ' '; const char tier_char = is_highest_tier_compile(comp_level()) ? ' ' : ('0' + comp_level()); tty->print("%c%c%c%c%c ", compile_type, sync_char, exception_char, blocking_char, tier_char); } // print method name method->print_short_name(tty); // print osr_bci if any if (is_osr) tty->print(" @ %d", osr_bci()); // print method size tty->print_cr(" (%d bytes)", method->code_size()); } // ------------------------------------------------------------------ // CompileTask::log_task void CompileTask::log_task(xmlStream* log) { Thread* thread = Thread::current(); methodHandle method(thread, (methodOop)JNIHandles::resolve(method_handle())); ResourceMark rm(thread); // if (_compile_id != 0) log->print(" compile_id='%d'", _compile_id); if (_osr_bci != CompileBroker::standard_entry_bci) { log->print(" compile_kind='osr'"); // same as nmethod::compile_kind } // else compile_kind='c2c' if (!method.is_null()) log->method(method); if (_osr_bci != CompileBroker::standard_entry_bci) { log->print(" osr_bci='%d'", _osr_bci); } if (_comp_level != CompLevel_highest_tier) { log->print(" level='%d'", _comp_level); } if (_is_blocking) { log->print(" blocking='1'"); } log->stamp(); } // ------------------------------------------------------------------ // CompileTask::log_task_queued void CompileTask::log_task_queued() { Thread* thread = Thread::current(); ttyLocker ttyl; ResourceMark rm(thread); xtty->begin_elem("task_queued"); log_task(xtty); if (_comment != NULL) { xtty->print(" comment='%s'", _comment); } if (_hot_method != NULL) { methodHandle hot(thread, (methodOop)JNIHandles::resolve(_hot_method)); methodHandle method(thread, (methodOop)JNIHandles::resolve(_method)); if (hot() != method()) { xtty->method(hot); } } if (_hot_count != 0) { xtty->print(" hot_count='%d'", _hot_count); } xtty->end_elem(); } // ------------------------------------------------------------------ // CompileTask::log_task_start void CompileTask::log_task_start(CompileLog* log) { log->begin_head("task"); log_task(log); log->end_head(); } // ------------------------------------------------------------------ // CompileTask::log_task_done void CompileTask::log_task_done(CompileLog* log) { Thread* thread = Thread::current(); methodHandle method(thread, (methodOop)JNIHandles::resolve(method_handle())); ResourceMark rm(thread); // nmethod* nm = code(); log->begin_elem("task_done success='%d' nmsize='%d' count='%d'", _is_success, nm == NULL ? 0 : nm->instructions_size(), method->invocation_count()); int bec = method->backedge_count(); if (bec != 0) log->print(" backedge_count='%d'", bec); // Note: "_is_complete" is about to be set, but is not. if (_num_inlined_bytecodes != 0) { log->print(" inlined_bytes='%d'", _num_inlined_bytecodes); } log->stamp(); log->end_elem(); log->tail("task"); log->clear_identities(); // next task will have different CI if (log->unflushed_count() > 2000) { log->flush(); } log->mark_file_end(); } // ------------------------------------------------------------------ // CompileQueue::add // // Add a CompileTask to a CompileQueue void CompileQueue::add(CompileTask* task) { assert(lock()->owned_by_self(), "must own lock"); task->set_next(NULL); if (_last == NULL) { // The compile queue is empty. assert(_first == NULL, "queue is empty"); _first = task; _last = task; } else { // Append the task to the queue. assert(_last->next() == NULL, "not last"); _last->set_next(task); _last = task; } // Mark the method as being in the compile queue. ((methodOop)JNIHandles::resolve(task->method_handle()))->set_queued_for_compilation(); if (CIPrintCompileQueue) { print(); } if (LogCompilation && xtty != NULL) { task->log_task_queued(); } // Notify CompilerThreads that a task is available. lock()->notify(); } // ------------------------------------------------------------------ // CompileQueue::get // // Get the next CompileTask from a CompileQueue CompileTask* CompileQueue::get() { MutexLocker locker(lock()); // Wait for an available CompileTask. while (_first == NULL) { // There is no work to be done right now. Wait. lock()->wait(); } CompileTask* task = _first; // Update queue first and last _first =_first->next(); if (_first == NULL) { _last = NULL; } return task; } // ------------------------------------------------------------------ // CompileQueue::print void CompileQueue::print() { tty->print_cr("Contents of %s", name()); tty->print_cr("----------------------"); CompileTask* task = _first; while (task != NULL) { task->print_line(); task = task->next(); } tty->print_cr("----------------------"); } CompilerCounters::CompilerCounters(const char* thread_name, int instance, TRAPS) { _current_method[0] = '\0'; _compile_type = CompileBroker::no_compile; if (UsePerfData) { ResourceMark rm; // create the thread instance name space string - don't create an // instance subspace if instance is -1 - keeps the adapterThread // counters from having a ".0" namespace. const char* thread_i = (instance == -1) ? thread_name : PerfDataManager::name_space(thread_name, instance); char* name = PerfDataManager::counter_name(thread_i, "method"); _perf_current_method = PerfDataManager::create_string_variable(SUN_CI, name, cmname_buffer_length, _current_method, CHECK); name = PerfDataManager::counter_name(thread_i, "type"); _perf_compile_type = PerfDataManager::create_variable(SUN_CI, name, PerfData::U_None, (jlong)_compile_type, CHECK); name = PerfDataManager::counter_name(thread_i, "time"); _perf_time = PerfDataManager::create_counter(SUN_CI, name, PerfData::U_Ticks, CHECK); name = PerfDataManager::counter_name(thread_i, "compiles"); _perf_compiles = PerfDataManager::create_counter(SUN_CI, name, PerfData::U_Events, CHECK); } } // ------------------------------------------------------------------ // CompileBroker::compilation_init // // Initialize the Compilation object void CompileBroker::compilation_init() { _last_method_compiled[0] = '\0'; // Set the interface to the current compiler(s). #ifdef COMPILER1 _compilers[0] = new Compiler(); #ifndef COMPILER2 _compilers[1] = _compilers[0]; #endif #endif // COMPILER1 #ifdef COMPILER2 _compilers[1] = new C2Compiler(); #ifndef COMPILER1 _compilers[0] = _compilers[1]; #endif #endif // COMPILER2 // Initialize the CompileTask free list _task_free_list = NULL; // Start the CompilerThreads init_compiler_threads(compiler_count()); // totalTime performance counter is always created as it is required // by the implementation of java.lang.management.CompilationMBean. { EXCEPTION_MARK; _perf_total_compilation = PerfDataManager::create_counter(JAVA_CI, "totalTime", PerfData::U_Ticks, CHECK); } if (UsePerfData) { EXCEPTION_MARK; // create the jvmstat performance counters _perf_osr_compilation = PerfDataManager::create_counter(SUN_CI, "osrTime", PerfData::U_Ticks, CHECK); _perf_standard_compilation = PerfDataManager::create_counter(SUN_CI, "standardTime", PerfData::U_Ticks, CHECK); _perf_total_bailout_count = PerfDataManager::create_counter(SUN_CI, "totalBailouts", PerfData::U_Events, CHECK); _perf_total_invalidated_count = PerfDataManager::create_counter(SUN_CI, "totalInvalidates", PerfData::U_Events, CHECK); _perf_total_compile_count = PerfDataManager::create_counter(SUN_CI, "totalCompiles", PerfData::U_Events, CHECK); _perf_total_osr_compile_count = PerfDataManager::create_counter(SUN_CI, "osrCompiles", PerfData::U_Events, CHECK); _perf_total_standard_compile_count = PerfDataManager::create_counter(SUN_CI, "standardCompiles", PerfData::U_Events, CHECK); _perf_sum_osr_bytes_compiled = PerfDataManager::create_counter(SUN_CI, "osrBytes", PerfData::U_Bytes, CHECK); _perf_sum_standard_bytes_compiled = PerfDataManager::create_counter(SUN_CI, "standardBytes", PerfData::U_Bytes, CHECK); _perf_sum_nmethod_size = PerfDataManager::create_counter(SUN_CI, "nmethodSize", PerfData::U_Bytes, CHECK); _perf_sum_nmethod_code_size = PerfDataManager::create_counter(SUN_CI, "nmethodCodeSize", PerfData::U_Bytes, CHECK); _perf_last_method = PerfDataManager::create_string_variable(SUN_CI, "lastMethod", CompilerCounters::cmname_buffer_length, "", CHECK); _perf_last_failed_method = PerfDataManager::create_string_variable(SUN_CI, "lastFailedMethod", CompilerCounters::cmname_buffer_length, "", CHECK); _perf_last_invalidated_method = PerfDataManager::create_string_variable(SUN_CI, "lastInvalidatedMethod", CompilerCounters::cmname_buffer_length, "", CHECK); _perf_last_compile_type = PerfDataManager::create_variable(SUN_CI, "lastType", PerfData::U_None, (jlong)CompileBroker::no_compile, CHECK); _perf_last_compile_size = PerfDataManager::create_variable(SUN_CI, "lastSize", PerfData::U_Bytes, (jlong)CompileBroker::no_compile, CHECK); _perf_last_failed_type = PerfDataManager::create_variable(SUN_CI, "lastFailedType", PerfData::U_None, (jlong)CompileBroker::no_compile, CHECK); _perf_last_invalidated_type = PerfDataManager::create_variable(SUN_CI, "lastInvalidatedType", PerfData::U_None, (jlong)CompileBroker::no_compile, CHECK); } _initialized = true; } // ------------------------------------------------------------------ // CompileBroker::make_compiler_thread CompilerThread* CompileBroker::make_compiler_thread(const char* name, CompileQueue* queue, CompilerCounters* counters, TRAPS) { CompilerThread* compiler_thread = NULL; klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_Thread(), true, CHECK_0); instanceKlassHandle klass (THREAD, k); instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_0); Handle string = java_lang_String::create_from_str(name, CHECK_0); // Initialize thread_oop to put it into the system threadGroup Handle thread_group (THREAD, Universe::system_thread_group()); JavaValue result(T_VOID); JavaCalls::call_special(&result, thread_oop, klass, vmSymbolHandles::object_initializer_name(), vmSymbolHandles::threadgroup_string_void_signature(), thread_group, string, CHECK_0); { MutexLocker mu(Threads_lock, THREAD); compiler_thread = new CompilerThread(queue, counters); // At this point the new CompilerThread data-races with this startup // thread (which I believe is the primoridal thread and NOT the VM // thread). This means Java bytecodes being executed at startup can // queue compile jobs which will run at whatever default priority the // newly created CompilerThread runs at. // At this point it may be possible that no osthread was created for the // JavaThread due to lack of memory. We would have to throw an exception // in that case. However, since this must work and we do not allow // exceptions anyway, check and abort if this fails. if (compiler_thread == NULL || compiler_thread->osthread() == NULL){ vm_exit_during_initialization("java.lang.OutOfMemoryError", "unable to create new native thread"); } java_lang_Thread::set_thread(thread_oop(), compiler_thread); // Note that this only sets the JavaThread _priority field, which by // definition is limited to Java priorities and not OS priorities. // The os-priority is set in the CompilerThread startup code itself java_lang_Thread::set_priority(thread_oop(), NearMaxPriority); // CLEANUP PRIORITIES: This -if- statement hids a bug whereby the compiler // threads never have their OS priority set. The assumption here is to // enable the Performance group to do flag tuning, figure out a suitable // CompilerThreadPriority, and then remove this 'if' statement (and // comment) and unconditionally set the priority. // Compiler Threads should be at the highest Priority if ( CompilerThreadPriority != -1 ) os::set_native_priority( compiler_thread, CompilerThreadPriority ); else os::set_native_priority( compiler_thread, os::java_to_os_priority[NearMaxPriority]); // Note that I cannot call os::set_priority because it expects Java // priorities and I am *explicitly* using OS priorities so that it's // possible to set the compiler thread priority higher than any Java // thread. java_lang_Thread::set_daemon(thread_oop()); compiler_thread->set_threadObj(thread_oop()); Threads::add(compiler_thread); Thread::start(compiler_thread); } // Let go of Threads_lock before yielding os::yield(); // make sure that the compiler thread is started early (especially helpful on SOLARIS) return compiler_thread; } // ------------------------------------------------------------------ // CompileBroker::init_compiler_threads // // Initialize the compilation queue void CompileBroker::init_compiler_threads(int compiler_count) { EXCEPTION_MARK; _method_queue = new CompileQueue("MethodQueue", MethodCompileQueue_lock); _method_threads = new (ResourceObj::C_HEAP) GrowableArray(compiler_count, true); char name_buffer[256]; int i; for (i = 0; i < compiler_count; i++) { // Create a name for our thread. sprintf(name_buffer, "CompilerThread%d", i); CompilerCounters* counters = new CompilerCounters("compilerThread", i, CHECK); CompilerThread* new_thread = make_compiler_thread(name_buffer, _method_queue, counters, CHECK); _method_threads->append(new_thread); } if (UsePerfData) { PerfDataManager::create_constant(SUN_CI, "threads", PerfData::U_Bytes, compiler_count, CHECK); } } // ------------------------------------------------------------------ // CompileBroker::is_idle bool CompileBroker::is_idle() { if (!_method_queue->is_empty()) { return false; } else { int num_threads = _method_threads->length(); for (int i=0; iat(i)->task() != NULL) { return false; } } // No pending or active compilations. return true; } } // ------------------------------------------------------------------ // CompileBroker::compile_method // // Request compilation of a method. void CompileBroker::compile_method_base(methodHandle method, int osr_bci, int comp_level, methodHandle hot_method, int hot_count, const char* comment, TRAPS) { // do nothing if compiler thread(s) is not available if (!_initialized ) { return; } guarantee(!method->is_abstract(), "cannot compile abstract methods"); assert(method->method_holder()->klass_part()->oop_is_instance(), "sanity check"); assert(!instanceKlass::cast(method->method_holder())->is_not_initialized(), "method holder must be initialized"); if (CIPrintRequests) { tty->print("request: "); method->print_short_name(tty); if (osr_bci != InvocationEntryBci) { tty->print(" osr_bci: %d", osr_bci); } tty->print(" comment: %s count: %d", comment, hot_count); if (!hot_method.is_null()) { tty->print(" hot: "); if (hot_method() != method()) { hot_method->print_short_name(tty); } else { tty->print("yes"); } } tty->cr(); } // A request has been made for compilation. Before we do any // real work, check to see if the method has been compiled // in the meantime with a definitive result. if (compilation_is_complete(method, osr_bci, comp_level)) { return; } // If this method is already in the compile queue, then // we do not block the current thread. if (compilation_is_in_queue(method, osr_bci)) { // We may want to decay our counter a bit here to prevent // multiple denied requests for compilation. This is an // open compilation policy issue. Note: The other possibility, // in the case that this is a blocking compile request, is to have // all subsequent blocking requesters wait for completion of // ongoing compiles. Note that in this case we'll need a protocol // for freeing the associated compile tasks. [Or we could have // a single static monitor on which all these waiters sleep.] return; } // Outputs from the following MutexLocker block: CompileTask* task = NULL; bool blocking = false; // Acquire our lock. { MutexLocker locker(_method_queue->lock(), THREAD); // Make sure the method has not slipped into the queues since // last we checked; note that those checks were "fast bail-outs". // Here we need to be more careful, see 14012000 below. if (compilation_is_in_queue(method, osr_bci)) { return; } // We need to check again to see if the compilation has // completed. A previous compilation may have registered // some result. if (compilation_is_complete(method, osr_bci, comp_level)) { return; } // We now know that this compilation is not pending, complete, // or prohibited. Assign a compile_id to this compilation // and check to see if it is in our [Start..Stop) range. uint compile_id = assign_compile_id(method, osr_bci); if (compile_id == 0) { // The compilation falls outside the allowed range. return; } // Should this thread wait for completion of the compile? blocking = is_compile_blocking(method, osr_bci); // We will enter the compilation in the queue. // 14012000: Note that this sets the queued_for_compile bits in // the target method. We can now reason that a method cannot be // queued for compilation more than once, as follows: // Before a thread queues a task for compilation, it first acquires // the compile queue lock, then checks if the method's queued bits // are set or it has already been compiled. Thus there can not be two // instances of a compilation task for the same method on the // compilation queue. Consider now the case where the compilation // thread has already removed a task for that method from the queue // and is in the midst of compiling it. In this case, the // queued_for_compile bits must be set in the method (and these // will be visible to the current thread, since the bits were set // under protection of the compile queue lock, which we hold now. // When the compilation completes, the compiler thread first sets // the compilation result and then clears the queued_for_compile // bits. Neither of these actions are protected by a barrier (or done // under the protection of a lock), so the only guarantee we have // (on machines with TSO (Total Store Order)) is that these values // will update in that order. As a result, the only combinations of // these bits that the current thread will see are, in temporal order: // : // <0, 1> : in compile queue, but not yet compiled // <1, 1> : compiled but queue bit not cleared // <1, 0> : compiled and queue bit cleared // Because we first check the queue bits then check the result bits, // we are assured that we cannot introduce a duplicate task. // Note that if we did the tests in the reverse order (i.e. check // result then check queued bit), we could get the result bit before // the compilation completed, and the queue bit after the compilation // completed, and end up introducing a "duplicate" (redundant) task. // In that case, the compiler thread should first check if a method // has already been compiled before trying to compile it. // NOTE: in the event that there are multiple compiler threads and // there is de-optimization/recompilation, things will get hairy, // and in that case it's best to protect both the testing (here) of // these bits, and their updating (here and elsewhere) under a // common lock. task = create_compile_task(_method_queue, compile_id, method, osr_bci, comp_level, hot_method, hot_count, comment, blocking); } if (blocking) { wait_for_completion(task); } } nmethod* CompileBroker::compile_method(methodHandle method, int osr_bci, methodHandle hot_method, int hot_count, const char* comment, TRAPS) { // make sure arguments make sense assert(method->method_holder()->klass_part()->oop_is_instance(), "not an instance method"); assert(osr_bci == InvocationEntryBci || (0 <= osr_bci && osr_bci < method->code_size()), "bci out of range"); assert(!method->is_abstract() && (osr_bci == InvocationEntryBci || !method->is_native()), "cannot compile abstract/native methods"); assert(!instanceKlass::cast(method->method_holder())->is_not_initialized(), "method holder must be initialized"); int comp_level = CompilationPolicy::policy()->compilation_level(method, osr_bci); #ifdef TIERED if (TieredCompilation && StressTieredRuntime) { static int flipper = 0; if (is_even(flipper++)) { comp_level = CompLevel_fast_compile; } else { comp_level = CompLevel_full_optimization; } } #ifdef SPARC // QQQ FIX ME // C2 only returns long results in G1 and c1 doesn't understand so disallow c2 // compiles of long results if (TieredCompilation && method()->result_type() == T_LONG) { comp_level = CompLevel_fast_compile; } #endif // SPARC #endif // TIERED // return quickly if possible // lock, make sure that the compilation // isn't prohibited in a straightforward way. if (compiler(comp_level) == NULL || compilation_is_prohibited(method, osr_bci, comp_level)) { return NULL; } if (osr_bci == InvocationEntryBci) { // standard compilation nmethod* method_code = method->code(); if (method_code != NULL #ifdef TIERED && ( method_code->is_compiled_by_c2() || comp_level == CompLevel_fast_compile ) #endif // TIERED ) { return method_code; } if (method->is_not_compilable(comp_level)) return NULL; } else { // osr compilation #ifndef TIERED // seems like an assert of dubious value assert(comp_level == CompLevel_full_optimization, "all OSR compiles are assumed to be at a single compilation lavel"); #endif // TIERED nmethod* nm = method->lookup_osr_nmethod_for(osr_bci); if (nm != NULL) return nm; if (method->is_not_osr_compilable()) return NULL; } assert(!HAS_PENDING_EXCEPTION, "No exception should be present"); // some prerequisites that are compiler specific if (compiler(comp_level)->is_c2()) { method->constants()->resolve_string_constants(CHECK_0); // Resolve all classes seen in the signature of the method // we are compiling. methodOopDesc::load_signature_classes(method, CHECK_0); } // If the method is native, do the lookup in the thread requesting // the compilation. Native lookups can load code, which is not // permitted during compilation. // // Note: A native method implies non-osr compilation which is // checked with an assertion at the entry of this method. if (method->is_native()) { bool in_base_library; address adr = NativeLookup::lookup(method, in_base_library, THREAD); if (HAS_PENDING_EXCEPTION) { // In case of an exception looking up the method, we just forget // about it. The interpreter will kick-in and throw the exception. method->set_not_compilable(); // implies is_not_osr_compilable() CLEAR_PENDING_EXCEPTION; return NULL; } assert(method->has_native_function(), "must have native code by now"); } // RedefineClasses() has replaced this method; just return if (method->is_old()) { return NULL; } // JVMTI -- post_compile_event requires jmethod_id() that may require // a lock the compiling thread can not acquire. Prefetch it here. if (JvmtiExport::should_post_compiled_method_load()) { method->jmethod_id(); } // do the compilation if (method->is_native()) { if (!PreferInterpreterNativeStubs) { (void) AdapterHandlerLibrary::create_native_wrapper(method); } else { return NULL; } } else { compile_method_base(method, osr_bci, comp_level, hot_method, hot_count, comment, CHECK_0); } // return requested nmethod return osr_bci == InvocationEntryBci ? method->code() : method->lookup_osr_nmethod_for(osr_bci); } // ------------------------------------------------------------------ // CompileBroker::compilation_is_complete // // See if compilation of this method is already complete. bool CompileBroker::compilation_is_complete(methodHandle method, int osr_bci, int comp_level) { bool is_osr = (osr_bci != standard_entry_bci); if (is_osr) { if (method->is_not_osr_compilable()) { return true; } else { nmethod* result = method->lookup_osr_nmethod_for(osr_bci); return (result != NULL); } } else { if (method->is_not_compilable(comp_level)) { return true; } else { nmethod* result = method->code(); if (result == NULL) return false; #ifdef TIERED if (comp_level == CompLevel_fast_compile) { // At worst the code is from c1 return true; } // comp level must be full opt return result->is_compiled_by_c2(); #endif // TIERED return true; } } } // ------------------------------------------------------------------ // CompileBroker::compilation_is_in_queue // // See if this compilation is already requested. // // Implementation note: there is only a single "is in queue" bit // for each method. This means that the check below is overly // conservative in the sense that an osr compilation in the queue // will block a normal compilation from entering the queue (and vice // versa). This can be remedied by a full queue search to disambiguate // cases. If it is deemed profitible, this may be done. bool CompileBroker::compilation_is_in_queue(methodHandle method, int osr_bci) { return method->queued_for_compilation(); } // ------------------------------------------------------------------ // CompileBroker::compilation_is_prohibited // // See if this compilation is not allowed. bool CompileBroker::compilation_is_prohibited(methodHandle method, int osr_bci, int comp_level) { bool is_native = method->is_native(); // Some compilers may not support the compilation of natives. // QQQ this needs some work ought to only record not compilable at // the specified level if (is_native && (!CICompileNatives || !compiler(comp_level)->supports_native())) { method->set_not_compilable(); return true; } bool is_osr = (osr_bci != standard_entry_bci); // Some compilers may not support on stack replacement. if (is_osr && (!CICompileOSR || !compiler(comp_level)->supports_osr())) { method->set_not_osr_compilable(); return true; } // The method may be explicitly excluded by the user. bool quietly; if (CompilerOracle::should_exclude(method, quietly)) { if (!quietly) { // This does not happen quietly... ResourceMark rm; tty->print("### Excluding %s:%s", method->is_native() ? "generation of native wrapper" : "compile", (method->is_static() ? " static" : "")); method->print_short_name(tty); tty->cr(); } method->set_not_compilable(); } return false; } // ------------------------------------------------------------------ // CompileBroker::assign_compile_id // // Assign a serialized id number to this compilation request. If the // number falls out of the allowed range, return a 0. OSR // compilations may be numbered separately from regular compilations // if certain debugging flags are used. uint CompileBroker::assign_compile_id(methodHandle method, int osr_bci) { assert(_method_queue->lock()->owner() == JavaThread::current(), "must hold the compilation queue lock"); bool is_osr = (osr_bci != standard_entry_bci); assert(!method->is_native(), "no longer compile natives"); uint id; if (CICountOSR && is_osr) { id = ++_osr_compilation_id; if ((uint)CIStartOSR <= id && id < (uint)CIStopOSR) { return id; } } else { id = ++_compilation_id; if ((uint)CIStart <= id && id < (uint)CIStop) { return id; } } // Method was not in the appropriate compilation range. method->set_not_compilable(); return 0; } // ------------------------------------------------------------------ // CompileBroker::is_compile_blocking // // Should the current thread be blocked until this compilation request // has been fulfilled? bool CompileBroker::is_compile_blocking(methodHandle method, int osr_bci) { return !BackgroundCompilation; } // ------------------------------------------------------------------ // CompileBroker::preload_classes void CompileBroker::preload_classes(methodHandle method, TRAPS) { // Move this code over from c1_Compiler.cpp ShouldNotReachHere(); } // ------------------------------------------------------------------ // CompileBroker::create_compile_task // // Create a CompileTask object representing the current request for // compilation. Add this task to the queue. CompileTask* CompileBroker::create_compile_task(CompileQueue* queue, int compile_id, methodHandle method, int osr_bci, int comp_level, methodHandle hot_method, int hot_count, const char* comment, bool blocking) { CompileTask* new_task = allocate_task(); new_task->initialize(compile_id, method, osr_bci, comp_level, hot_method, hot_count, comment, blocking); queue->add(new_task); return new_task; } // ------------------------------------------------------------------ // CompileBroker::allocate_task // // Allocate a CompileTask, from the free list if possible. CompileTask* CompileBroker::allocate_task() { MutexLocker locker(CompileTaskAlloc_lock); CompileTask* task = NULL; if (_task_free_list != NULL) { task = _task_free_list; _task_free_list = task->next(); task->set_next(NULL); } else { task = new CompileTask(); task->set_next(NULL); } return task; } // ------------------------------------------------------------------ // CompileBroker::free_task // // Add a task to the free list. void CompileBroker::free_task(CompileTask* task) { MutexLocker locker(CompileTaskAlloc_lock); task->free(); task->set_next(_task_free_list); _task_free_list = task; } // ------------------------------------------------------------------ // CompileBroker::wait_for_completion // // Wait for the given method CompileTask to complete. void CompileBroker::wait_for_completion(CompileTask* task) { if (CIPrintCompileQueue) { tty->print_cr("BLOCKING FOR COMPILE"); } assert(task->is_blocking(), "can only wait on blocking task"); JavaThread *thread = JavaThread::current(); thread->set_blocked_on_compilation(true); methodHandle method(thread, (methodOop)JNIHandles::resolve(task->method_handle())); { MutexLocker waiter(task->lock(), thread); while (!task->is_complete()) task->lock()->wait(); } // It is harmless to check this status without the lock, because // completion is a stable property (until the task object is recycled). assert(task->is_complete(), "Compilation should have completed"); assert(task->code_handle() == NULL, "must be reset"); thread->set_blocked_on_compilation(false); // By convention, the waiter is responsible for recycling a // blocking CompileTask. Since there is only one waiter ever // waiting on a CompileTask, we know that no one else will // be using this CompileTask; we can free it. free_task(task); } // ------------------------------------------------------------------ // CompileBroker::compiler_thread_loop // // The main loop run by a CompilerThread. void CompileBroker::compiler_thread_loop() { CompilerThread* thread = CompilerThread::current(); CompileQueue* queue = thread->queue(); // For the thread that initializes the ciObjectFactory // this resource mark holds all the shared objects ResourceMark rm; // First thread to get here will initialize the compiler interface if (!ciObjectFactory::is_initialized()) { ASSERT_IN_VM; MutexLocker only_one (CompileThread_lock, thread); if (!ciObjectFactory::is_initialized()) { ciObjectFactory::initialize(); } } // Open a log. if (LogCompilation) { init_compiler_thread_log(); } CompileLog* log = thread->log(); if (log != NULL) { log->begin_elem("start_compile_thread thread='" UINTX_FORMAT "' process='%d'", os::current_thread_id(), os::current_process_id()); log->stamp(); log->end_elem(); } while (true) { { // We need this HandleMark to avoid leaking VM handles. HandleMark hm(thread); if (CodeCache::unallocated_capacity() < CodeCacheMinimumFreeSpace) { // The CodeCache is full. Print out warning and disable compilation. UseInterpreter = true; if (UseCompiler || AlwaysCompileLoopMethods ) { if (log != NULL) { log->begin_elem("code_cache_full"); log->stamp(); log->end_elem(); } #ifndef PRODUCT warning("CodeCache is full. Compiler has been disabled"); if (CompileTheWorld || ExitOnFullCodeCache) { before_exit(thread); exit_globals(); // will delete tty vm_direct_exit(CompileTheWorld ? 0 : 1); } #endif UseCompiler = false; AlwaysCompileLoopMethods = false; } } CompileTask* task = queue->get(); // Give compiler threads an extra quanta. They tend to be bursty and // this helps the compiler to finish up the job. if( CompilerThreadHintNoPreempt ) os::hint_no_preempt(); // trace per thread time and compile statistics CompilerCounters* counters = ((CompilerThread*)thread)->counters(); PerfTraceTimedEvent(counters->time_counter(), counters->compile_counter()); // Assign the task to the current thread. Mark this compilation // thread as active for the profiler. CompileTaskWrapper ctw(task); nmethodLocker result_handle; // (handle for the nmethod produced by this task) task->set_code_handle(&result_handle); methodHandle method(thread, (methodOop)JNIHandles::resolve(task->method_handle())); // Never compile a method if breakpoints are present in it if (method()->number_of_breakpoints() == 0) { // Compile the method. if (UseCompiler || AlwaysCompileLoopMethods) { #ifdef COMPILER1 // Allow repeating compilations for the purpose of benchmarking // compile speed. This is not useful for customers. if (CompilationRepeat != 0) { int compile_count = CompilationRepeat; while (compile_count > 0) { invoke_compiler_on_method(task); nmethod* nm = method->code(); if (nm != NULL) { nm->make_zombie(); method->clear_code(); } compile_count--; } } #endif /* COMPILER1 */ invoke_compiler_on_method(task); } else { // After compilation is disabled, remove remaining methods from queue method->clear_queued_for_compilation(); } } } } } // ------------------------------------------------------------------ // CompileBroker::init_compiler_thread_log // // Set up state required by +LogCompilation. void CompileBroker::init_compiler_thread_log() { CompilerThread* thread = CompilerThread::current(); char fileBuf[4*K]; FILE* fp = NULL; char* file = NULL; intx thread_id = os::current_thread_id(); for (int try_temp_dir = 1; try_temp_dir >= 0; try_temp_dir--) { const char* dir = (try_temp_dir ? os::get_temp_directory() : NULL); if (dir == NULL) dir = ""; sprintf(fileBuf, "%shs_c" UINTX_FORMAT "_pid%u.log", dir, thread_id, os::current_process_id()); fp = fopen(fileBuf, "at"); if (fp != NULL) { file = NEW_C_HEAP_ARRAY(char, strlen(fileBuf)+1); strcpy(file, fileBuf); break; } } if (fp == NULL) { warning("Cannot open log file: %s", fileBuf); } else { if (LogCompilation && Verbose) tty->print_cr("Opening compilation log %s", file); CompileLog* log = new(ResourceObj::C_HEAP) CompileLog(file, fp, thread_id); thread->init_log(log); if (xtty != NULL) { ttyLocker ttyl; // Record any per thread log files xtty->elem("thread_logfile thread='%d' filename='%s'", thread_id, file); } } } // ------------------------------------------------------------------ // CompileBroker::set_should_block // // Set _should_block. // Call this from the VM, with Threads_lock held and a safepoint requested. void CompileBroker::set_should_block() { assert(Threads_lock->owner() == Thread::current(), "must have threads lock"); assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint already"); #ifndef PRODUCT if (PrintCompilation && (Verbose || WizardMode)) tty->print_cr("notifying compiler thread pool to block"); #endif _should_block = true; } // ------------------------------------------------------------------ // CompileBroker::maybe_block // // Call this from the compiler at convenient points, to poll for _should_block. void CompileBroker::maybe_block() { if (_should_block) { #ifndef PRODUCT if (PrintCompilation && (Verbose || WizardMode)) tty->print_cr("compiler thread " INTPTR_FORMAT " poll detects block request", Thread::current()); #endif ThreadInVMfromNative tivfn(JavaThread::current()); } } // ------------------------------------------------------------------ // CompileBroker::invoke_compiler_on_method // // Compile a method. // void CompileBroker::invoke_compiler_on_method(CompileTask* task) { if (PrintCompilation) { ResourceMark rm; task->print_line(); } elapsedTimer time; CompilerThread* thread = CompilerThread::current(); ResourceMark rm(thread); // Common flags. uint compile_id = task->compile_id(); int osr_bci = task->osr_bci(); bool is_osr = (osr_bci != standard_entry_bci); bool should_log = (thread->log() != NULL); bool should_break = false; { // create the handle inside it's own block so it can't // accidentally be referenced once the thread transitions to // native. The NoHandleMark before the transition should catch // any cases where this occurs in the future. methodHandle method(thread, (methodOop)JNIHandles::resolve(task->method_handle())); should_break = check_break_at(method, compile_id, is_osr); if (should_log && !CompilerOracle::should_log(method)) { should_log = false; } assert(!method->is_native(), "no longer compile natives"); // Save information about this method in case of failure. set_last_compile(thread, method, is_osr, task->comp_level()); DTRACE_METHOD_COMPILE_BEGIN_PROBE(compiler(task->comp_level()), method); } // Allocate a new set of JNI handles. push_jni_handle_block(); jobject target_handle = JNIHandles::make_local(thread, JNIHandles::resolve(task->method_handle())); int compilable = ciEnv::MethodCompilable; { int system_dictionary_modification_counter; { MutexLocker locker(Compile_lock, thread); system_dictionary_modification_counter = SystemDictionary::number_of_modifications(); } NoHandleMark nhm; ThreadToNativeFromVM ttn(thread); ciEnv ci_env(task, system_dictionary_modification_counter); if (should_break) { ci_env.set_break_at_compile(true); } if (should_log) { ci_env.set_log(thread->log()); } assert(thread->env() == &ci_env, "set by ci_env"); // The thread-env() field is cleared in ~CompileTaskWrapper. // Cache Jvmti state ci_env.cache_jvmti_state(); // Cache DTrace flags ci_env.cache_dtrace_flags(); ciMethod* target = ci_env.get_method_from_handle(target_handle); TraceTime t1("compilation", &time); compiler(task->comp_level())->compile_method(&ci_env, target, osr_bci); if (!ci_env.failing() && task->code() == NULL) { //assert(false, "compiler should always document failure"); // The compiler elected, without comment, not to register a result. // Do not attempt further compilations of this method. ci_env.record_method_not_compilable("compile failed"); } if (ci_env.failing()) { // Copy this bit to the enclosing block: compilable = ci_env.compilable(); if (PrintCompilation) { const char* reason = ci_env.failure_reason(); if (compilable == ciEnv::MethodCompilable_not_at_tier) { if (is_highest_tier_compile(ci_env.comp_level())) { // Already at highest tier, promote to not compilable. compilable = ciEnv::MethodCompilable_never; } else { tty->print_cr("%3d COMPILE SKIPPED: %s (retry at different tier)", compile_id, reason); } } if (compilable == ciEnv::MethodCompilable_never) { tty->print_cr("%3d COMPILE SKIPPED: %s (not retryable)", compile_id, reason); } else if (compilable == ciEnv::MethodCompilable) { tty->print_cr("%3d COMPILE SKIPPED: %s", compile_id, reason); } } } else { task->mark_success(); task->set_num_inlined_bytecodes(ci_env.num_inlined_bytecodes()); } } pop_jni_handle_block(); methodHandle method(thread, (methodOop)JNIHandles::resolve(task->method_handle())); DTRACE_METHOD_COMPILE_END_PROBE(compiler(task->comp_level()), method, task->is_success()); collect_statistics(thread, time, task); if (compilable == ciEnv::MethodCompilable_never) { if (is_osr) { method->set_not_osr_compilable(); } else { method->set_not_compilable(); } } else if (compilable == ciEnv::MethodCompilable_not_at_tier) { method->set_not_compilable(task->comp_level()); } // Note that the queued_for_compilation bits are cleared without // protection of a mutex. [They were set by the requester thread, // when adding the task to the complie queue -- at which time the // compile queue lock was held. Subsequently, we acquired the compile // queue lock to get this task off the compile queue; thus (to belabour // the point somewhat) our clearing of the bits must be occurring // only after the setting of the bits. See also 14012000 above. method->clear_queued_for_compilation(); #ifdef ASSERT if (CollectedHeap::fired_fake_oom()) { // The current compile received a fake OOM during compilation so // go ahead and exit the VM since the test apparently succeeded tty->print_cr("*** Shutting down VM after successful fake OOM"); vm_exit(0); } #endif } // ------------------------------------------------------------------ // CompileBroker::set_last_compile // // Record this compilation for debugging purposes. void CompileBroker::set_last_compile(CompilerThread* thread, methodHandle method, bool is_osr, int comp_level) { ResourceMark rm; char* method_name = method->name()->as_C_string(); strncpy(_last_method_compiled, method_name, CompileBroker::name_buffer_length); char current_method[CompilerCounters::cmname_buffer_length]; size_t maxLen = CompilerCounters::cmname_buffer_length; if (UsePerfData) { const char* class_name = method->method_holder()->klass_part()->name()->as_C_string(); size_t s1len = strlen(class_name); size_t s2len = strlen(method_name); // check if we need to truncate the string if (s1len + s2len + 2 > maxLen) { // the strategy is to lop off the leading characters of the // class name and the trailing characters of the method name. if (s2len + 2 > maxLen) { // lop of the entire class name string, let snprintf handle // truncation of the method name. class_name += s1len; // null string } else { // lop off the extra characters from the front of the class name class_name += ((s1len + s2len + 2) - maxLen); } } jio_snprintf(current_method, maxLen, "%s %s", class_name, method_name); } if (CICountOSR && is_osr) { _last_compile_type = osr_compile; } else { _last_compile_type = normal_compile; } _last_compile_level = comp_level; if (UsePerfData) { CompilerCounters* counters = thread->counters(); counters->set_current_method(current_method); counters->set_compile_type((jlong)_last_compile_type); } } // ------------------------------------------------------------------ // CompileBroker::push_jni_handle_block // // Push on a new block of JNI handles. void CompileBroker::push_jni_handle_block() { JavaThread* thread = JavaThread::current(); // Allocate a new block for JNI handles. // Inlined code from jni_PushLocalFrame() JNIHandleBlock* java_handles = thread->active_handles(); JNIHandleBlock* compile_handles = JNIHandleBlock::allocate_block(thread); assert(compile_handles != NULL && java_handles != NULL, "should not be NULL"); compile_handles->set_pop_frame_link(java_handles); // make sure java handles get gc'd. thread->set_active_handles(compile_handles); } // ------------------------------------------------------------------ // CompileBroker::pop_jni_handle_block // // Pop off the current block of JNI handles. void CompileBroker::pop_jni_handle_block() { JavaThread* thread = JavaThread::current(); // Release our JNI handle block JNIHandleBlock* compile_handles = thread->active_handles(); JNIHandleBlock* java_handles = compile_handles->pop_frame_link(); thread->set_active_handles(java_handles); compile_handles->set_pop_frame_link(NULL); JNIHandleBlock::release_block(compile_handles, thread); // may block } // ------------------------------------------------------------------ // CompileBroker::check_break_at // // Should the compilation break at the current compilation. bool CompileBroker::check_break_at(methodHandle method, int compile_id, bool is_osr) { if (CICountOSR && is_osr && (compile_id == CIBreakAtOSR)) { return true; } else if( CompilerOracle::should_break_at(method) ) { // break when compiling return true; } else { return (compile_id == CIBreakAt); } } // ------------------------------------------------------------------ // CompileBroker::collect_statistics // // Collect statistics about the compilation. void CompileBroker::collect_statistics(CompilerThread* thread, elapsedTimer time, CompileTask* task) { bool success = task->is_success(); methodHandle method (thread, (methodOop)JNIHandles::resolve(task->method_handle())); uint compile_id = task->compile_id(); bool is_osr = (task->osr_bci() != standard_entry_bci); nmethod* code = task->code(); CompilerCounters* counters = thread->counters(); assert(code == NULL || code->is_locked_by_vm(), "will survive the MutexLocker"); MutexLocker locker(CompileStatistics_lock); // _perf variables are production performance counters which are // updated regardless of the setting of the CITime and CITimeEach flags // if (!success) { _total_bailout_count++; if (UsePerfData) { _perf_last_failed_method->set_value(counters->current_method()); _perf_last_failed_type->set_value(counters->compile_type()); _perf_total_bailout_count->inc(); } } else if (code == NULL) { if (UsePerfData) { _perf_last_invalidated_method->set_value(counters->current_method()); _perf_last_invalidated_type->set_value(counters->compile_type()); _perf_total_invalidated_count->inc(); } _total_invalidated_count++; } else { // Compilation succeeded // update compilation ticks - used by the implementation of // java.lang.management.CompilationMBean _perf_total_compilation->inc(time.ticks()); if (CITime) { _t_total_compilation.add(time); if (is_osr) { _t_osr_compilation.add(time); _sum_osr_bytes_compiled += method->code_size() + task->num_inlined_bytecodes(); } else { _t_standard_compilation.add(time); _sum_standard_bytes_compiled += method->code_size() + task->num_inlined_bytecodes(); } } if (UsePerfData) { // save the name of the last method compiled _perf_last_method->set_value(counters->current_method()); _perf_last_compile_type->set_value(counters->compile_type()); _perf_last_compile_size->set_value(method->code_size() + task->num_inlined_bytecodes()); if (is_osr) { _perf_osr_compilation->inc(time.ticks()); _perf_sum_osr_bytes_compiled->inc(method->code_size() + task->num_inlined_bytecodes()); } else { _perf_standard_compilation->inc(time.ticks()); _perf_sum_standard_bytes_compiled->inc(method->code_size() + task->num_inlined_bytecodes()); } } if (CITimeEach) { float bytes_per_sec = 1.0 * (method->code_size() + task->num_inlined_bytecodes()) / time.seconds(); tty->print_cr("%3d seconds: %f bytes/sec : %f (bytes %d + %d inlined)", compile_id, time.seconds(), bytes_per_sec, method->code_size(), task->num_inlined_bytecodes()); } // Collect counts of successful compilations _sum_nmethod_size += code->total_size(); _sum_nmethod_code_size += code->code_size(); _total_compile_count++; if (UsePerfData) { _perf_sum_nmethod_size->inc(code->total_size()); _perf_sum_nmethod_code_size->inc(code->code_size()); _perf_total_compile_count->inc(); } if (is_osr) { if (UsePerfData) _perf_total_osr_compile_count->inc(); _total_osr_compile_count++; } else { if (UsePerfData) _perf_total_standard_compile_count->inc(); _total_standard_compile_count++; } } // set the current method for the thread to null if (UsePerfData) counters->set_current_method(""); } void CompileBroker::print_times() { tty->cr(); tty->print_cr("Accumulated compiler times (for compiled methods only)"); tty->print_cr("------------------------------------------------"); //0000000000111111111122222222223333333333444444444455555555556666666666 //0123456789012345678901234567890123456789012345678901234567890123456789 tty->print_cr(" Total compilation time : %6.3f s", CompileBroker::_t_total_compilation.seconds()); tty->print_cr(" Standard compilation : %6.3f s, Average : %2.3f", CompileBroker::_t_standard_compilation.seconds(), CompileBroker::_t_standard_compilation.seconds() / CompileBroker::_total_standard_compile_count); tty->print_cr(" On stack replacement : %6.3f s, Average : %2.3f", CompileBroker::_t_osr_compilation.seconds(), CompileBroker::_t_osr_compilation.seconds() / CompileBroker::_total_osr_compile_count); compiler(CompLevel_fast_compile)->print_timers(); if (compiler(CompLevel_fast_compile) != compiler(CompLevel_highest_tier)) { compiler(CompLevel_highest_tier)->print_timers(); } tty->cr(); int tcb = CompileBroker::_sum_osr_bytes_compiled + CompileBroker::_sum_standard_bytes_compiled; tty->print_cr(" Total compiled bytecodes : %6d bytes", tcb); tty->print_cr(" Standard compilation : %6d bytes", CompileBroker::_sum_standard_bytes_compiled); tty->print_cr(" On stack replacement : %6d bytes", CompileBroker::_sum_osr_bytes_compiled); int bps = (int)(tcb / CompileBroker::_t_total_compilation.seconds()); tty->print_cr(" Average compilation speed: %6d bytes/s", bps); tty->cr(); tty->print_cr(" nmethod code size : %6d bytes", CompileBroker::_sum_nmethod_code_size); tty->print_cr(" nmethod total size : %6d bytes", CompileBroker::_sum_nmethod_size); } // Debugging output for failure void CompileBroker::print_last_compile() { if ( _last_compile_level != CompLevel_none && compiler(_last_compile_level) != NULL && _last_method_compiled != NULL && _last_compile_type != no_compile) { if (_last_compile_type == osr_compile) { tty->print_cr("Last parse: [osr]%d+++(%d) %s", _osr_compilation_id, _last_compile_level, _last_method_compiled); } else { tty->print_cr("Last parse: %d+++(%d) %s", _compilation_id, _last_compile_level, _last_method_compiled); } } } void CompileBroker::print_compiler_threads_on(outputStream* st) { #ifndef PRODUCT st->print_cr("Compiler thread printing unimplemented."); st->cr(); #endif }