/* * Copyright (c) 2022, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ /** * @test * @bug 8290034 * @summary Auto-vectorization of Reverse bit operation. * @requires vm.compiler2.enabled * @requires os.arch=="amd64" | os.arch=="x86_64" * @library /test/lib / * @run driver compiler.vectorization.TestReverseBitsVector */ package compiler.vectorization; import compiler.lib.ir_framework.*; import java.util.Random; public class TestReverseBitsVector { private static final int ARRLEN = 1024; private static final int ITERS = 11000; private static long [] linp; private static long [] lout; private static int [] iinp; private static int [] iout; private static short [] sinp; private static short [] sout; private static char [] cinp; private static char [] cout; public static void setup() { Random r = new Random(1024); linp = new long[ARRLEN]; lout = new long[ARRLEN]; iinp = new int[ARRLEN]; iout = new int[ARRLEN]; sinp = new short[ARRLEN]; sout = new short[ARRLEN]; cinp = new char[ARRLEN]; cout = new char[ARRLEN]; for(int i = 0; i < ARRLEN; i++) { linp[i] = r.nextLong(); iinp[i] = r.nextInt(); sinp[i] = (short)r.nextInt(); cinp[i] = (char)r.nextInt(); } } public static void main(String args[]) { setup(); TestFramework.runWithFlags("-XX:-TieredCompilation"); System.out.println("PASSED"); } @Test @IR(applyIfCPUFeature={"avx2", "true"}, counts = {IRNode.REVERSE_V , " > 0 "}) public void test_reverse_long1(long[] lout, long[] linp) { for (int i = 0; i < lout.length; i+=1) { lout[i] = Long.reverse(linp[i]); } } @Run(test = {"test_reverse_long1"}, mode = RunMode.STANDALONE) public void kernel_test_reverse_long1() { setup(); for (int i = 0; i < ITERS; i++) { test_reverse_long1(lout , linp); } } @Test @IR(applyIfCPUFeature={"avx2", "true"}, failOn = {IRNode.REVERSE_V , IRNode.REVERSE_L}) public void test_reverse_long2(long[] lout, long[] linp) { for (int i = 0; i < lout.length; i+=1) { lout[i] = Long.reverse(Long.reverse(linp[i])); } } @Run(test = {"test_reverse_long2"}, mode = RunMode.STANDALONE) public void kernel_test_reverse_long2() { setup(); for (int i = 0; i < ITERS; i++) { test_reverse_long2(lout , linp); } } @Test @IR(applyIfCPUFeature={"avx2", "true"}, failOn = {IRNode.REVERSE_V , IRNode.REVERSE_L}) public void test_reverse_long3(long[] lout, long[] linp) { for (int i = 0; i < lout.length; i+=1) { lout[i] = Long.reverse(linp[i] ^ linp[i]); } } @Run(test = {"test_reverse_long3"}, mode = RunMode.STANDALONE) public void kernel_test_reverse_long3() { setup(); for (int i = 0; i < ITERS; i++) { test_reverse_long3(lout , linp); } } @Test @IR(applyIfCPUFeature={"avx2", "true"}, counts = {IRNode.REVERSE_V, "> 0"}) public void test_reverse_int1(int[] iout, int[] iinp) { for (int i = 0; i < iout.length; i+=1) { iout[i] = Integer.reverse(iinp[i]); } } @Run(test = {"test_reverse_int1"}, mode = RunMode.STANDALONE) public void kernel_test_reverse_int1() { setup(); for (int i = 0; i < ITERS; i++) { test_reverse_int1(iout , iinp); } } @Test @IR(applyIfCPUFeature={"avx2", "true"}, failOn = {IRNode.REVERSE_V, IRNode.REVERSE_I}) public void test_reverse_int2(int[] iout, int[] iinp) { for (int i = 0; i < iout.length; i+=1) { iout[i] = Integer.reverse(Integer.reverse(iinp[i])); } } @Run(test = {"test_reverse_int2"}, mode = RunMode.STANDALONE) public void kernel_test_reverse_int2() { setup(); for (int i = 0; i < ITERS; i++) { test_reverse_int2(iout , iinp); } } @Test @IR(applyIfCPUFeature={"avx2", "true"}, failOn = {IRNode.REVERSE_V, IRNode.REVERSE_I}) public void test_reverse_int3(int[] iout, int[] iinp) { for (int i = 0; i < iout.length; i+=1) { iout[i] = Integer.reverse(iinp[i] ^ iinp[i]); } } @Run(test = {"test_reverse_int3"}, mode = RunMode.STANDALONE) public void kernel_test_reverse_int3() { setup(); for (int i = 0; i < ITERS; i++) { test_reverse_int3(iout , iinp); } } }