/* * Copyright (c) 2013, 2020, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ /* * @test * @modules java.base/jdk.internal.misc * @key stress * * @summary converted from VM Testbase gc/memory/Nio. * VM Testbase keywords: [gc, stress, stressopt, monitoring] * * @library /vmTestbase * /test/lib * @run main/othervm -XX:MaxDirectMemorySize=50M gc.memory.Nio.Nio */ package gc.memory.Nio; import java.lang.management.ManagementFactory; import java.nio.ByteBuffer; import jdk.internal.misc.VM; import com.sun.management.HotSpotDiagnosticMXBean; import java.io.File; import java.io.IOException; /** * Test that uses java.nio.ByteBuffer to allocate native memory. * The test allocates all the memory available and checks that * further attempts to allocate more more will fail. * Test also checks that allocating native memory doesn't affect heap. * Test also cheks that GC can find unused native memory. * * @summary Checks that nio.ByteBuffer allocates native memory and doesn't affect heap. * @run main/othervm -XX:MaxDirectMemorySize=50M gc.memory.Nio.Nio */ public class Nio { static final int MAX_SIZE = (int)VM.maxDirectMemory(); public static void main(String[] args) { System.exit(new Nio().run() + 95 /*STATUS_BASE*/); } public Nio() { } public int run() { // Step0: init gc(); long usedHeap_0 = getUsedHeap(); long usedNonHeap_0 = getUsedNonHeap(); // Step1: allocate the all available direct memory // no OOME, no heap memory should be used System.out.println("Allocating all the direct memory: " + MAX_SIZE); ByteBuffer bb; try { bb = ByteBuffer.allocateDirect((int)MAX_SIZE); System.out.println("... success"); } catch (OutOfMemoryError oom) { throw new Fault("Unexpected OOME during the first allocation " + oom); } long usedHeap_1 = getUsedHeap(); long usedNonHeap_1 = getUsedNonHeap(); checkHeapIsNotAffected(usedHeap_0, usedHeap_1, usedNonHeap_0, usedNonHeap_1); // Step2: invoke GC, it shouldn't help. System.out.println("Doing gc"); gc(); // Step3: allocate 1 byte in the direct memory // OOM is expected try { System.out.println("Allocating 1 byte"); ByteBuffer.allocateDirect(1); throw new Fault("No OOM, but we already allocated all the memory"); } catch (OutOfMemoryError oom) { System.out.println("Expected OOM " + oom); } // Step4: read and write into allocated memory double d0 = -3.1415; float f0 = 41234.6f; bb.putDouble(MAX_SIZE/2, d0); bb.putFloat(MAX_SIZE - 17, f0); double d1 = bb.getDouble(MAX_SIZE/2); float f1 = bb.getFloat(MAX_SIZE - 17); System.out.println("put: " + d0 + ", " + f0); System.out.println("got: " + d1 + ", " + f1); if (d0 != d1 || f0 != f1) { throw new Fault("read/write to buffer check failed"); } // Step5: // clean the buffer, use gc, try to allocate again // no OOM is expected bb = null; gc(); try { System.out.println("Allocating 10 bytes"); ByteBuffer.allocateDirect(10); } catch (OutOfMemoryError oom) { throw new Fault("Nop, OOM is unexpected again: " + oom); } System.out.println("The long quest has done! Congratulations"); return 0; } public static void gc() { System.gc(); try { Thread.currentThread().sleep(200); } catch (Exception ignore) { } } /** * @return the size of used heap */ public static long getUsedHeap() { return ManagementFactory.getMemoryMXBean().getHeapMemoryUsage().getUsed(); } /** * @return the size of used non heap */ public static long getUsedNonHeap() { return ManagementFactory.getMemoryMXBean().getNonHeapMemoryUsage().getUsed(); } /** * Check that heap and non-heap memory have NOT changed significantly. * Throws a Fault if check failed. * * @param h_before used heap before * @param h_after used heap after * @param nh_before used non heap before * @param nh_after used non heap after */ void checkHeapIsNotAffected(long h_before, long h_after, long nh_before, long nh_after) { if (h_after - h_before > MAX_SIZE * 0.75) { System.err.println("Used heap before: " + h_before); System.err.println("Used heap after : " + h_after); dumpHeap(); String failed = "Allocating direct memory should not eat the heap!" + " Heap dumped to heapDump.hprof file."; throw new Fault(failed); } if (nh_after - nh_before > MAX_SIZE * 0.75) { System.err.println("Used heap before: " + nh_before); System.err.println("Used heap after : " + nh_after); dumpHeap(); throw new Fault("Allocating direct memory should not eat non the heap!"); } } /** * Try to make heap dump */ void dumpHeap() { HotSpotDiagnosticMXBean mxBean = ManagementFactory .getPlatformMXBean(HotSpotDiagnosticMXBean.class); try { System.out.println("Try to dump heap to heapDump.hprof file.."); mxBean.dumpHeap("heapDump.hprof", false); System.out.println("Done"); } catch (IOException e) { System.out.println("Failed to dump heap"); e.printStackTrace(); } } /** * RuntimeException signaling a test failure. */ public static class Fault extends RuntimeException { public Fault(String message) { super(message); } } }