/* * Copyright (c) 2020, 2022, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2023, Institute of Software, Chinese Academy of Sciences. * All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ /* * @test * @enablePreview * @requires sun.arch.data.model == "64" * @modules java.base/jdk.internal.foreign * java.base/jdk.internal.foreign.abi * java.base/jdk.internal.foreign.abi.riscv64 * java.base/jdk.internal.foreign.abi.riscv64.linux * @build CallArrangerTestBase * @run testng TestRISCV64CallArranger */ import java.lang.foreign.FunctionDescriptor; import java.lang.foreign.MemoryLayout; import java.lang.foreign.MemorySegment; import java.lang.foreign.StructLayout; import jdk.internal.foreign.abi.Binding; import jdk.internal.foreign.abi.CallingSequence; import jdk.internal.foreign.abi.LinkerOptions; import jdk.internal.foreign.abi.riscv64.linux.LinuxRISCV64CallArranger; import jdk.internal.foreign.abi.StubLocations; import jdk.internal.foreign.abi.VMStorage; import org.testng.annotations.DataProvider; import org.testng.annotations.Test; import java.lang.invoke.MethodType; import static java.lang.foreign.Linker.Option.firstVariadicArg; import static java.lang.foreign.ValueLayout.ADDRESS; import static jdk.internal.foreign.PlatformLayouts.RISCV64.*; import static jdk.internal.foreign.abi.Binding.*; import static jdk.internal.foreign.abi.riscv64.RISCV64Architecture.*; import static jdk.internal.foreign.abi.riscv64.RISCV64Architecture.Regs.*; import static org.testng.Assert.assertEquals; import static org.testng.Assert.assertFalse; import static org.testng.Assert.assertTrue; public class TestRISCV64CallArranger extends CallArrangerTestBase { private static final short STACK_SLOT_SIZE = 8; private static final VMStorage TARGET_ADDRESS_STORAGE = StubLocations.TARGET_ADDRESS.storage(StorageType.PLACEHOLDER); private static final VMStorage RETURN_BUFFER_STORAGE = StubLocations.RETURN_BUFFER.storage(StorageType.PLACEHOLDER); @Test public void testEmpty() { MethodType mt = MethodType.methodType(void.class); FunctionDescriptor fd = FunctionDescriptor.ofVoid(); LinuxRISCV64CallArranger.Bindings bindings = LinuxRISCV64CallArranger.getBindings(mt, fd, false); assertFalse(bindings.isInMemoryReturn()); CallingSequence callingSequence = bindings.callingSequence(); assertEquals(callingSequence.callerMethodType(), mt.insertParameterTypes(0, MemorySegment.class)); assertEquals(callingSequence.functionDesc(), fd.insertArgumentLayouts(0, ADDRESS)); checkArgumentBindings(callingSequence, new Binding[][]{ { unboxAddress(), vmStore(TARGET_ADDRESS_STORAGE, long.class) } }); checkReturnBindings(callingSequence, new Binding[]{}); } @Test public void testInteger() { MethodType mt = MethodType.methodType(void.class, byte.class, short.class, int.class, int.class, int.class, int.class, long.class, int.class, int.class, byte.class); FunctionDescriptor fd = FunctionDescriptor.ofVoid( C_CHAR, C_SHORT, C_INT, C_INT, C_INT, C_INT, C_LONG, C_INT, C_INT, C_CHAR); LinuxRISCV64CallArranger.Bindings bindings = LinuxRISCV64CallArranger.getBindings(mt, fd, false); assertFalse(bindings.isInMemoryReturn()); CallingSequence callingSequence = bindings.callingSequence(); assertEquals(callingSequence.callerMethodType(), mt.insertParameterTypes(0, MemorySegment.class)); assertEquals(callingSequence.functionDesc(), fd.insertArgumentLayouts(0, ADDRESS)); checkArgumentBindings(callingSequence, new Binding[][]{ { unboxAddress(), vmStore(TARGET_ADDRESS_STORAGE, long.class) }, { cast(byte.class, int.class), vmStore(x10, int.class) }, { cast(short.class, int.class), vmStore(x11, int.class) }, { vmStore(x12, int.class) }, { vmStore(x13, int.class) }, { vmStore(x14, int.class) }, { vmStore(x15, int.class) }, { vmStore(x16, long.class) }, { vmStore(x17, int.class) }, { vmStore(stackStorage(STACK_SLOT_SIZE, 0), int.class) }, { cast(byte.class, int.class), vmStore(stackStorage(STACK_SLOT_SIZE, 8), int.class) } }); checkReturnBindings(callingSequence, new Binding[]{}); } @Test public void testTwoIntTwoFloat() { MethodType mt = MethodType.methodType(void.class, int.class, int.class, float.class, float.class); FunctionDescriptor fd = FunctionDescriptor.ofVoid(C_INT, C_INT, C_FLOAT, C_FLOAT); LinuxRISCV64CallArranger.Bindings bindings = LinuxRISCV64CallArranger.getBindings(mt, fd, false); assertFalse(bindings.isInMemoryReturn()); CallingSequence callingSequence = bindings.callingSequence(); assertEquals(callingSequence.callerMethodType(), mt.insertParameterTypes(0, MemorySegment.class)); assertEquals(callingSequence.functionDesc(), fd.insertArgumentLayouts(0, ADDRESS)); checkArgumentBindings(callingSequence, new Binding[][]{ { unboxAddress(), vmStore(TARGET_ADDRESS_STORAGE, long.class) }, { vmStore(x10, int.class) }, { vmStore(x11, int.class) }, { vmStore(f10, float.class) }, { vmStore(f11, float.class) } }); checkReturnBindings(callingSequence, new Binding[]{}); } @Test(dataProvider = "structs") public void testStruct(MemoryLayout struct, Binding[] expectedBindings) { MethodType mt = MethodType.methodType(void.class, MemorySegment.class); FunctionDescriptor fd = FunctionDescriptor.ofVoid(struct); LinuxRISCV64CallArranger.Bindings bindings = LinuxRISCV64CallArranger.getBindings(mt, fd, false); assertFalse(bindings.isInMemoryReturn()); CallingSequence callingSequence = bindings.callingSequence(); assertEquals(callingSequence.callerMethodType(), mt.insertParameterTypes(0, MemorySegment.class)); assertEquals(callingSequence.functionDesc(), fd.insertArgumentLayouts(0, ADDRESS)); checkArgumentBindings(callingSequence, new Binding[][]{ { unboxAddress(), vmStore(TARGET_ADDRESS_STORAGE, long.class) }, expectedBindings }); checkReturnBindings(callingSequence, new Binding[]{}); } @DataProvider public static Object[][] structs() { MemoryLayout struct1 = MemoryLayout.structLayout(C_INT, C_INT, C_DOUBLE, C_INT); return new Object[][]{ // struct s { void* a; double c; }; { MemoryLayout.structLayout(C_POINTER, C_DOUBLE), new Binding[]{ dup(), bufferLoad(0, long.class), vmStore(x10, long.class), bufferLoad(8, long.class), vmStore(x11, long.class) } }, // struct s { int32_t a, b; double c; }; { MemoryLayout.structLayout(C_INT, C_INT, C_DOUBLE), new Binding[]{ dup(), // s.a & s.b bufferLoad(0, long.class), vmStore(x10, long.class), // s.c bufferLoad(8, long.class), vmStore(x11, long.class) } }, // struct s { int32_t a, b; double c; int32_t d; }; { struct1, new Binding[]{ copy(struct1), unboxAddress(), vmStore(x10, long.class) } }, // struct s { int32_t a[1]; float b[1]; }; { MemoryLayout.structLayout(MemoryLayout.sequenceLayout(1, C_INT), MemoryLayout.sequenceLayout(1, C_FLOAT)), new Binding[]{ dup(), // s.a[0] bufferLoad(0, int.class), vmStore(x10, int.class), // s.b[0] bufferLoad(4, float.class), vmStore(f10, float.class) } }, // struct s { float a; /* padding */ double b }; { MemoryLayout.structLayout(C_FLOAT, MemoryLayout.paddingLayout(32), C_DOUBLE), new Binding[]{ dup(), // s.a bufferLoad(0, float.class), vmStore(f10, float.class), // s.b bufferLoad(8, double.class), vmStore(f11, double.class), } }, // struct __attribute__((__packed__)) s { float a; double b; }; { MemoryLayout.structLayout(C_FLOAT, C_DOUBLE), new Binding[]{ dup(), // s.a bufferLoad(0, float.class), vmStore(f10, float.class), // s.b bufferLoad(4, double.class), vmStore(f11, double.class), } }, // struct s { float a; float b __attribute__ ((aligned (8))); } { MemoryLayout.structLayout(C_FLOAT, MemoryLayout.paddingLayout(32), C_FLOAT, MemoryLayout.paddingLayout(32)), new Binding[]{ dup(), // s.a bufferLoad(0, float.class), vmStore(f10, float.class), // s.b bufferLoad(8, float.class), vmStore(f11, float.class), } } }; } @Test public void testStructFA1() { MemoryLayout fa = MemoryLayout.structLayout(C_FLOAT, C_FLOAT); MethodType mt = MethodType.methodType(MemorySegment.class, float.class, int.class, MemorySegment.class); FunctionDescriptor fd = FunctionDescriptor.of(fa, C_FLOAT, C_INT, fa); LinuxRISCV64CallArranger.Bindings bindings = LinuxRISCV64CallArranger.getBindings(mt, fd, false); assertFalse(bindings.isInMemoryReturn()); CallingSequence callingSequence = bindings.callingSequence(); assertEquals(callingSequence.callerMethodType(), mt.insertParameterTypes(0, MemorySegment.class, MemorySegment.class)); assertEquals(callingSequence.functionDesc(), fd.insertArgumentLayouts(0, ADDRESS, ADDRESS)); checkArgumentBindings(callingSequence, new Binding[][]{ { unboxAddress(), vmStore(RETURN_BUFFER_STORAGE, long.class) }, { unboxAddress(), vmStore(TARGET_ADDRESS_STORAGE, long.class) }, { vmStore(f10, float.class) }, { vmStore(x10, int.class) }, { dup(), bufferLoad(0, float.class), vmStore(f11, float.class), bufferLoad(4, float.class), vmStore(f12, float.class) } }); checkReturnBindings(callingSequence, new Binding[]{ allocate(fa), dup(), vmLoad(f10, float.class), bufferStore(0, float.class), dup(), vmLoad(f11, float.class), bufferStore(4, float.class) }); } @Test public void testStructFA2() { MemoryLayout fa = MemoryLayout.structLayout(C_FLOAT, C_DOUBLE); MethodType mt = MethodType.methodType(MemorySegment.class, float.class, int.class, MemorySegment.class); FunctionDescriptor fd = FunctionDescriptor.of(fa, C_FLOAT, C_INT, fa); LinuxRISCV64CallArranger.Bindings bindings = LinuxRISCV64CallArranger.getBindings(mt, fd, false); assertFalse(bindings.isInMemoryReturn()); CallingSequence callingSequence = bindings.callingSequence(); assertEquals(callingSequence.callerMethodType(), mt.insertParameterTypes(0, MemorySegment.class, MemorySegment.class)); assertEquals(callingSequence.functionDesc(), fd.insertArgumentLayouts(0, ADDRESS, ADDRESS)); checkArgumentBindings(callingSequence, new Binding[][]{ { unboxAddress(), vmStore(RETURN_BUFFER_STORAGE, long.class) }, { unboxAddress(), vmStore(TARGET_ADDRESS_STORAGE, long.class) }, { vmStore(f10, float.class) }, { vmStore(x10, int.class) }, { dup(), bufferLoad(0, float.class), vmStore(f11, float.class), bufferLoad(4, double.class), vmStore(f12, double.class) } }); checkReturnBindings(callingSequence, new Binding[]{ allocate(fa), dup(), vmLoad(f10, float.class), bufferStore(0, float.class), dup(), vmLoad(f11, double.class), bufferStore(4, double.class) }); } @Test void spillFloatingPointStruct() { MemoryLayout struct = MemoryLayout.structLayout(C_FLOAT, C_FLOAT); // void f(float, float, float, float, float, float, float, struct) MethodType mt = MethodType.methodType(void.class, float.class, float.class, float.class, float.class, float.class, float.class, float.class, MemorySegment.class); FunctionDescriptor fd = FunctionDescriptor.ofVoid(C_FLOAT, C_FLOAT, C_FLOAT, C_FLOAT, C_FLOAT, C_FLOAT, C_FLOAT, struct); LinuxRISCV64CallArranger.Bindings bindings = LinuxRISCV64CallArranger.getBindings(mt, fd, false); assertFalse(bindings.isInMemoryReturn()); CallingSequence callingSequence = bindings.callingSequence(); assertEquals(callingSequence.callerMethodType(), mt.insertParameterTypes(0, MemorySegment.class)); assertEquals(callingSequence.functionDesc(), fd.insertArgumentLayouts(0, ADDRESS)); checkArgumentBindings(callingSequence, new Binding[][]{ { unboxAddress(), vmStore(TARGET_ADDRESS_STORAGE, long.class) }, { vmStore(f10, float.class) }, { vmStore(f11, float.class) }, { vmStore(f12, float.class) }, { vmStore(f13, float.class) }, { vmStore(f14, float.class) }, { vmStore(f15, float.class) }, { vmStore(f16, float.class) }, { bufferLoad(0, long.class), vmStore(x10, long.class) } }); checkReturnBindings(callingSequence, new Binding[]{}); } @Test public void testStructBoth() { MemoryLayout struct = MemoryLayout.structLayout(C_INT, C_FLOAT); MethodType mt = MethodType.methodType(void.class, MemorySegment.class, MemorySegment.class, MemorySegment.class); FunctionDescriptor fd = FunctionDescriptor.ofVoid(struct, struct, struct); LinuxRISCV64CallArranger.Bindings bindings = LinuxRISCV64CallArranger.getBindings(mt, fd, false); assertFalse(bindings.isInMemoryReturn()); CallingSequence callingSequence = bindings.callingSequence(); assertEquals(callingSequence.callerMethodType(), mt.insertParameterTypes(0, MemorySegment.class)); assertEquals(callingSequence.functionDesc(), fd.insertArgumentLayouts(0, ADDRESS)); checkArgumentBindings(callingSequence, new Binding[][]{ { unboxAddress(), vmStore(TARGET_ADDRESS_STORAGE, long.class) }, { dup(), bufferLoad(0, int.class), vmStore(x10, int.class), bufferLoad(4, float.class), vmStore(f10, float.class) }, { dup(), bufferLoad(0, int.class), vmStore(x11, int.class), bufferLoad(4, float.class), vmStore(f11, float.class) }, { dup(), bufferLoad(0, int.class), vmStore(x12, int.class), bufferLoad(4, float.class), vmStore(f12, float.class) } }); checkReturnBindings(callingSequence, new Binding[]{}); } @Test public void testStructStackSpill() { // A large (> 16 byte) struct argument that is spilled to the // stack should be passed as a pointer to a copy and occupy one // stack slot. MemoryLayout struct = MemoryLayout.structLayout(C_INT, C_INT, C_DOUBLE, C_INT); MethodType mt = MethodType.methodType( void.class, MemorySegment.class, MemorySegment.class, int.class, int.class, int.class, int.class, int.class, int.class, MemorySegment.class, int.class); FunctionDescriptor fd = FunctionDescriptor.ofVoid( struct, struct, C_INT, C_INT, C_INT, C_INT, C_INT, C_INT, struct, C_INT); LinuxRISCV64CallArranger.Bindings bindings = LinuxRISCV64CallArranger.getBindings(mt, fd, false); assertFalse(bindings.isInMemoryReturn()); CallingSequence callingSequence = bindings.callingSequence(); assertEquals(callingSequence.callerMethodType(), mt.insertParameterTypes(0, MemorySegment.class)); assertEquals(callingSequence.functionDesc(), fd.insertArgumentLayouts(0, ADDRESS)); checkArgumentBindings(callingSequence, new Binding[][]{ { unboxAddress(), vmStore(TARGET_ADDRESS_STORAGE, long.class) }, { copy(struct), unboxAddress(), vmStore(x10, long.class) }, { copy(struct), unboxAddress(), vmStore(x11, long.class) }, { vmStore(x12, int.class) }, { vmStore(x13, int.class) }, { vmStore(x14, int.class) }, { vmStore(x15, int.class) }, { vmStore(x16, int.class) }, { vmStore(x17, int.class) }, { copy(struct), unboxAddress(), vmStore(stackStorage(STACK_SLOT_SIZE, 0), long.class) }, { vmStore(stackStorage(STACK_SLOT_SIZE, 8), int.class) } }); checkReturnBindings(callingSequence, new Binding[]{}); } @Test public void testVarArgsInRegs() { MethodType mt = MethodType.methodType(void.class, int.class, int.class, float.class); FunctionDescriptor fd = FunctionDescriptor.ofVoid(C_INT, C_INT, C_FLOAT); FunctionDescriptor fdExpected = FunctionDescriptor.ofVoid(ADDRESS, C_INT, C_INT, C_FLOAT); LinuxRISCV64CallArranger.Bindings bindings = LinuxRISCV64CallArranger.getBindings(mt, fd, false, LinkerOptions.forDowncall(fd, firstVariadicArg(1))); assertFalse(bindings.isInMemoryReturn()); CallingSequence callingSequence = bindings.callingSequence(); assertEquals(callingSequence.callerMethodType(), mt.insertParameterTypes(0, MemorySegment.class)); assertEquals(callingSequence.functionDesc(), fdExpected); // This is identical to the non-variadic calling sequence checkArgumentBindings(callingSequence, new Binding[][]{ { unboxAddress(), vmStore(TARGET_ADDRESS_STORAGE, long.class) }, { vmStore(x10, int.class) }, { vmStore(x11, int.class) }, { vmStore(x12, float.class) } }); checkReturnBindings(callingSequence, new Binding[]{}); } @Test public void testVarArgsLong() { MethodType mt = MethodType.methodType(void.class, int.class, int.class, int.class, double.class, double.class, long.class, long.class, int.class, double.class, double.class, long.class); FunctionDescriptor fd = FunctionDescriptor.ofVoid(C_INT, C_INT, C_INT, C_DOUBLE, C_DOUBLE, C_LONG, C_LONG, C_INT, C_DOUBLE, C_DOUBLE, C_LONG); FunctionDescriptor fdExpected = FunctionDescriptor.ofVoid(ADDRESS, C_INT, C_INT, C_INT, C_DOUBLE, C_DOUBLE, C_LONG, C_LONG, C_INT, C_DOUBLE, C_DOUBLE, C_LONG); LinuxRISCV64CallArranger.Bindings bindings = LinuxRISCV64CallArranger.getBindings(mt, fd, false, LinkerOptions.forDowncall(fd, firstVariadicArg(1))); assertFalse(bindings.isInMemoryReturn()); CallingSequence callingSequence = bindings.callingSequence(); assertEquals(callingSequence.callerMethodType(), mt.insertParameterTypes(0, MemorySegment.class)); assertEquals(callingSequence.functionDesc(), fdExpected); // This is identical to the non-variadic calling sequence checkArgumentBindings(callingSequence, new Binding[][]{ { unboxAddress(), vmStore(TARGET_ADDRESS_STORAGE, long.class) }, { vmStore(x10, int.class) }, { vmStore(x11, int.class) }, { vmStore(x12, int.class) }, { vmStore(x13, double.class) }, { vmStore(x14, double.class) }, { vmStore(x15, long.class) }, { vmStore(x16, long.class) }, { vmStore(x17, int.class) }, { vmStore(stackStorage(STACK_SLOT_SIZE, 0), double.class) }, { vmStore(stackStorage(STACK_SLOT_SIZE, 8), double.class) }, { vmStore(stackStorage(STACK_SLOT_SIZE, 16), long.class) } }); checkReturnBindings(callingSequence, new Binding[]{}); } @Test public void testReturnStruct1() { MemoryLayout struct = MemoryLayout.structLayout(C_LONG, C_LONG, C_FLOAT); MethodType mt = MethodType.methodType(MemorySegment.class, int.class, int.class, float.class); FunctionDescriptor fd = FunctionDescriptor.of(struct, C_INT, C_INT, C_FLOAT); LinuxRISCV64CallArranger.Bindings bindings = LinuxRISCV64CallArranger.getBindings(mt, fd, false); assertTrue(bindings.isInMemoryReturn()); CallingSequence callingSequence = bindings.callingSequence(); assertEquals(callingSequence.callerMethodType(), MethodType.methodType(void.class, MemorySegment.class, MemorySegment.class, int.class, int.class, float.class)); assertEquals(callingSequence.functionDesc(), FunctionDescriptor.ofVoid(ADDRESS, C_POINTER, C_INT, C_INT, C_FLOAT)); checkArgumentBindings(callingSequence, new Binding[][]{ { unboxAddress(), vmStore(TARGET_ADDRESS_STORAGE, long.class) }, { unboxAddress(), vmStore(x10, long.class) }, { vmStore(x11, int.class) }, { vmStore(x12, int.class) }, { vmStore(f10, float.class) } }); checkReturnBindings(callingSequence, new Binding[]{}); } @Test public void testReturnStruct2() { MemoryLayout struct = MemoryLayout.structLayout(C_LONG, C_LONG); MethodType mt = MethodType.methodType(MemorySegment.class); FunctionDescriptor fd = FunctionDescriptor.of(struct); LinuxRISCV64CallArranger.Bindings bindings = LinuxRISCV64CallArranger.getBindings(mt, fd, false); assertFalse(bindings.isInMemoryReturn()); CallingSequence callingSequence = bindings.callingSequence(); assertEquals(callingSequence.callerMethodType(), mt.insertParameterTypes(0, MemorySegment.class, MemorySegment.class)); assertEquals(callingSequence.functionDesc(), fd.insertArgumentLayouts(0, ADDRESS, ADDRESS)); checkArgumentBindings(callingSequence, new Binding[][]{ { unboxAddress(), vmStore(RETURN_BUFFER_STORAGE, long.class) }, { unboxAddress(), vmStore(TARGET_ADDRESS_STORAGE, long.class) } }); checkReturnBindings(callingSequence, new Binding[]{ allocate(struct), dup(), vmLoad(x10, long.class), bufferStore(0, long.class), dup(), vmLoad(x11, long.class), bufferStore(8, long.class) }); } }