/* * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "asm/macroAssembler.inline.hpp" #include "interpreter/interpreter.hpp" #include "nativeInst_sparc.hpp" #include "oops/instanceOop.hpp" #include "oops/method.hpp" #include "oops/objArrayKlass.hpp" #include "oops/oop.inline.hpp" #include "prims/methodHandles.hpp" #include "runtime/frame.inline.hpp" #include "runtime/handles.inline.hpp" #include "runtime/sharedRuntime.hpp" #include "runtime/stubCodeGenerator.hpp" #include "runtime/stubRoutines.hpp" #include "runtime/thread.inline.hpp" #ifdef COMPILER2 #include "opto/runtime.hpp" #endif // Declaration and definition of StubGenerator (no .hpp file). // For a more detailed description of the stub routine structure // see the comment in stubRoutines.hpp. #define __ _masm-> #ifdef PRODUCT #define BLOCK_COMMENT(str) /* nothing */ #else #define BLOCK_COMMENT(str) __ block_comment(str) #endif #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") // Note: The register L7 is used as L7_thread_cache, and may not be used // any other way within this module. static const Register& Lstub_temp = L2; // ------------------------------------------------------------------------------------------------------------------------- // Stub Code definitions class StubGenerator: public StubCodeGenerator { private: #ifdef PRODUCT #define inc_counter_np(a,b,c) #else #define inc_counter_np(counter, t1, t2) \ BLOCK_COMMENT("inc_counter " #counter); \ __ inc_counter(&counter, t1, t2); #endif //---------------------------------------------------------------------------------------------------- // Call stubs are used to call Java from C address generate_call_stub(address& return_pc) { StubCodeMark mark(this, "StubRoutines", "call_stub"); address start = __ pc(); // Incoming arguments: // // o0 : call wrapper address // o1 : result (address) // o2 : result type // o3 : method // o4 : (interpreter) entry point // o5 : parameters (address) // [sp + 0x5c]: parameter size (in words) // [sp + 0x60]: thread // // +---------------+ <--- sp + 0 // | | // . reg save area . // | | // +---------------+ <--- sp + 0x40 // | | // . extra 7 slots . // | | // +---------------+ <--- sp + 0x5c // | param. size | // +---------------+ <--- sp + 0x60 // | thread | // +---------------+ // | | // note: if the link argument position changes, adjust // the code in frame::entry_frame_call_wrapper() const Argument link = Argument(0, false); // used only for GC const Argument result = Argument(1, false); const Argument result_type = Argument(2, false); const Argument method = Argument(3, false); const Argument entry_point = Argument(4, false); const Argument parameters = Argument(5, false); const Argument parameter_size = Argument(6, false); const Argument thread = Argument(7, false); // setup thread register __ ld_ptr(thread.as_address(), G2_thread); __ reinit_heapbase(); #ifdef ASSERT // make sure we have no pending exceptions { const Register t = G3_scratch; Label L; __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), t); __ br_null_short(t, Assembler::pt, L); __ stop("StubRoutines::call_stub: entered with pending exception"); __ bind(L); } #endif // create activation frame & allocate space for parameters { const Register t = G3_scratch; __ ld_ptr(parameter_size.as_address(), t); // get parameter size (in words) __ add(t, frame::memory_parameter_word_sp_offset, t); // add space for save area (in words) __ round_to(t, WordsPerLong); // make sure it is multiple of 2 (in words) __ sll(t, Interpreter::logStackElementSize, t); // compute number of bytes __ neg(t); // negate so it can be used with save __ save(SP, t, SP); // setup new frame } // +---------------+ <--- sp + 0 // | | // . reg save area . // | | // +---------------+ <--- sp + 0x40 // | | // . extra 7 slots . // | | // +---------------+ <--- sp + 0x5c // | empty slot | (only if parameter size is even) // +---------------+ // | | // . parameters . // | | // +---------------+ <--- fp + 0 // | | // . reg save area . // | | // +---------------+ <--- fp + 0x40 // | | // . extra 7 slots . // | | // +---------------+ <--- fp + 0x5c // | param. size | // +---------------+ <--- fp + 0x60 // | thread | // +---------------+ // | | // pass parameters if any BLOCK_COMMENT("pass parameters if any"); { const Register src = parameters.as_in().as_register(); const Register dst = Lentry_args; const Register tmp = G3_scratch; const Register cnt = G4_scratch; // test if any parameters & setup of Lentry_args Label exit; __ ld_ptr(parameter_size.as_in().as_address(), cnt); // parameter counter __ add( FP, STACK_BIAS, dst ); __ cmp_zero_and_br(Assembler::zero, cnt, exit); __ delayed()->sub(dst, BytesPerWord, dst); // setup Lentry_args // copy parameters if any Label loop; __ BIND(loop); // Store parameter value __ ld_ptr(src, 0, tmp); __ add(src, BytesPerWord, src); __ st_ptr(tmp, dst, 0); __ deccc(cnt); __ br(Assembler::greater, false, Assembler::pt, loop); __ delayed()->sub(dst, Interpreter::stackElementSize, dst); // done __ BIND(exit); } // setup parameters, method & call Java function #ifdef ASSERT // layout_activation_impl checks it's notion of saved SP against // this register, so if this changes update it as well. const Register saved_SP = Lscratch; __ mov(SP, saved_SP); // keep track of SP before call #endif // setup parameters const Register t = G3_scratch; __ ld_ptr(parameter_size.as_in().as_address(), t); // get parameter size (in words) __ sll(t, Interpreter::logStackElementSize, t); // compute number of bytes __ sub(FP, t, Gargs); // setup parameter pointer __ add( Gargs, STACK_BIAS, Gargs ); // Account for LP64 stack bias __ mov(SP, O5_savedSP); // do the call // // the following register must be setup: // // G2_thread // G5_method // Gargs BLOCK_COMMENT("call Java function"); __ jmpl(entry_point.as_in().as_register(), G0, O7); __ delayed()->mov(method.as_in().as_register(), G5_method); // setup method BLOCK_COMMENT("call_stub_return_address:"); return_pc = __ pc(); // The callee, if it wasn't interpreted, can return with SP changed so // we can no longer assert of change of SP. // store result depending on type // (everything that is not T_OBJECT, T_LONG, T_FLOAT, or T_DOUBLE // is treated as T_INT) { const Register addr = result .as_in().as_register(); const Register type = result_type.as_in().as_register(); Label is_long, is_float, is_double, is_object, exit; __ cmp(type, T_OBJECT); __ br(Assembler::equal, false, Assembler::pn, is_object); __ delayed()->cmp(type, T_FLOAT); __ br(Assembler::equal, false, Assembler::pn, is_float); __ delayed()->cmp(type, T_DOUBLE); __ br(Assembler::equal, false, Assembler::pn, is_double); __ delayed()->cmp(type, T_LONG); __ br(Assembler::equal, false, Assembler::pn, is_long); __ delayed()->nop(); // store int result __ st(O0, addr, G0); __ BIND(exit); __ ret(); __ delayed()->restore(); __ BIND(is_object); __ ba(exit); __ delayed()->st_ptr(O0, addr, G0); __ BIND(is_float); __ ba(exit); __ delayed()->stf(FloatRegisterImpl::S, F0, addr, G0); __ BIND(is_double); __ ba(exit); __ delayed()->stf(FloatRegisterImpl::D, F0, addr, G0); __ BIND(is_long); __ ba(exit); __ delayed()->st_long(O0, addr, G0); // store entire long } return start; } //---------------------------------------------------------------------------------------------------- // Return point for a Java call if there's an exception thrown in Java code. // The exception is caught and transformed into a pending exception stored in // JavaThread that can be tested from within the VM. // // Oexception: exception oop address generate_catch_exception() { StubCodeMark mark(this, "StubRoutines", "catch_exception"); address start = __ pc(); // verify that thread corresponds __ verify_thread(); const Register& temp_reg = Gtemp; Address pending_exception_addr (G2_thread, Thread::pending_exception_offset()); Address exception_file_offset_addr(G2_thread, Thread::exception_file_offset ()); Address exception_line_offset_addr(G2_thread, Thread::exception_line_offset ()); // set pending exception __ verify_oop(Oexception); __ st_ptr(Oexception, pending_exception_addr); __ set((intptr_t)__FILE__, temp_reg); __ st_ptr(temp_reg, exception_file_offset_addr); __ set((intptr_t)__LINE__, temp_reg); __ st(temp_reg, exception_line_offset_addr); // complete return to VM assert(StubRoutines::_call_stub_return_address != NULL, "must have been generated before"); AddressLiteral stub_ret(StubRoutines::_call_stub_return_address); __ jump_to(stub_ret, temp_reg); __ delayed()->nop(); return start; } //---------------------------------------------------------------------------------------------------- // Continuation point for runtime calls returning with a pending exception // The pending exception check happened in the runtime or native call stub // The pending exception in Thread is converted into a Java-level exception // // Contract with Java-level exception handler: O0 = exception // O1 = throwing pc address generate_forward_exception() { StubCodeMark mark(this, "StubRoutines", "forward_exception"); address start = __ pc(); // Upon entry, O7 has the return address returning into Java // (interpreted or compiled) code; i.e. the return address // becomes the throwing pc. const Register& handler_reg = Gtemp; Address exception_addr(G2_thread, Thread::pending_exception_offset()); #ifdef ASSERT // make sure that this code is only executed if there is a pending exception { Label L; __ ld_ptr(exception_addr, Gtemp); __ br_notnull_short(Gtemp, Assembler::pt, L); __ stop("StubRoutines::forward exception: no pending exception (1)"); __ bind(L); } #endif // compute exception handler into handler_reg __ get_thread(); __ ld_ptr(exception_addr, Oexception); __ verify_oop(Oexception); __ save_frame(0); // compensates for compiler weakness __ add(O7->after_save(), frame::pc_return_offset, Lscratch); // save the issuing PC BLOCK_COMMENT("call exception_handler_for_return_address"); __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), G2_thread, Lscratch); __ mov(O0, handler_reg); __ restore(); // compensates for compiler weakness __ ld_ptr(exception_addr, Oexception); __ add(O7, frame::pc_return_offset, Oissuing_pc); // save the issuing PC #ifdef ASSERT // make sure exception is set { Label L; __ br_notnull_short(Oexception, Assembler::pt, L); __ stop("StubRoutines::forward exception: no pending exception (2)"); __ bind(L); } #endif // jump to exception handler __ jmp(handler_reg, 0); // clear pending exception __ delayed()->st_ptr(G0, exception_addr); return start; } // Safefetch stubs. void generate_safefetch(const char* name, int size, address* entry, address* fault_pc, address* continuation_pc) { // safefetch signatures: // int SafeFetch32(int* adr, int errValue); // intptr_t SafeFetchN (intptr_t* adr, intptr_t errValue); // // arguments: // o0 = adr // o1 = errValue // // result: // o0 = *adr or errValue StubCodeMark mark(this, "StubRoutines", name); // Entry point, pc or function descriptor. __ align(CodeEntryAlignment); *entry = __ pc(); __ mov(O0, G1); // g1 = o0 __ mov(O1, O0); // o0 = o1 // Load *adr into c_rarg1, may fault. *fault_pc = __ pc(); switch (size) { case 4: // int32_t __ ldsw(G1, 0, O0); // o0 = [g1] break; case 8: // int64_t __ ldx(G1, 0, O0); // o0 = [g1] break; default: ShouldNotReachHere(); } // return errValue or *adr *continuation_pc = __ pc(); // By convention with the trap handler we ensure there is a non-CTI // instruction in the trap shadow. __ nop(); __ retl(); __ delayed()->nop(); } //------------------------------------------------------------------------------------------------------------------------ // Continuation point for throwing of implicit exceptions that are not handled in // the current activation. Fabricates an exception oop and initiates normal // exception dispatching in this frame. Only callee-saved registers are preserved // (through the normal register window / RegisterMap handling). // If the compiler needs all registers to be preserved between the fault // point and the exception handler then it must assume responsibility for that in // AbstractCompiler::continuation_for_implicit_null_exception or // continuation_for_implicit_division_by_zero_exception. All other implicit // exceptions (e.g., NullPointerException or AbstractMethodError on entry) are // either at call sites or otherwise assume that stack unwinding will be initiated, // so caller saved registers were assumed volatile in the compiler. // Note that we generate only this stub into a RuntimeStub, because it needs to be // properly traversed and ignored during GC, so we change the meaning of the "__" // macro within this method. #undef __ #define __ masm-> address generate_throw_exception(const char* name, address runtime_entry, Register arg1 = noreg, Register arg2 = noreg) { #ifdef ASSERT int insts_size = VerifyThread ? 1 * K : 600; #else int insts_size = VerifyThread ? 1 * K : 256; #endif /* ASSERT */ int locs_size = 32; CodeBuffer code(name, insts_size, locs_size); MacroAssembler* masm = new MacroAssembler(&code); __ verify_thread(); // This is an inlined and slightly modified version of call_VM // which has the ability to fetch the return PC out of thread-local storage __ assert_not_delayed(); // Note that we always push a frame because on the SPARC // architecture, for all of our implicit exception kinds at call // sites, the implicit exception is taken before the callee frame // is pushed. __ save_frame(0); int frame_complete = __ offset(); // Note that we always have a runtime stub frame on the top of stack by this point Register last_java_sp = SP; // 64-bit last_java_sp is biased! __ set_last_Java_frame(last_java_sp, G0); if (VerifyThread) __ mov(G2_thread, O0); // about to be smashed; pass early __ save_thread(noreg); if (arg1 != noreg) { assert(arg2 != O1, "clobbered"); __ mov(arg1, O1); } if (arg2 != noreg) { __ mov(arg2, O2); } // do the call BLOCK_COMMENT("call runtime_entry"); __ call(runtime_entry, relocInfo::runtime_call_type); if (!VerifyThread) __ delayed()->mov(G2_thread, O0); // pass thread as first argument else __ delayed()->nop(); // (thread already passed) __ restore_thread(noreg); __ reset_last_Java_frame(); // check for pending exceptions. use Gtemp as scratch register. #ifdef ASSERT Label L; Address exception_addr(G2_thread, Thread::pending_exception_offset()); Register scratch_reg = Gtemp; __ ld_ptr(exception_addr, scratch_reg); __ br_notnull_short(scratch_reg, Assembler::pt, L); __ should_not_reach_here(); __ bind(L); #endif // ASSERT BLOCK_COMMENT("call forward_exception_entry"); __ call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type); // we use O7 linkage so that forward_exception_entry has the issuing PC __ delayed()->restore(); RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, frame_complete, masm->total_frame_size_in_bytes(0), NULL, false); return stub->entry_point(); } #undef __ #define __ _masm-> // Generate a routine that sets all the registers so we // can tell if the stop routine prints them correctly. address generate_test_stop() { StubCodeMark mark(this, "StubRoutines", "test_stop"); address start = __ pc(); int i; __ save_frame(0); static jfloat zero = 0.0, one = 1.0; // put addr in L0, then load through L0 to F0 __ set((intptr_t)&zero, L0); __ ldf( FloatRegisterImpl::S, L0, 0, F0); __ set((intptr_t)&one, L0); __ ldf( FloatRegisterImpl::S, L0, 0, F1); // 1.0 to F1 // use add to put 2..18 in F2..F18 for ( i = 2; i <= 18; ++i ) { __ fadd( FloatRegisterImpl::S, F1, as_FloatRegister(i-1), as_FloatRegister(i)); } // Now put double 2 in F16, double 18 in F18 __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, F2, F16 ); __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, F18, F18 ); // use add to put 20..32 in F20..F32 for (i = 20; i < 32; i += 2) { __ fadd( FloatRegisterImpl::D, F16, as_FloatRegister(i-2), as_FloatRegister(i)); } // put 0..7 in i's, 8..15 in l's, 16..23 in o's, 24..31 in g's for ( i = 0; i < 8; ++i ) { if (i < 6) { __ set( i, as_iRegister(i)); __ set(16 + i, as_oRegister(i)); __ set(24 + i, as_gRegister(i)); } __ set( 8 + i, as_lRegister(i)); } __ stop("testing stop"); __ ret(); __ delayed()->restore(); return start; } address generate_stop_subroutine() { StubCodeMark mark(this, "StubRoutines", "stop_subroutine"); address start = __ pc(); __ stop_subroutine(); return start; } address generate_flush_callers_register_windows() { StubCodeMark mark(this, "StubRoutines", "flush_callers_register_windows"); address start = __ pc(); __ flushw(); __ retl(false); __ delayed()->add( FP, STACK_BIAS, O0 ); // The returned value must be a stack pointer whose register save area // is flushed, and will stay flushed while the caller executes. return start; } // Support for jint Atomic::xchg(jint exchange_value, volatile jint* dest). // // Arguments: // // exchange_value: O0 // dest: O1 // // Results: // // O0: the value previously stored in dest // address generate_atomic_xchg() { StubCodeMark mark(this, "StubRoutines", "atomic_xchg"); address start = __ pc(); if (UseCASForSwap) { // Use CAS instead of swap, just in case the MP hardware // prefers to work with just one kind of synch. instruction. Label retry; __ BIND(retry); __ mov(O0, O3); // scratch copy of exchange value __ ld(O1, 0, O2); // observe the previous value // try to replace O2 with O3 __ cas(O1, O2, O3); __ cmp_and_br_short(O2, O3, Assembler::notEqual, Assembler::pn, retry); __ retl(false); __ delayed()->mov(O2, O0); // report previous value to caller } else { __ retl(false); __ delayed()->swap(O1, 0, O0); } return start; } // Support for jint Atomic::cmpxchg(jint exchange_value, volatile jint* dest, jint compare_value) // // Arguments: // // exchange_value: O0 // dest: O1 // compare_value: O2 // // Results: // // O0: the value previously stored in dest // address generate_atomic_cmpxchg() { StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg"); address start = __ pc(); // cmpxchg(dest, compare_value, exchange_value) __ cas(O1, O2, O0); __ retl(false); __ delayed()->nop(); return start; } // Support for jlong Atomic::cmpxchg(jlong exchange_value, volatile jlong *dest, jlong compare_value) // // Arguments: // // exchange_value: O1:O0 // dest: O2 // compare_value: O4:O3 // // Results: // // O1:O0: the value previously stored in dest // // Overwrites: G1,G2,G3 // address generate_atomic_cmpxchg_long() { StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg_long"); address start = __ pc(); __ sllx(O0, 32, O0); __ srl(O1, 0, O1); __ or3(O0,O1,O0); // O0 holds 64-bit value from compare_value __ sllx(O3, 32, O3); __ srl(O4, 0, O4); __ or3(O3,O4,O3); // O3 holds 64-bit value from exchange_value __ casx(O2, O3, O0); __ srl(O0, 0, O1); // unpacked return value in O1:O0 __ retl(false); __ delayed()->srlx(O0, 32, O0); return start; } // Support for jint Atomic::add(jint add_value, volatile jint* dest). // // Arguments: // // add_value: O0 (e.g., +1 or -1) // dest: O1 // // Results: // // O0: the new value stored in dest // // Overwrites: O3 // address generate_atomic_add() { StubCodeMark mark(this, "StubRoutines", "atomic_add"); address start = __ pc(); __ BIND(_atomic_add_stub); Label(retry); __ BIND(retry); __ lduw(O1, 0, O2); __ add(O0, O2, O3); __ cas(O1, O2, O3); __ cmp_and_br_short(O2, O3, Assembler::notEqual, Assembler::pn, retry); __ retl(false); __ delayed()->add(O0, O2, O0); // note that cas made O2==O3 return start; } Label _atomic_add_stub; // called from other stubs // Support for uint StubRoutine::Sparc::partial_subtype_check( Klass sub, Klass super ); // Arguments : // // ret : O0, returned // icc/xcc: set as O0 (depending on wordSize) // sub : O1, argument, not changed // super: O2, argument, not changed // raddr: O7, blown by call address generate_partial_subtype_check() { __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", "partial_subtype_check"); address start = __ pc(); Label miss; __ save_frame(0); Register Rret = I0; Register Rsub = I1; Register Rsuper = I2; Register L0_ary_len = L0; Register L1_ary_ptr = L1; Register L2_super = L2; Register L3_index = L3; __ check_klass_subtype_slow_path(Rsub, Rsuper, L0, L1, L2, L3, NULL, &miss); // Match falls through here. __ addcc(G0,0,Rret); // set Z flags, Z result __ ret(); // Result in Rret is zero; flags set to Z __ delayed()->restore(); __ BIND(miss); __ addcc(G0,1,Rret); // set NZ flags, NZ result __ ret(); // Result in Rret is != 0; flags set to NZ __ delayed()->restore(); return start; } // Called from MacroAssembler::verify_oop // address generate_verify_oop_subroutine() { StubCodeMark mark(this, "StubRoutines", "verify_oop_stub"); address start = __ pc(); __ verify_oop_subroutine(); return start; } // // Verify that a register contains clean 32-bits positive value // (high 32-bits are 0) so it could be used in 64-bits shifts (sllx, srax). // // Input: // Rint - 32-bits value // Rtmp - scratch // void assert_clean_int(Register Rint, Register Rtmp) { #if defined(ASSERT) __ signx(Rint, Rtmp); __ cmp(Rint, Rtmp); __ breakpoint_trap(Assembler::notEqual, Assembler::xcc); #endif } // // Generate overlap test for array copy stubs // // Input: // O0 - array1 // O1 - array2 // O2 - element count // // Kills temps: O3, O4 // void array_overlap_test(address no_overlap_target, int log2_elem_size) { assert(no_overlap_target != NULL, "must be generated"); array_overlap_test(no_overlap_target, NULL, log2_elem_size); } void array_overlap_test(Label& L_no_overlap, int log2_elem_size) { array_overlap_test(NULL, &L_no_overlap, log2_elem_size); } void array_overlap_test(address no_overlap_target, Label* NOLp, int log2_elem_size) { const Register from = O0; const Register to = O1; const Register count = O2; const Register to_from = O3; // to - from const Register byte_count = O4; // count << log2_elem_size __ subcc(to, from, to_from); __ sll_ptr(count, log2_elem_size, byte_count); if (NOLp == NULL) __ brx(Assembler::lessEqualUnsigned, false, Assembler::pt, no_overlap_target); else __ brx(Assembler::lessEqualUnsigned, false, Assembler::pt, (*NOLp)); __ delayed()->cmp(to_from, byte_count); if (NOLp == NULL) __ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, no_overlap_target); else __ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, (*NOLp)); __ delayed()->nop(); } // // Generate pre-write barrier for array. // // Input: // addr - register containing starting address // count - register containing element count // tmp - scratch register // // The input registers are overwritten. // void gen_write_ref_array_pre_barrier(Register addr, Register count, bool dest_uninitialized) { BarrierSet* bs = Universe::heap()->barrier_set(); switch (bs->kind()) { case BarrierSet::G1SATBCTLogging: // With G1, don't generate the call if we statically know that the target in uninitialized if (!dest_uninitialized) { __ save_frame(0); // Save the necessary global regs... will be used after. if (addr->is_global()) { __ mov(addr, L0); } if (count->is_global()) { __ mov(count, L1); } __ mov(addr->after_save(), O0); // Get the count into O1 __ call(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre)); __ delayed()->mov(count->after_save(), O1); if (addr->is_global()) { __ mov(L0, addr); } if (count->is_global()) { __ mov(L1, count); } __ restore(); } break; case BarrierSet::CardTableForRS: case BarrierSet::CardTableExtension: case BarrierSet::ModRef: break; default: ShouldNotReachHere(); } } // // Generate post-write barrier for array. // // Input: // addr - register containing starting address // count - register containing element count // tmp - scratch register // // The input registers are overwritten. // void gen_write_ref_array_post_barrier(Register addr, Register count, Register tmp) { BarrierSet* bs = Universe::heap()->barrier_set(); switch (bs->kind()) { case BarrierSet::G1SATBCTLogging: { // Get some new fresh output registers. __ save_frame(0); __ mov(addr->after_save(), O0); __ call(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post)); __ delayed()->mov(count->after_save(), O1); __ restore(); } break; case BarrierSet::CardTableForRS: case BarrierSet::CardTableExtension: { CardTableModRefBS* ct = barrier_set_cast(bs); assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code"); assert_different_registers(addr, count, tmp); Label L_loop; __ sll_ptr(count, LogBytesPerHeapOop, count); __ sub(count, BytesPerHeapOop, count); __ add(count, addr, count); // Use two shifts to clear out those low order two bits! (Cannot opt. into 1.) __ srl_ptr(addr, CardTableModRefBS::card_shift, addr); __ srl_ptr(count, CardTableModRefBS::card_shift, count); __ sub(count, addr, count); AddressLiteral rs(ct->byte_map_base); __ set(rs, tmp); __ BIND(L_loop); __ stb(G0, tmp, addr); __ subcc(count, 1, count); __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop); __ delayed()->add(addr, 1, addr); } break; case BarrierSet::ModRef: break; default: ShouldNotReachHere(); } } // // Generate main code for disjoint arraycopy // typedef void (StubGenerator::*CopyLoopFunc)(Register from, Register to, Register count, int count_dec, Label& L_loop, bool use_prefetch, bool use_bis); void disjoint_copy_core(Register from, Register to, Register count, int log2_elem_size, int iter_size, StubGenerator::CopyLoopFunc copy_loop_func) { Label L_copy; assert(log2_elem_size <= 3, "the following code should be changed"); int count_dec = 16>>log2_elem_size; int prefetch_dist = MAX2(ArraycopySrcPrefetchDistance, ArraycopyDstPrefetchDistance); assert(prefetch_dist < 4096, "invalid value"); prefetch_dist = (prefetch_dist + (iter_size-1)) & (-iter_size); // round up to one iteration copy size int prefetch_count = (prefetch_dist >> log2_elem_size); // elements count if (UseBlockCopy) { Label L_block_copy, L_block_copy_prefetch, L_skip_block_copy; // 64 bytes tail + bytes copied in one loop iteration int tail_size = 64 + iter_size; int block_copy_count = (MAX2(tail_size, (int)BlockCopyLowLimit)) >> log2_elem_size; // Use BIS copy only for big arrays since it requires membar. __ set(block_copy_count, O4); __ cmp_and_br_short(count, O4, Assembler::lessUnsigned, Assembler::pt, L_skip_block_copy); // This code is for disjoint source and destination: // to <= from || to >= from+count // but BIS will stomp over 'from' if (to > from-tail_size && to <= from) __ sub(from, to, O4); __ srax(O4, 4, O4); // divide by 16 since following short branch have only 5 bits for imm. __ cmp_and_br_short(O4, (tail_size>>4), Assembler::lessEqualUnsigned, Assembler::pn, L_skip_block_copy); __ wrasi(G0, Assembler::ASI_ST_BLKINIT_PRIMARY); // BIS should not be used to copy tail (64 bytes+iter_size) // to avoid zeroing of following values. __ sub(count, (tail_size>>log2_elem_size), count); // count is still positive >= 0 if (prefetch_count > 0) { // rounded up to one iteration count // Do prefetching only if copy size is bigger // than prefetch distance. __ set(prefetch_count, O4); __ cmp_and_brx_short(count, O4, Assembler::less, Assembler::pt, L_block_copy); __ sub(count, O4, count); (this->*copy_loop_func)(from, to, count, count_dec, L_block_copy_prefetch, true, true); __ set(prefetch_count, O4); __ add(count, O4, count); } // prefetch_count > 0 (this->*copy_loop_func)(from, to, count, count_dec, L_block_copy, false, true); __ add(count, (tail_size>>log2_elem_size), count); // restore count __ wrasi(G0, Assembler::ASI_PRIMARY_NOFAULT); // BIS needs membar. __ membar(Assembler::StoreLoad); // Copy tail __ ba_short(L_copy); __ BIND(L_skip_block_copy); } // UseBlockCopy if (prefetch_count > 0) { // rounded up to one iteration count // Do prefetching only if copy size is bigger // than prefetch distance. __ set(prefetch_count, O4); __ cmp_and_brx_short(count, O4, Assembler::lessUnsigned, Assembler::pt, L_copy); __ sub(count, O4, count); Label L_copy_prefetch; (this->*copy_loop_func)(from, to, count, count_dec, L_copy_prefetch, true, false); __ set(prefetch_count, O4); __ add(count, O4, count); } // prefetch_count > 0 (this->*copy_loop_func)(from, to, count, count_dec, L_copy, false, false); } // // Helper methods for copy_16_bytes_forward_with_shift() // void copy_16_bytes_shift_loop(Register from, Register to, Register count, int count_dec, Label& L_loop, bool use_prefetch, bool use_bis) { const Register left_shift = G1; // left shift bit counter const Register right_shift = G5; // right shift bit counter __ align(OptoLoopAlignment); __ BIND(L_loop); if (use_prefetch) { if (ArraycopySrcPrefetchDistance > 0) { __ prefetch(from, ArraycopySrcPrefetchDistance, Assembler::severalReads); } if (ArraycopyDstPrefetchDistance > 0) { __ prefetch(to, ArraycopyDstPrefetchDistance, Assembler::severalWritesAndPossiblyReads); } } __ ldx(from, 0, O4); __ ldx(from, 8, G4); __ inc(to, 16); __ inc(from, 16); __ deccc(count, count_dec); // Can we do next iteration after this one? __ srlx(O4, right_shift, G3); __ bset(G3, O3); __ sllx(O4, left_shift, O4); __ srlx(G4, right_shift, G3); __ bset(G3, O4); if (use_bis) { __ stxa(O3, to, -16); __ stxa(O4, to, -8); } else { __ stx(O3, to, -16); __ stx(O4, to, -8); } __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop); __ delayed()->sllx(G4, left_shift, O3); } // Copy big chunks forward with shift // // Inputs: // from - source arrays // to - destination array aligned to 8-bytes // count - elements count to copy >= the count equivalent to 16 bytes // count_dec - elements count's decrement equivalent to 16 bytes // L_copy_bytes - copy exit label // void copy_16_bytes_forward_with_shift(Register from, Register to, Register count, int log2_elem_size, Label& L_copy_bytes) { Label L_aligned_copy, L_copy_last_bytes; assert(log2_elem_size <= 3, "the following code should be changed"); int count_dec = 16>>log2_elem_size; // if both arrays have the same alignment mod 8, do 8 bytes aligned copy __ andcc(from, 7, G1); // misaligned bytes __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy); __ delayed()->nop(); const Register left_shift = G1; // left shift bit counter const Register right_shift = G5; // right shift bit counter __ sll(G1, LogBitsPerByte, left_shift); __ mov(64, right_shift); __ sub(right_shift, left_shift, right_shift); // // Load 2 aligned 8-bytes chunks and use one from previous iteration // to form 2 aligned 8-bytes chunks to store. // __ dec(count, count_dec); // Pre-decrement 'count' __ andn(from, 7, from); // Align address __ ldx(from, 0, O3); __ inc(from, 8); __ sllx(O3, left_shift, O3); disjoint_copy_core(from, to, count, log2_elem_size, 16, &StubGenerator::copy_16_bytes_shift_loop); __ inccc(count, count_dec>>1 ); // + 8 bytes __ brx(Assembler::negative, true, Assembler::pn, L_copy_last_bytes); __ delayed()->inc(count, count_dec>>1); // restore 'count' // copy 8 bytes, part of them already loaded in O3 __ ldx(from, 0, O4); __ inc(to, 8); __ inc(from, 8); __ srlx(O4, right_shift, G3); __ bset(O3, G3); __ stx(G3, to, -8); __ BIND(L_copy_last_bytes); __ srl(right_shift, LogBitsPerByte, right_shift); // misaligned bytes __ br(Assembler::always, false, Assembler::pt, L_copy_bytes); __ delayed()->sub(from, right_shift, from); // restore address __ BIND(L_aligned_copy); } // Copy big chunks backward with shift // // Inputs: // end_from - source arrays end address // end_to - destination array end address aligned to 8-bytes // count - elements count to copy >= the count equivalent to 16 bytes // count_dec - elements count's decrement equivalent to 16 bytes // L_aligned_copy - aligned copy exit label // L_copy_bytes - copy exit label // void copy_16_bytes_backward_with_shift(Register end_from, Register end_to, Register count, int count_dec, Label& L_aligned_copy, Label& L_copy_bytes) { Label L_loop, L_copy_last_bytes; // if both arrays have the same alignment mod 8, do 8 bytes aligned copy __ andcc(end_from, 7, G1); // misaligned bytes __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy); __ delayed()->deccc(count, count_dec); // Pre-decrement 'count' const Register left_shift = G1; // left shift bit counter const Register right_shift = G5; // right shift bit counter __ sll(G1, LogBitsPerByte, left_shift); __ mov(64, right_shift); __ sub(right_shift, left_shift, right_shift); // // Load 2 aligned 8-bytes chunks and use one from previous iteration // to form 2 aligned 8-bytes chunks to store. // __ andn(end_from, 7, end_from); // Align address __ ldx(end_from, 0, O3); __ align(OptoLoopAlignment); __ BIND(L_loop); __ ldx(end_from, -8, O4); __ deccc(count, count_dec); // Can we do next iteration after this one? __ ldx(end_from, -16, G4); __ dec(end_to, 16); __ dec(end_from, 16); __ srlx(O3, right_shift, O3); __ sllx(O4, left_shift, G3); __ bset(G3, O3); __ stx(O3, end_to, 8); __ srlx(O4, right_shift, O4); __ sllx(G4, left_shift, G3); __ bset(G3, O4); __ stx(O4, end_to, 0); __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop); __ delayed()->mov(G4, O3); __ inccc(count, count_dec>>1 ); // + 8 bytes __ brx(Assembler::negative, true, Assembler::pn, L_copy_last_bytes); __ delayed()->inc(count, count_dec>>1); // restore 'count' // copy 8 bytes, part of them already loaded in O3 __ ldx(end_from, -8, O4); __ dec(end_to, 8); __ dec(end_from, 8); __ srlx(O3, right_shift, O3); __ sllx(O4, left_shift, G3); __ bset(O3, G3); __ stx(G3, end_to, 0); __ BIND(L_copy_last_bytes); __ srl(left_shift, LogBitsPerByte, left_shift); // misaligned bytes __ br(Assembler::always, false, Assembler::pt, L_copy_bytes); __ delayed()->add(end_from, left_shift, end_from); // restore address } // // Generate stub for disjoint byte copy. If "aligned" is true, the // "from" and "to" addresses are assumed to be heapword aligned. // // Arguments for generated stub: // from: O0 // to: O1 // count: O2 treated as signed // address generate_disjoint_byte_copy(bool aligned, address *entry, const char *name) { __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", name); address start = __ pc(); Label L_skip_alignment, L_align; Label L_copy_byte, L_copy_byte_loop, L_exit; const Register from = O0; // source array address const Register to = O1; // destination array address const Register count = O2; // elements count const Register offset = O5; // offset from start of arrays // O3, O4, G3, G4 are used as temp registers assert_clean_int(count, O3); // Make sure 'count' is clean int. if (entry != NULL) { *entry = __ pc(); // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) BLOCK_COMMENT("Entry:"); } // for short arrays, just do single element copy __ cmp(count, 23); // 16 + 7 __ brx(Assembler::less, false, Assembler::pn, L_copy_byte); __ delayed()->mov(G0, offset); if (aligned) { // 'aligned' == true when it is known statically during compilation // of this arraycopy call site that both 'from' and 'to' addresses // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()). // // Aligned arrays have 4 bytes alignment in 32-bits VM // and 8 bytes - in 64-bits VM. So we do it only for 32-bits VM // } else { // copy bytes to align 'to' on 8 byte boundary __ andcc(to, 7, G1); // misaligned bytes __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment); __ delayed()->neg(G1); __ inc(G1, 8); // bytes need to copy to next 8-bytes alignment __ sub(count, G1, count); __ BIND(L_align); __ ldub(from, 0, O3); __ deccc(G1); __ inc(from); __ stb(O3, to, 0); __ br(Assembler::notZero, false, Assembler::pt, L_align); __ delayed()->inc(to); __ BIND(L_skip_alignment); } if (!aligned) { // Copy with shift 16 bytes per iteration if arrays do not have // the same alignment mod 8, otherwise fall through to the next // code for aligned copy. // The compare above (count >= 23) guarantes 'count' >= 16 bytes. // Also jump over aligned copy after the copy with shift completed. copy_16_bytes_forward_with_shift(from, to, count, 0, L_copy_byte); } // Both array are 8 bytes aligned, copy 16 bytes at a time __ and3(count, 7, G4); // Save count __ srl(count, 3, count); generate_disjoint_long_copy_core(aligned); __ mov(G4, count); // Restore count // copy tailing bytes __ BIND(L_copy_byte); __ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit); __ align(OptoLoopAlignment); __ BIND(L_copy_byte_loop); __ ldub(from, offset, O3); __ deccc(count); __ stb(O3, to, offset); __ brx(Assembler::notZero, false, Assembler::pt, L_copy_byte_loop); __ delayed()->inc(offset); __ BIND(L_exit); // O3, O4 are used as temp registers inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr, O3, O4); __ retl(); __ delayed()->mov(G0, O0); // return 0 return start; } // // Generate stub for conjoint byte copy. If "aligned" is true, the // "from" and "to" addresses are assumed to be heapword aligned. // // Arguments for generated stub: // from: O0 // to: O1 // count: O2 treated as signed // address generate_conjoint_byte_copy(bool aligned, address nooverlap_target, address *entry, const char *name) { // Do reverse copy. __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", name); address start = __ pc(); Label L_skip_alignment, L_align, L_aligned_copy; Label L_copy_byte, L_copy_byte_loop, L_exit; const Register from = O0; // source array address const Register to = O1; // destination array address const Register count = O2; // elements count const Register end_from = from; // source array end address const Register end_to = to; // destination array end address assert_clean_int(count, O3); // Make sure 'count' is clean int. if (entry != NULL) { *entry = __ pc(); // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) BLOCK_COMMENT("Entry:"); } array_overlap_test(nooverlap_target, 0); __ add(to, count, end_to); // offset after last copied element // for short arrays, just do single element copy __ cmp(count, 23); // 16 + 7 __ brx(Assembler::less, false, Assembler::pn, L_copy_byte); __ delayed()->add(from, count, end_from); { // Align end of arrays since they could be not aligned even // when arrays itself are aligned. // copy bytes to align 'end_to' on 8 byte boundary __ andcc(end_to, 7, G1); // misaligned bytes __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment); __ delayed()->nop(); __ sub(count, G1, count); __ BIND(L_align); __ dec(end_from); __ dec(end_to); __ ldub(end_from, 0, O3); __ deccc(G1); __ brx(Assembler::notZero, false, Assembler::pt, L_align); __ delayed()->stb(O3, end_to, 0); __ BIND(L_skip_alignment); } if (aligned) { // Both arrays are aligned to 8-bytes in 64-bits VM. // The 'count' is decremented in copy_16_bytes_backward_with_shift() // in unaligned case. __ dec(count, 16); } else { // Copy with shift 16 bytes per iteration if arrays do not have // the same alignment mod 8, otherwise jump to the next // code for aligned copy (and substracting 16 from 'count' before jump). // The compare above (count >= 11) guarantes 'count' >= 16 bytes. // Also jump over aligned copy after the copy with shift completed. copy_16_bytes_backward_with_shift(end_from, end_to, count, 16, L_aligned_copy, L_copy_byte); } // copy 4 elements (16 bytes) at a time __ align(OptoLoopAlignment); __ BIND(L_aligned_copy); __ dec(end_from, 16); __ ldx(end_from, 8, O3); __ ldx(end_from, 0, O4); __ dec(end_to, 16); __ deccc(count, 16); __ stx(O3, end_to, 8); __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy); __ delayed()->stx(O4, end_to, 0); __ inc(count, 16); // copy 1 element (2 bytes) at a time __ BIND(L_copy_byte); __ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit); __ align(OptoLoopAlignment); __ BIND(L_copy_byte_loop); __ dec(end_from); __ dec(end_to); __ ldub(end_from, 0, O4); __ deccc(count); __ brx(Assembler::greater, false, Assembler::pt, L_copy_byte_loop); __ delayed()->stb(O4, end_to, 0); __ BIND(L_exit); // O3, O4 are used as temp registers inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr, O3, O4); __ retl(); __ delayed()->mov(G0, O0); // return 0 return start; } // // Generate stub for disjoint short copy. If "aligned" is true, the // "from" and "to" addresses are assumed to be heapword aligned. // // Arguments for generated stub: // from: O0 // to: O1 // count: O2 treated as signed // address generate_disjoint_short_copy(bool aligned, address *entry, const char * name) { __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", name); address start = __ pc(); Label L_skip_alignment, L_skip_alignment2; Label L_copy_2_bytes, L_copy_2_bytes_loop, L_exit; const Register from = O0; // source array address const Register to = O1; // destination array address const Register count = O2; // elements count const Register offset = O5; // offset from start of arrays // O3, O4, G3, G4 are used as temp registers assert_clean_int(count, O3); // Make sure 'count' is clean int. if (entry != NULL) { *entry = __ pc(); // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) BLOCK_COMMENT("Entry:"); } // for short arrays, just do single element copy __ cmp(count, 11); // 8 + 3 (22 bytes) __ brx(Assembler::less, false, Assembler::pn, L_copy_2_bytes); __ delayed()->mov(G0, offset); if (aligned) { // 'aligned' == true when it is known statically during compilation // of this arraycopy call site that both 'from' and 'to' addresses // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()). // // Aligned arrays have 4 bytes alignment in 32-bits VM // and 8 bytes - in 64-bits VM. // } else { // copy 1 element if necessary to align 'to' on an 4 bytes __ andcc(to, 3, G0); __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment); __ delayed()->lduh(from, 0, O3); __ inc(from, 2); __ inc(to, 2); __ dec(count); __ sth(O3, to, -2); __ BIND(L_skip_alignment); // copy 2 elements to align 'to' on an 8 byte boundary __ andcc(to, 7, G0); __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment2); __ delayed()->lduh(from, 0, O3); __ dec(count, 2); __ lduh(from, 2, O4); __ inc(from, 4); __ inc(to, 4); __ sth(O3, to, -4); __ sth(O4, to, -2); __ BIND(L_skip_alignment2); } if (!aligned) { // Copy with shift 16 bytes per iteration if arrays do not have // the same alignment mod 8, otherwise fall through to the next // code for aligned copy. // The compare above (count >= 11) guarantes 'count' >= 16 bytes. // Also jump over aligned copy after the copy with shift completed. copy_16_bytes_forward_with_shift(from, to, count, 1, L_copy_2_bytes); } // Both array are 8 bytes aligned, copy 16 bytes at a time __ and3(count, 3, G4); // Save __ srl(count, 2, count); generate_disjoint_long_copy_core(aligned); __ mov(G4, count); // restore // copy 1 element at a time __ BIND(L_copy_2_bytes); __ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit); __ align(OptoLoopAlignment); __ BIND(L_copy_2_bytes_loop); __ lduh(from, offset, O3); __ deccc(count); __ sth(O3, to, offset); __ brx(Assembler::notZero, false, Assembler::pt, L_copy_2_bytes_loop); __ delayed()->inc(offset, 2); __ BIND(L_exit); // O3, O4 are used as temp registers inc_counter_np(SharedRuntime::_jshort_array_copy_ctr, O3, O4); __ retl(); __ delayed()->mov(G0, O0); // return 0 return start; } // // Generate stub for disjoint short fill. If "aligned" is true, the // "to" address is assumed to be heapword aligned. // // Arguments for generated stub: // to: O0 // value: O1 // count: O2 treated as signed // address generate_fill(BasicType t, bool aligned, const char* name) { __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", name); address start = __ pc(); const Register to = O0; // source array address const Register value = O1; // fill value const Register count = O2; // elements count // O3 is used as a temp register assert_clean_int(count, O3); // Make sure 'count' is clean int. Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte; Label L_fill_2_bytes, L_fill_elements, L_fill_32_bytes; int shift = -1; switch (t) { case T_BYTE: shift = 2; break; case T_SHORT: shift = 1; break; case T_INT: shift = 0; break; default: ShouldNotReachHere(); } BLOCK_COMMENT("Entry:"); if (t == T_BYTE) { // Zero extend value __ and3(value, 0xff, value); __ sllx(value, 8, O3); __ or3(value, O3, value); } if (t == T_SHORT) { // Zero extend value __ sllx(value, 48, value); __ srlx(value, 48, value); } if (t == T_BYTE || t == T_SHORT) { __ sllx(value, 16, O3); __ or3(value, O3, value); } __ cmp(count, 2<andcc(count, 1, G0); if (!aligned && (t == T_BYTE || t == T_SHORT)) { // align source address at 4 bytes address boundary if (t == T_BYTE) { // One byte misalignment happens only for byte arrays __ andcc(to, 1, G0); __ br(Assembler::zero, false, Assembler::pt, L_skip_align1); __ delayed()->nop(); __ stb(value, to, 0); __ inc(to, 1); __ dec(count, 1); __ BIND(L_skip_align1); } // Two bytes misalignment happens only for byte and short (char) arrays __ andcc(to, 2, G0); __ br(Assembler::zero, false, Assembler::pt, L_skip_align2); __ delayed()->nop(); __ sth(value, to, 0); __ inc(to, 2); __ dec(count, 1 << (shift - 1)); __ BIND(L_skip_align2); } if (!aligned) { // align to 8 bytes, we know we are 4 byte aligned to start __ andcc(to, 7, G0); __ br(Assembler::zero, false, Assembler::pt, L_fill_32_bytes); __ delayed()->nop(); __ stw(value, to, 0); __ inc(to, 4); __ dec(count, 1 << shift); __ BIND(L_fill_32_bytes); } if (t == T_INT) { // Zero extend value __ srl(value, 0, value); } if (t == T_BYTE || t == T_SHORT || t == T_INT) { __ sllx(value, 32, O3); __ or3(value, O3, value); } Label L_check_fill_8_bytes; // Fill 32-byte chunks __ subcc(count, 8 << shift, count); __ brx(Assembler::less, false, Assembler::pt, L_check_fill_8_bytes); __ delayed()->nop(); Label L_fill_32_bytes_loop, L_fill_4_bytes; __ align(16); __ BIND(L_fill_32_bytes_loop); __ stx(value, to, 0); __ stx(value, to, 8); __ stx(value, to, 16); __ stx(value, to, 24); __ subcc(count, 8 << shift, count); __ brx(Assembler::greaterEqual, false, Assembler::pt, L_fill_32_bytes_loop); __ delayed()->add(to, 32, to); __ BIND(L_check_fill_8_bytes); __ addcc(count, 8 << shift, count); __ brx(Assembler::zero, false, Assembler::pn, L_exit); __ delayed()->subcc(count, 1 << (shift + 1), count); __ brx(Assembler::less, false, Assembler::pn, L_fill_4_bytes); __ delayed()->andcc(count, 1<add(to, 8, to); // fill trailing 4 bytes __ andcc(count, 1<andcc(count, 1<<(shift-1), G0); } else { __ delayed()->nop(); } __ stw(value, to, 0); if (t == T_BYTE || t == T_SHORT) { __ inc(to, 4); // fill trailing 2 bytes __ andcc(count, 1<<(shift-1), G0); // in delay slot of branches __ BIND(L_fill_2_bytes); __ brx(Assembler::zero, false, Assembler::pt, L_fill_byte); __ delayed()->andcc(count, 1, count); __ sth(value, to, 0); if (t == T_BYTE) { __ inc(to, 2); // fill trailing byte __ andcc(count, 1, count); // in delay slot of branches __ BIND(L_fill_byte); __ brx(Assembler::zero, false, Assembler::pt, L_exit); __ delayed()->nop(); __ stb(value, to, 0); } else { __ BIND(L_fill_byte); } } else { __ BIND(L_fill_2_bytes); } __ BIND(L_exit); __ retl(); __ delayed()->nop(); // Handle copies less than 8 bytes. Int is handled elsewhere. if (t == T_BYTE) { __ BIND(L_fill_elements); Label L_fill_2, L_fill_4; // in delay slot __ andcc(count, 1, G0); __ brx(Assembler::zero, false, Assembler::pt, L_fill_2); __ delayed()->andcc(count, 2, G0); __ stb(value, to, 0); __ inc(to, 1); __ BIND(L_fill_2); __ brx(Assembler::zero, false, Assembler::pt, L_fill_4); __ delayed()->andcc(count, 4, G0); __ stb(value, to, 0); __ stb(value, to, 1); __ inc(to, 2); __ BIND(L_fill_4); __ brx(Assembler::zero, false, Assembler::pt, L_exit); __ delayed()->nop(); __ stb(value, to, 0); __ stb(value, to, 1); __ stb(value, to, 2); __ retl(); __ delayed()->stb(value, to, 3); } if (t == T_SHORT) { Label L_fill_2; __ BIND(L_fill_elements); // in delay slot __ andcc(count, 1, G0); __ brx(Assembler::zero, false, Assembler::pt, L_fill_2); __ delayed()->andcc(count, 2, G0); __ sth(value, to, 0); __ inc(to, 2); __ BIND(L_fill_2); __ brx(Assembler::zero, false, Assembler::pt, L_exit); __ delayed()->nop(); __ sth(value, to, 0); __ retl(); __ delayed()->sth(value, to, 2); } return start; } // // Generate stub for conjoint short copy. If "aligned" is true, the // "from" and "to" addresses are assumed to be heapword aligned. // // Arguments for generated stub: // from: O0 // to: O1 // count: O2 treated as signed // address generate_conjoint_short_copy(bool aligned, address nooverlap_target, address *entry, const char *name) { // Do reverse copy. __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", name); address start = __ pc(); Label L_skip_alignment, L_skip_alignment2, L_aligned_copy; Label L_copy_2_bytes, L_copy_2_bytes_loop, L_exit; const Register from = O0; // source array address const Register to = O1; // destination array address const Register count = O2; // elements count const Register end_from = from; // source array end address const Register end_to = to; // destination array end address const Register byte_count = O3; // bytes count to copy assert_clean_int(count, O3); // Make sure 'count' is clean int. if (entry != NULL) { *entry = __ pc(); // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) BLOCK_COMMENT("Entry:"); } array_overlap_test(nooverlap_target, 1); __ sllx(count, LogBytesPerShort, byte_count); __ add(to, byte_count, end_to); // offset after last copied element // for short arrays, just do single element copy __ cmp(count, 11); // 8 + 3 (22 bytes) __ brx(Assembler::less, false, Assembler::pn, L_copy_2_bytes); __ delayed()->add(from, byte_count, end_from); { // Align end of arrays since they could be not aligned even // when arrays itself are aligned. // copy 1 element if necessary to align 'end_to' on an 4 bytes __ andcc(end_to, 3, G0); __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment); __ delayed()->lduh(end_from, -2, O3); __ dec(end_from, 2); __ dec(end_to, 2); __ dec(count); __ sth(O3, end_to, 0); __ BIND(L_skip_alignment); // copy 2 elements to align 'end_to' on an 8 byte boundary __ andcc(end_to, 7, G0); __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment2); __ delayed()->lduh(end_from, -2, O3); __ dec(count, 2); __ lduh(end_from, -4, O4); __ dec(end_from, 4); __ dec(end_to, 4); __ sth(O3, end_to, 2); __ sth(O4, end_to, 0); __ BIND(L_skip_alignment2); } if (aligned) { // Both arrays are aligned to 8-bytes in 64-bits VM. // The 'count' is decremented in copy_16_bytes_backward_with_shift() // in unaligned case. __ dec(count, 8); } else { // Copy with shift 16 bytes per iteration if arrays do not have // the same alignment mod 8, otherwise jump to the next // code for aligned copy (and substracting 8 from 'count' before jump). // The compare above (count >= 11) guarantes 'count' >= 16 bytes. // Also jump over aligned copy after the copy with shift completed. copy_16_bytes_backward_with_shift(end_from, end_to, count, 8, L_aligned_copy, L_copy_2_bytes); } // copy 4 elements (16 bytes) at a time __ align(OptoLoopAlignment); __ BIND(L_aligned_copy); __ dec(end_from, 16); __ ldx(end_from, 8, O3); __ ldx(end_from, 0, O4); __ dec(end_to, 16); __ deccc(count, 8); __ stx(O3, end_to, 8); __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy); __ delayed()->stx(O4, end_to, 0); __ inc(count, 8); // copy 1 element (2 bytes) at a time __ BIND(L_copy_2_bytes); __ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit); __ BIND(L_copy_2_bytes_loop); __ dec(end_from, 2); __ dec(end_to, 2); __ lduh(end_from, 0, O4); __ deccc(count); __ brx(Assembler::greater, false, Assembler::pt, L_copy_2_bytes_loop); __ delayed()->sth(O4, end_to, 0); __ BIND(L_exit); // O3, O4 are used as temp registers inc_counter_np(SharedRuntime::_jshort_array_copy_ctr, O3, O4); __ retl(); __ delayed()->mov(G0, O0); // return 0 return start; } // // Helper methods for generate_disjoint_int_copy_core() // void copy_16_bytes_loop(Register from, Register to, Register count, int count_dec, Label& L_loop, bool use_prefetch, bool use_bis) { __ align(OptoLoopAlignment); __ BIND(L_loop); if (use_prefetch) { if (ArraycopySrcPrefetchDistance > 0) { __ prefetch(from, ArraycopySrcPrefetchDistance, Assembler::severalReads); } if (ArraycopyDstPrefetchDistance > 0) { __ prefetch(to, ArraycopyDstPrefetchDistance, Assembler::severalWritesAndPossiblyReads); } } __ ldx(from, 4, O4); __ ldx(from, 12, G4); __ inc(to, 16); __ inc(from, 16); __ deccc(count, 4); // Can we do next iteration after this one? __ srlx(O4, 32, G3); __ bset(G3, O3); __ sllx(O4, 32, O4); __ srlx(G4, 32, G3); __ bset(G3, O4); if (use_bis) { __ stxa(O3, to, -16); __ stxa(O4, to, -8); } else { __ stx(O3, to, -16); __ stx(O4, to, -8); } __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop); __ delayed()->sllx(G4, 32, O3); } // // Generate core code for disjoint int copy (and oop copy on 32-bit). // If "aligned" is true, the "from" and "to" addresses are assumed // to be heapword aligned. // // Arguments: // from: O0 // to: O1 // count: O2 treated as signed // void generate_disjoint_int_copy_core(bool aligned) { Label L_skip_alignment, L_aligned_copy; Label L_copy_4_bytes, L_copy_4_bytes_loop, L_exit; const Register from = O0; // source array address const Register to = O1; // destination array address const Register count = O2; // elements count const Register offset = O5; // offset from start of arrays // O3, O4, G3, G4 are used as temp registers // 'aligned' == true when it is known statically during compilation // of this arraycopy call site that both 'from' and 'to' addresses // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()). // // Aligned arrays have 4 bytes alignment in 32-bits VM // and 8 bytes - in 64-bits VM. // if (!aligned) { // The next check could be put under 'ifndef' since the code in // generate_disjoint_long_copy_core() has own checks and set 'offset'. // for short arrays, just do single element copy __ cmp(count, 5); // 4 + 1 (20 bytes) __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_4_bytes); __ delayed()->mov(G0, offset); // copy 1 element to align 'to' on an 8 byte boundary __ andcc(to, 7, G0); __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment); __ delayed()->ld(from, 0, O3); __ inc(from, 4); __ inc(to, 4); __ dec(count); __ st(O3, to, -4); __ BIND(L_skip_alignment); // if arrays have same alignment mod 8, do 4 elements copy __ andcc(from, 7, G0); __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy); __ delayed()->ld(from, 0, O3); // // Load 2 aligned 8-bytes chunks and use one from previous iteration // to form 2 aligned 8-bytes chunks to store. // // copy_16_bytes_forward_with_shift() is not used here since this // code is more optimal. // copy with shift 4 elements (16 bytes) at a time __ dec(count, 4); // The cmp at the beginning guaranty count >= 4 __ sllx(O3, 32, O3); disjoint_copy_core(from, to, count, 2, 16, &StubGenerator::copy_16_bytes_loop); __ br(Assembler::always, false, Assembler::pt, L_copy_4_bytes); __ delayed()->inc(count, 4); // restore 'count' __ BIND(L_aligned_copy); } // !aligned // copy 4 elements (16 bytes) at a time __ and3(count, 1, G4); // Save __ srl(count, 1, count); generate_disjoint_long_copy_core(aligned); __ mov(G4, count); // Restore // copy 1 element at a time __ BIND(L_copy_4_bytes); __ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit); __ BIND(L_copy_4_bytes_loop); __ ld(from, offset, O3); __ deccc(count); __ st(O3, to, offset); __ brx(Assembler::notZero, false, Assembler::pt, L_copy_4_bytes_loop); __ delayed()->inc(offset, 4); __ BIND(L_exit); } // // Generate stub for disjoint int copy. If "aligned" is true, the // "from" and "to" addresses are assumed to be heapword aligned. // // Arguments for generated stub: // from: O0 // to: O1 // count: O2 treated as signed // address generate_disjoint_int_copy(bool aligned, address *entry, const char *name) { __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", name); address start = __ pc(); const Register count = O2; assert_clean_int(count, O3); // Make sure 'count' is clean int. if (entry != NULL) { *entry = __ pc(); // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) BLOCK_COMMENT("Entry:"); } generate_disjoint_int_copy_core(aligned); // O3, O4 are used as temp registers inc_counter_np(SharedRuntime::_jint_array_copy_ctr, O3, O4); __ retl(); __ delayed()->mov(G0, O0); // return 0 return start; } // // Generate core code for conjoint int copy (and oop copy on 32-bit). // If "aligned" is true, the "from" and "to" addresses are assumed // to be heapword aligned. // // Arguments: // from: O0 // to: O1 // count: O2 treated as signed // void generate_conjoint_int_copy_core(bool aligned) { // Do reverse copy. Label L_skip_alignment, L_aligned_copy; Label L_copy_16_bytes, L_copy_4_bytes, L_copy_4_bytes_loop, L_exit; const Register from = O0; // source array address const Register to = O1; // destination array address const Register count = O2; // elements count const Register end_from = from; // source array end address const Register end_to = to; // destination array end address // O3, O4, O5, G3 are used as temp registers const Register byte_count = O3; // bytes count to copy __ sllx(count, LogBytesPerInt, byte_count); __ add(to, byte_count, end_to); // offset after last copied element __ cmp(count, 5); // for short arrays, just do single element copy __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_4_bytes); __ delayed()->add(from, byte_count, end_from); // copy 1 element to align 'to' on an 8 byte boundary __ andcc(end_to, 7, G0); __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment); __ delayed()->nop(); __ dec(count); __ dec(end_from, 4); __ dec(end_to, 4); __ ld(end_from, 0, O4); __ st(O4, end_to, 0); __ BIND(L_skip_alignment); // Check if 'end_from' and 'end_to' has the same alignment. __ andcc(end_from, 7, G0); __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy); __ delayed()->dec(count, 4); // The cmp at the start guaranty cnt >= 4 // copy with shift 4 elements (16 bytes) at a time // // Load 2 aligned 8-bytes chunks and use one from previous iteration // to form 2 aligned 8-bytes chunks to store. // __ ldx(end_from, -4, O3); __ align(OptoLoopAlignment); __ BIND(L_copy_16_bytes); __ ldx(end_from, -12, O4); __ deccc(count, 4); __ ldx(end_from, -20, O5); __ dec(end_to, 16); __ dec(end_from, 16); __ srlx(O3, 32, O3); __ sllx(O4, 32, G3); __ bset(G3, O3); __ stx(O3, end_to, 8); __ srlx(O4, 32, O4); __ sllx(O5, 32, G3); __ bset(O4, G3); __ stx(G3, end_to, 0); __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes); __ delayed()->mov(O5, O3); __ br(Assembler::always, false, Assembler::pt, L_copy_4_bytes); __ delayed()->inc(count, 4); // copy 4 elements (16 bytes) at a time __ align(OptoLoopAlignment); __ BIND(L_aligned_copy); __ dec(end_from, 16); __ ldx(end_from, 8, O3); __ ldx(end_from, 0, O4); __ dec(end_to, 16); __ deccc(count, 4); __ stx(O3, end_to, 8); __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy); __ delayed()->stx(O4, end_to, 0); __ inc(count, 4); // copy 1 element (4 bytes) at a time __ BIND(L_copy_4_bytes); __ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit); __ BIND(L_copy_4_bytes_loop); __ dec(end_from, 4); __ dec(end_to, 4); __ ld(end_from, 0, O4); __ deccc(count); __ brx(Assembler::greater, false, Assembler::pt, L_copy_4_bytes_loop); __ delayed()->st(O4, end_to, 0); __ BIND(L_exit); } // // Generate stub for conjoint int copy. If "aligned" is true, the // "from" and "to" addresses are assumed to be heapword aligned. // // Arguments for generated stub: // from: O0 // to: O1 // count: O2 treated as signed // address generate_conjoint_int_copy(bool aligned, address nooverlap_target, address *entry, const char *name) { __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", name); address start = __ pc(); assert_clean_int(O2, O3); // Make sure 'count' is clean int. if (entry != NULL) { *entry = __ pc(); // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) BLOCK_COMMENT("Entry:"); } array_overlap_test(nooverlap_target, 2); generate_conjoint_int_copy_core(aligned); // O3, O4 are used as temp registers inc_counter_np(SharedRuntime::_jint_array_copy_ctr, O3, O4); __ retl(); __ delayed()->mov(G0, O0); // return 0 return start; } // // Helper methods for generate_disjoint_long_copy_core() // void copy_64_bytes_loop(Register from, Register to, Register count, int count_dec, Label& L_loop, bool use_prefetch, bool use_bis) { __ align(OptoLoopAlignment); __ BIND(L_loop); for (int off = 0; off < 64; off += 16) { if (use_prefetch && (off & 31) == 0) { if (ArraycopySrcPrefetchDistance > 0) { __ prefetch(from, ArraycopySrcPrefetchDistance+off, Assembler::severalReads); } if (ArraycopyDstPrefetchDistance > 0) { __ prefetch(to, ArraycopyDstPrefetchDistance+off, Assembler::severalWritesAndPossiblyReads); } } __ ldx(from, off+0, O4); __ ldx(from, off+8, O5); if (use_bis) { __ stxa(O4, to, off+0); __ stxa(O5, to, off+8); } else { __ stx(O4, to, off+0); __ stx(O5, to, off+8); } } __ deccc(count, 8); __ inc(from, 64); __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop); __ delayed()->inc(to, 64); } // // Generate core code for disjoint long copy (and oop copy on 64-bit). // "aligned" is ignored, because we must make the stronger // assumption that both addresses are always 64-bit aligned. // // Arguments: // from: O0 // to: O1 // count: O2 treated as signed // // count -= 2; // if ( count >= 0 ) { // >= 2 elements // if ( count > 6) { // >= 8 elements // count -= 6; // original count - 8 // do { // copy_8_elements; // count -= 8; // } while ( count >= 0 ); // count += 6; // } // if ( count >= 0 ) { // >= 2 elements // do { // copy_2_elements; // } while ( (count=count-2) >= 0 ); // } // } // count += 2; // if ( count != 0 ) { // 1 element left // copy_1_element; // } // void generate_disjoint_long_copy_core(bool aligned) { Label L_copy_8_bytes, L_copy_16_bytes, L_exit; const Register from = O0; // source array address const Register to = O1; // destination array address const Register count = O2; // elements count const Register offset0 = O4; // element offset const Register offset8 = O5; // next element offset __ deccc(count, 2); __ mov(G0, offset0); // offset from start of arrays (0) __ brx(Assembler::negative, false, Assembler::pn, L_copy_8_bytes ); __ delayed()->add(offset0, 8, offset8); // Copy by 64 bytes chunks const Register from64 = O3; // source address const Register to64 = G3; // destination address __ subcc(count, 6, O3); __ brx(Assembler::negative, false, Assembler::pt, L_copy_16_bytes ); __ delayed()->mov(to, to64); // Now we can use O4(offset0), O5(offset8) as temps __ mov(O3, count); // count >= 0 (original count - 8) __ mov(from, from64); disjoint_copy_core(from64, to64, count, 3, 64, &StubGenerator::copy_64_bytes_loop); // Restore O4(offset0), O5(offset8) __ sub(from64, from, offset0); __ inccc(count, 6); // restore count __ brx(Assembler::negative, false, Assembler::pn, L_copy_8_bytes ); __ delayed()->add(offset0, 8, offset8); // Copy by 16 bytes chunks __ align(OptoLoopAlignment); __ BIND(L_copy_16_bytes); __ ldx(from, offset0, O3); __ ldx(from, offset8, G3); __ deccc(count, 2); __ stx(O3, to, offset0); __ inc(offset0, 16); __ stx(G3, to, offset8); __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes); __ delayed()->inc(offset8, 16); // Copy last 8 bytes __ BIND(L_copy_8_bytes); __ inccc(count, 2); __ brx(Assembler::zero, true, Assembler::pn, L_exit ); __ delayed()->mov(offset0, offset8); // Set O5 used by other stubs __ ldx(from, offset0, O3); __ stx(O3, to, offset0); __ BIND(L_exit); } // // Generate stub for disjoint long copy. // "aligned" is ignored, because we must make the stronger // assumption that both addresses are always 64-bit aligned. // // Arguments for generated stub: // from: O0 // to: O1 // count: O2 treated as signed // address generate_disjoint_long_copy(bool aligned, address *entry, const char *name) { __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", name); address start = __ pc(); assert_clean_int(O2, O3); // Make sure 'count' is clean int. if (entry != NULL) { *entry = __ pc(); // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) BLOCK_COMMENT("Entry:"); } generate_disjoint_long_copy_core(aligned); // O3, O4 are used as temp registers inc_counter_np(SharedRuntime::_jlong_array_copy_ctr, O3, O4); __ retl(); __ delayed()->mov(G0, O0); // return 0 return start; } // // Generate core code for conjoint long copy (and oop copy on 64-bit). // "aligned" is ignored, because we must make the stronger // assumption that both addresses are always 64-bit aligned. // // Arguments: // from: O0 // to: O1 // count: O2 treated as signed // void generate_conjoint_long_copy_core(bool aligned) { // Do reverse copy. Label L_copy_8_bytes, L_copy_16_bytes, L_exit; const Register from = O0; // source array address const Register to = O1; // destination array address const Register count = O2; // elements count const Register offset8 = O4; // element offset const Register offset0 = O5; // previous element offset __ subcc(count, 1, count); __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_8_bytes ); __ delayed()->sllx(count, LogBytesPerLong, offset8); __ sub(offset8, 8, offset0); __ align(OptoLoopAlignment); __ BIND(L_copy_16_bytes); __ ldx(from, offset8, O2); __ ldx(from, offset0, O3); __ stx(O2, to, offset8); __ deccc(offset8, 16); // use offset8 as counter __ stx(O3, to, offset0); __ brx(Assembler::greater, false, Assembler::pt, L_copy_16_bytes); __ delayed()->dec(offset0, 16); __ BIND(L_copy_8_bytes); __ brx(Assembler::negative, false, Assembler::pn, L_exit ); __ delayed()->nop(); __ ldx(from, 0, O3); __ stx(O3, to, 0); __ BIND(L_exit); } // Generate stub for conjoint long copy. // "aligned" is ignored, because we must make the stronger // assumption that both addresses are always 64-bit aligned. // // Arguments for generated stub: // from: O0 // to: O1 // count: O2 treated as signed // address generate_conjoint_long_copy(bool aligned, address nooverlap_target, address *entry, const char *name) { __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", name); address start = __ pc(); assert(aligned, "Should always be aligned"); assert_clean_int(O2, O3); // Make sure 'count' is clean int. if (entry != NULL) { *entry = __ pc(); // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) BLOCK_COMMENT("Entry:"); } array_overlap_test(nooverlap_target, 3); generate_conjoint_long_copy_core(aligned); // O3, O4 are used as temp registers inc_counter_np(SharedRuntime::_jlong_array_copy_ctr, O3, O4); __ retl(); __ delayed()->mov(G0, O0); // return 0 return start; } // Generate stub for disjoint oop copy. If "aligned" is true, the // "from" and "to" addresses are assumed to be heapword aligned. // // Arguments for generated stub: // from: O0 // to: O1 // count: O2 treated as signed // address generate_disjoint_oop_copy(bool aligned, address *entry, const char *name, bool dest_uninitialized = false) { const Register from = O0; // source array address const Register to = O1; // destination array address const Register count = O2; // elements count __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", name); address start = __ pc(); assert_clean_int(count, O3); // Make sure 'count' is clean int. if (entry != NULL) { *entry = __ pc(); // caller can pass a 64-bit byte count here BLOCK_COMMENT("Entry:"); } // save arguments for barrier generation __ mov(to, G1); __ mov(count, G5); gen_write_ref_array_pre_barrier(G1, G5, dest_uninitialized); assert_clean_int(count, O3); // Make sure 'count' is clean int. if (UseCompressedOops) { generate_disjoint_int_copy_core(aligned); } else { generate_disjoint_long_copy_core(aligned); } // O0 is used as temp register gen_write_ref_array_post_barrier(G1, G5, O0); // O3, O4 are used as temp registers inc_counter_np(SharedRuntime::_oop_array_copy_ctr, O3, O4); __ retl(); __ delayed()->mov(G0, O0); // return 0 return start; } // Generate stub for conjoint oop copy. If "aligned" is true, the // "from" and "to" addresses are assumed to be heapword aligned. // // Arguments for generated stub: // from: O0 // to: O1 // count: O2 treated as signed // address generate_conjoint_oop_copy(bool aligned, address nooverlap_target, address *entry, const char *name, bool dest_uninitialized = false) { const Register from = O0; // source array address const Register to = O1; // destination array address const Register count = O2; // elements count __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", name); address start = __ pc(); assert_clean_int(count, O3); // Make sure 'count' is clean int. if (entry != NULL) { *entry = __ pc(); // caller can pass a 64-bit byte count here BLOCK_COMMENT("Entry:"); } array_overlap_test(nooverlap_target, LogBytesPerHeapOop); // save arguments for barrier generation __ mov(to, G1); __ mov(count, G5); gen_write_ref_array_pre_barrier(G1, G5, dest_uninitialized); if (UseCompressedOops) { generate_conjoint_int_copy_core(aligned); } else { generate_conjoint_long_copy_core(aligned); } // O0 is used as temp register gen_write_ref_array_post_barrier(G1, G5, O0); // O3, O4 are used as temp registers inc_counter_np(SharedRuntime::_oop_array_copy_ctr, O3, O4); __ retl(); __ delayed()->mov(G0, O0); // return 0 return start; } // Helper for generating a dynamic type check. // Smashes only the given temp registers. void generate_type_check(Register sub_klass, Register super_check_offset, Register super_klass, Register temp, Label& L_success) { assert_different_registers(sub_klass, super_check_offset, super_klass, temp); BLOCK_COMMENT("type_check:"); Label L_miss, L_pop_to_miss; assert_clean_int(super_check_offset, temp); __ check_klass_subtype_fast_path(sub_klass, super_klass, temp, noreg, &L_success, &L_miss, NULL, super_check_offset); BLOCK_COMMENT("type_check_slow_path:"); __ save_frame(0); __ check_klass_subtype_slow_path(sub_klass->after_save(), super_klass->after_save(), L0, L1, L2, L4, NULL, &L_pop_to_miss); __ ba(L_success); __ delayed()->restore(); __ bind(L_pop_to_miss); __ restore(); // Fall through on failure! __ BIND(L_miss); } // Generate stub for checked oop copy. // // Arguments for generated stub: // from: O0 // to: O1 // count: O2 treated as signed // ckoff: O3 (super_check_offset) // ckval: O4 (super_klass) // ret: O0 zero for success; (-1^K) where K is partial transfer count // address generate_checkcast_copy(const char *name, address *entry, bool dest_uninitialized = false) { const Register O0_from = O0; // source array address const Register O1_to = O1; // destination array address const Register O2_count = O2; // elements count const Register O3_ckoff = O3; // super_check_offset const Register O4_ckval = O4; // super_klass const Register O5_offset = O5; // loop var, with stride wordSize const Register G1_remain = G1; // loop var, with stride -1 const Register G3_oop = G3; // actual oop copied const Register G4_klass = G4; // oop._klass const Register G5_super = G5; // oop._klass._primary_supers[ckval] __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", name); address start = __ pc(); #ifdef ASSERT // We sometimes save a frame (see generate_type_check below). // If this will cause trouble, let's fail now instead of later. __ save_frame(0); __ restore(); #endif assert_clean_int(O2_count, G1); // Make sure 'count' is clean int. #ifdef ASSERT // caller guarantees that the arrays really are different // otherwise, we would have to make conjoint checks { Label L; __ mov(O3, G1); // spill: overlap test smashes O3 __ mov(O4, G4); // spill: overlap test smashes O4 array_overlap_test(L, LogBytesPerHeapOop); __ stop("checkcast_copy within a single array"); __ bind(L); __ mov(G1, O3); __ mov(G4, O4); } #endif //ASSERT if (entry != NULL) { *entry = __ pc(); // caller can pass a 64-bit byte count here (from generic stub) BLOCK_COMMENT("Entry:"); } gen_write_ref_array_pre_barrier(O1_to, O2_count, dest_uninitialized); Label load_element, store_element, do_card_marks, fail, done; __ addcc(O2_count, 0, G1_remain); // initialize loop index, and test it __ brx(Assembler::notZero, false, Assembler::pt, load_element); __ delayed()->mov(G0, O5_offset); // offset from start of arrays // Empty array: Nothing to do. inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr, O3, O4); __ retl(); __ delayed()->set(0, O0); // return 0 on (trivial) success // ======== begin loop ======== // (Loop is rotated; its entry is load_element.) // Loop variables: // (O5 = 0; ; O5 += wordSize) --- offset from src, dest arrays // (O2 = len; O2 != 0; O2--) --- number of oops *remaining* // G3, G4, G5 --- current oop, oop.klass, oop.klass.super __ align(OptoLoopAlignment); __ BIND(store_element); __ deccc(G1_remain); // decrement the count __ store_heap_oop(G3_oop, O1_to, O5_offset); // store the oop __ inc(O5_offset, heapOopSize); // step to next offset __ brx(Assembler::zero, true, Assembler::pt, do_card_marks); __ delayed()->set(0, O0); // return -1 on success // ======== loop entry is here ======== __ BIND(load_element); __ load_heap_oop(O0_from, O5_offset, G3_oop); // load the oop __ br_null_short(G3_oop, Assembler::pt, store_element); __ load_klass(G3_oop, G4_klass); // query the object klass generate_type_check(G4_klass, O3_ckoff, O4_ckval, G5_super, // branch to this on success: store_element); // ======== end loop ======== // It was a real error; we must depend on the caller to finish the job. // Register G1 has number of *remaining* oops, O2 number of *total* oops. // Emit GC store barriers for the oops we have copied (O2 minus G1), // and report their number to the caller. __ BIND(fail); __ subcc(O2_count, G1_remain, O2_count); __ brx(Assembler::zero, false, Assembler::pt, done); __ delayed()->not1(O2_count, O0); // report (-1^K) to caller __ BIND(do_card_marks); gen_write_ref_array_post_barrier(O1_to, O2_count, O3); // store check on O1[0..O2] __ BIND(done); inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr, O3, O4); __ retl(); __ delayed()->nop(); // return value in 00 return start; } // Generate 'unsafe' array copy stub // Though just as safe as the other stubs, it takes an unscaled // size_t argument instead of an element count. // // Arguments for generated stub: // from: O0 // to: O1 // count: O2 byte count, treated as ssize_t, can be zero // // Examines the alignment of the operands and dispatches // to a long, int, short, or byte copy loop. // address generate_unsafe_copy(const char* name, address byte_copy_entry, address short_copy_entry, address int_copy_entry, address long_copy_entry) { const Register O0_from = O0; // source array address const Register O1_to = O1; // destination array address const Register O2_count = O2; // elements count const Register G1_bits = G1; // test copy of low bits __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", name); address start = __ pc(); // bump this on entry, not on exit: inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr, G1, G3); __ or3(O0_from, O1_to, G1_bits); __ or3(O2_count, G1_bits, G1_bits); __ btst(BytesPerLong-1, G1_bits); __ br(Assembler::zero, true, Assembler::pt, long_copy_entry, relocInfo::runtime_call_type); // scale the count on the way out: __ delayed()->srax(O2_count, LogBytesPerLong, O2_count); __ btst(BytesPerInt-1, G1_bits); __ br(Assembler::zero, true, Assembler::pt, int_copy_entry, relocInfo::runtime_call_type); // scale the count on the way out: __ delayed()->srax(O2_count, LogBytesPerInt, O2_count); __ btst(BytesPerShort-1, G1_bits); __ br(Assembler::zero, true, Assembler::pt, short_copy_entry, relocInfo::runtime_call_type); // scale the count on the way out: __ delayed()->srax(O2_count, LogBytesPerShort, O2_count); __ br(Assembler::always, false, Assembler::pt, byte_copy_entry, relocInfo::runtime_call_type); __ delayed()->nop(); return start; } // Perform range checks on the proposed arraycopy. // Kills the two temps, but nothing else. // Also, clean the sign bits of src_pos and dst_pos. void arraycopy_range_checks(Register src, // source array oop (O0) Register src_pos, // source position (O1) Register dst, // destination array oo (O2) Register dst_pos, // destination position (O3) Register length, // length of copy (O4) Register temp1, Register temp2, Label& L_failed) { BLOCK_COMMENT("arraycopy_range_checks:"); // if (src_pos + length > arrayOop(src)->length() ) FAIL; const Register array_length = temp1; // scratch const Register end_pos = temp2; // scratch // Note: This next instruction may be in the delay slot of a branch: __ add(length, src_pos, end_pos); // src_pos + length __ lduw(src, arrayOopDesc::length_offset_in_bytes(), array_length); __ cmp(end_pos, array_length); __ br(Assembler::greater, false, Assembler::pn, L_failed); // if (dst_pos + length > arrayOop(dst)->length() ) FAIL; __ delayed()->add(length, dst_pos, end_pos); // dst_pos + length __ lduw(dst, arrayOopDesc::length_offset_in_bytes(), array_length); __ cmp(end_pos, array_length); __ br(Assembler::greater, false, Assembler::pn, L_failed); // Have to clean up high 32-bits of 'src_pos' and 'dst_pos'. // Move with sign extension can be used since they are positive. __ delayed()->signx(src_pos, src_pos); __ signx(dst_pos, dst_pos); BLOCK_COMMENT("arraycopy_range_checks done"); } // // Generate generic array copy stubs // // Input: // O0 - src oop // O1 - src_pos // O2 - dst oop // O3 - dst_pos // O4 - element count // // Output: // O0 == 0 - success // O0 == -1 - need to call System.arraycopy // address generate_generic_copy(const char *name, address entry_jbyte_arraycopy, address entry_jshort_arraycopy, address entry_jint_arraycopy, address entry_oop_arraycopy, address entry_jlong_arraycopy, address entry_checkcast_arraycopy) { Label L_failed, L_objArray; // Input registers const Register src = O0; // source array oop const Register src_pos = O1; // source position const Register dst = O2; // destination array oop const Register dst_pos = O3; // destination position const Register length = O4; // elements count // registers used as temp const Register G3_src_klass = G3; // source array klass const Register G4_dst_klass = G4; // destination array klass const Register G5_lh = G5; // layout handler const Register O5_temp = O5; __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", name); address start = __ pc(); // bump this on entry, not on exit: inc_counter_np(SharedRuntime::_generic_array_copy_ctr, G1, G3); // In principle, the int arguments could be dirty. //assert_clean_int(src_pos, G1); //assert_clean_int(dst_pos, G1); //assert_clean_int(length, G1); //----------------------------------------------------------------------- // Assembler stubs will be used for this call to arraycopy // if the following conditions are met: // // (1) src and dst must not be null. // (2) src_pos must not be negative. // (3) dst_pos must not be negative. // (4) length must not be negative. // (5) src klass and dst klass should be the same and not NULL. // (6) src and dst should be arrays. // (7) src_pos + length must not exceed length of src. // (8) dst_pos + length must not exceed length of dst. BLOCK_COMMENT("arraycopy initial argument checks"); // if (src == NULL) return -1; __ br_null(src, false, Assembler::pn, L_failed); // if (src_pos < 0) return -1; __ delayed()->tst(src_pos); __ br(Assembler::negative, false, Assembler::pn, L_failed); __ delayed()->nop(); // if (dst == NULL) return -1; __ br_null(dst, false, Assembler::pn, L_failed); // if (dst_pos < 0) return -1; __ delayed()->tst(dst_pos); __ br(Assembler::negative, false, Assembler::pn, L_failed); // if (length < 0) return -1; __ delayed()->tst(length); __ br(Assembler::negative, false, Assembler::pn, L_failed); BLOCK_COMMENT("arraycopy argument klass checks"); // get src->klass() if (UseCompressedClassPointers) { __ delayed()->nop(); // ??? not good __ load_klass(src, G3_src_klass); } else { __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), G3_src_klass); } #ifdef ASSERT // assert(src->klass() != NULL); BLOCK_COMMENT("assert klasses not null"); { Label L_a, L_b; __ br_notnull_short(G3_src_klass, Assembler::pt, L_b); // it is broken if klass is NULL __ bind(L_a); __ stop("broken null klass"); __ bind(L_b); __ load_klass(dst, G4_dst_klass); __ br_null(G4_dst_klass, false, Assembler::pn, L_a); // this would be broken also __ delayed()->mov(G0, G4_dst_klass); // scribble the temp BLOCK_COMMENT("assert done"); } #endif // Load layout helper // // |array_tag| | header_size | element_type | |log2_element_size| // 32 30 24 16 8 2 0 // // array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0 // int lh_offset = in_bytes(Klass::layout_helper_offset()); // Load 32-bits signed value. Use br() instruction with it to check icc. __ lduw(G3_src_klass, lh_offset, G5_lh); if (UseCompressedClassPointers) { __ load_klass(dst, G4_dst_klass); } // Handle objArrays completely differently... juint objArray_lh = Klass::array_layout_helper(T_OBJECT); __ set(objArray_lh, O5_temp); __ cmp(G5_lh, O5_temp); __ br(Assembler::equal, false, Assembler::pt, L_objArray); if (UseCompressedClassPointers) { __ delayed()->nop(); } else { __ delayed()->ld_ptr(dst, oopDesc::klass_offset_in_bytes(), G4_dst_klass); } // if (src->klass() != dst->klass()) return -1; __ cmp_and_brx_short(G3_src_klass, G4_dst_klass, Assembler::notEqual, Assembler::pn, L_failed); // if (!src->is_Array()) return -1; __ cmp(G5_lh, Klass::_lh_neutral_value); // < 0 __ br(Assembler::greaterEqual, false, Assembler::pn, L_failed); // At this point, it is known to be a typeArray (array_tag 0x3). #ifdef ASSERT __ delayed()->nop(); { Label L; jint lh_prim_tag_in_place = (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift); __ set(lh_prim_tag_in_place, O5_temp); __ cmp(G5_lh, O5_temp); __ br(Assembler::greaterEqual, false, Assembler::pt, L); __ delayed()->nop(); __ stop("must be a primitive array"); __ bind(L); } #else __ delayed(); // match next insn to prev branch #endif arraycopy_range_checks(src, src_pos, dst, dst_pos, length, O5_temp, G4_dst_klass, L_failed); // TypeArrayKlass // // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize); // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize); // const Register G4_offset = G4_dst_klass; // array offset const Register G3_elsize = G3_src_klass; // log2 element size __ srl(G5_lh, Klass::_lh_header_size_shift, G4_offset); __ and3(G4_offset, Klass::_lh_header_size_mask, G4_offset); // array_offset __ add(src, G4_offset, src); // src array offset __ add(dst, G4_offset, dst); // dst array offset __ and3(G5_lh, Klass::_lh_log2_element_size_mask, G3_elsize); // log2 element size // next registers should be set before the jump to corresponding stub const Register from = O0; // source array address const Register to = O1; // destination array address const Register count = O2; // elements count // 'from', 'to', 'count' registers should be set in this order // since they are the same as 'src', 'src_pos', 'dst'. BLOCK_COMMENT("scale indexes to element size"); __ sll_ptr(src_pos, G3_elsize, src_pos); __ sll_ptr(dst_pos, G3_elsize, dst_pos); __ add(src, src_pos, from); // src_addr __ add(dst, dst_pos, to); // dst_addr BLOCK_COMMENT("choose copy loop based on element size"); __ cmp(G3_elsize, 0); __ br(Assembler::equal, true, Assembler::pt, entry_jbyte_arraycopy); __ delayed()->signx(length, count); // length __ cmp(G3_elsize, LogBytesPerShort); __ br(Assembler::equal, true, Assembler::pt, entry_jshort_arraycopy); __ delayed()->signx(length, count); // length __ cmp(G3_elsize, LogBytesPerInt); __ br(Assembler::equal, true, Assembler::pt, entry_jint_arraycopy); __ delayed()->signx(length, count); // length #ifdef ASSERT { Label L; __ cmp_and_br_short(G3_elsize, LogBytesPerLong, Assembler::equal, Assembler::pt, L); __ stop("must be long copy, but elsize is wrong"); __ bind(L); } #endif __ br(Assembler::always, false, Assembler::pt, entry_jlong_arraycopy); __ delayed()->signx(length, count); // length // ObjArrayKlass __ BIND(L_objArray); // live at this point: G3_src_klass, G4_dst_klass, src[_pos], dst[_pos], length Label L_plain_copy, L_checkcast_copy; // test array classes for subtyping __ cmp(G3_src_klass, G4_dst_klass); // usual case is exact equality __ brx(Assembler::notEqual, true, Assembler::pn, L_checkcast_copy); __ delayed()->lduw(G4_dst_klass, lh_offset, O5_temp); // hoisted from below // Identically typed arrays can be copied without element-wise checks. arraycopy_range_checks(src, src_pos, dst, dst_pos, length, O5_temp, G5_lh, L_failed); __ add(src, arrayOopDesc::base_offset_in_bytes(T_OBJECT), src); //src offset __ add(dst, arrayOopDesc::base_offset_in_bytes(T_OBJECT), dst); //dst offset __ sll_ptr(src_pos, LogBytesPerHeapOop, src_pos); __ sll_ptr(dst_pos, LogBytesPerHeapOop, dst_pos); __ add(src, src_pos, from); // src_addr __ add(dst, dst_pos, to); // dst_addr __ BIND(L_plain_copy); __ br(Assembler::always, false, Assembler::pt, entry_oop_arraycopy); __ delayed()->signx(length, count); // length __ BIND(L_checkcast_copy); // live at this point: G3_src_klass, G4_dst_klass { // Before looking at dst.length, make sure dst is also an objArray. // lduw(G4_dst_klass, lh_offset, O5_temp); // hoisted to delay slot __ cmp(G5_lh, O5_temp); __ br(Assembler::notEqual, false, Assembler::pn, L_failed); // It is safe to examine both src.length and dst.length. __ delayed(); // match next insn to prev branch arraycopy_range_checks(src, src_pos, dst, dst_pos, length, O5_temp, G5_lh, L_failed); // Marshal the base address arguments now, freeing registers. __ add(src, arrayOopDesc::base_offset_in_bytes(T_OBJECT), src); //src offset __ add(dst, arrayOopDesc::base_offset_in_bytes(T_OBJECT), dst); //dst offset __ sll_ptr(src_pos, LogBytesPerHeapOop, src_pos); __ sll_ptr(dst_pos, LogBytesPerHeapOop, dst_pos); __ add(src, src_pos, from); // src_addr __ add(dst, dst_pos, to); // dst_addr __ signx(length, count); // length (reloaded) Register sco_temp = O3; // this register is free now assert_different_registers(from, to, count, sco_temp, G4_dst_klass, G3_src_klass); // Generate the type check. int sco_offset = in_bytes(Klass::super_check_offset_offset()); __ lduw(G4_dst_klass, sco_offset, sco_temp); generate_type_check(G3_src_klass, sco_temp, G4_dst_klass, O5_temp, L_plain_copy); // Fetch destination element klass from the ObjArrayKlass header. int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset()); // the checkcast_copy loop needs two extra arguments: __ ld_ptr(G4_dst_klass, ek_offset, O4); // dest elem klass // lduw(O4, sco_offset, O3); // sco of elem klass __ br(Assembler::always, false, Assembler::pt, entry_checkcast_arraycopy); __ delayed()->lduw(O4, sco_offset, O3); } __ BIND(L_failed); __ retl(); __ delayed()->sub(G0, 1, O0); // return -1 return start; } // // Generate stub for heap zeroing. // "to" address is aligned to jlong (8 bytes). // // Arguments for generated stub: // to: O0 // count: O1 treated as signed (count of HeapWord) // count could be 0 // address generate_zero_aligned_words(const char* name) { __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", name); address start = __ pc(); const Register to = O0; // source array address const Register count = O1; // HeapWords count const Register temp = O2; // scratch Label Ldone; __ sllx(count, LogHeapWordSize, count); // to bytes count // Use BIS for zeroing __ bis_zeroing(to, count, temp, Ldone); __ bind(Ldone); __ retl(); __ delayed()->nop(); return start; } void generate_arraycopy_stubs() { address entry; address entry_jbyte_arraycopy; address entry_jshort_arraycopy; address entry_jint_arraycopy; address entry_oop_arraycopy; address entry_jlong_arraycopy; address entry_checkcast_arraycopy; //*** jbyte // Always need aligned and unaligned versions StubRoutines::_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(false, &entry, "jbyte_disjoint_arraycopy"); StubRoutines::_jbyte_arraycopy = generate_conjoint_byte_copy(false, entry, &entry_jbyte_arraycopy, "jbyte_arraycopy"); StubRoutines::_arrayof_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(true, &entry, "arrayof_jbyte_disjoint_arraycopy"); StubRoutines::_arrayof_jbyte_arraycopy = generate_conjoint_byte_copy(true, entry, NULL, "arrayof_jbyte_arraycopy"); //*** jshort // Always need aligned and unaligned versions StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, &entry, "jshort_disjoint_arraycopy"); StubRoutines::_jshort_arraycopy = generate_conjoint_short_copy(false, entry, &entry_jshort_arraycopy, "jshort_arraycopy"); StubRoutines::_arrayof_jshort_disjoint_arraycopy = generate_disjoint_short_copy(true, &entry, "arrayof_jshort_disjoint_arraycopy"); StubRoutines::_arrayof_jshort_arraycopy = generate_conjoint_short_copy(true, entry, NULL, "arrayof_jshort_arraycopy"); //*** jint // Aligned versions StubRoutines::_arrayof_jint_disjoint_arraycopy = generate_disjoint_int_copy(true, &entry, "arrayof_jint_disjoint_arraycopy"); StubRoutines::_arrayof_jint_arraycopy = generate_conjoint_int_copy(true, entry, &entry_jint_arraycopy, "arrayof_jint_arraycopy"); // In 64 bit we need both aligned and unaligned versions of jint arraycopy. // entry_jint_arraycopy always points to the unaligned version (notice that we overwrite it). StubRoutines::_jint_disjoint_arraycopy = generate_disjoint_int_copy(false, &entry, "jint_disjoint_arraycopy"); StubRoutines::_jint_arraycopy = generate_conjoint_int_copy(false, entry, &entry_jint_arraycopy, "jint_arraycopy"); //*** jlong // It is always aligned StubRoutines::_arrayof_jlong_disjoint_arraycopy = generate_disjoint_long_copy(true, &entry, "arrayof_jlong_disjoint_arraycopy"); StubRoutines::_arrayof_jlong_arraycopy = generate_conjoint_long_copy(true, entry, &entry_jlong_arraycopy, "arrayof_jlong_arraycopy"); StubRoutines::_jlong_disjoint_arraycopy = StubRoutines::_arrayof_jlong_disjoint_arraycopy; StubRoutines::_jlong_arraycopy = StubRoutines::_arrayof_jlong_arraycopy; //*** oops // Aligned versions StubRoutines::_arrayof_oop_disjoint_arraycopy = generate_disjoint_oop_copy(true, &entry, "arrayof_oop_disjoint_arraycopy"); StubRoutines::_arrayof_oop_arraycopy = generate_conjoint_oop_copy(true, entry, &entry_oop_arraycopy, "arrayof_oop_arraycopy"); // Aligned versions without pre-barriers StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit = generate_disjoint_oop_copy(true, &entry, "arrayof_oop_disjoint_arraycopy_uninit", /*dest_uninitialized*/true); StubRoutines::_arrayof_oop_arraycopy_uninit = generate_conjoint_oop_copy(true, entry, NULL, "arrayof_oop_arraycopy_uninit", /*dest_uninitialized*/true); if (UseCompressedOops) { // With compressed oops we need unaligned versions, notice that we overwrite entry_oop_arraycopy. StubRoutines::_oop_disjoint_arraycopy = generate_disjoint_oop_copy(false, &entry, "oop_disjoint_arraycopy"); StubRoutines::_oop_arraycopy = generate_conjoint_oop_copy(false, entry, &entry_oop_arraycopy, "oop_arraycopy"); // Unaligned versions without pre-barriers StubRoutines::_oop_disjoint_arraycopy_uninit = generate_disjoint_oop_copy(false, &entry, "oop_disjoint_arraycopy_uninit", /*dest_uninitialized*/true); StubRoutines::_oop_arraycopy_uninit = generate_conjoint_oop_copy(false, entry, NULL, "oop_arraycopy_uninit", /*dest_uninitialized*/true); } else { // oop arraycopy is always aligned on 32bit and 64bit without compressed oops StubRoutines::_oop_disjoint_arraycopy = StubRoutines::_arrayof_oop_disjoint_arraycopy; StubRoutines::_oop_arraycopy = StubRoutines::_arrayof_oop_arraycopy; StubRoutines::_oop_disjoint_arraycopy_uninit = StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit; StubRoutines::_oop_arraycopy_uninit = StubRoutines::_arrayof_oop_arraycopy_uninit; } StubRoutines::_checkcast_arraycopy = generate_checkcast_copy("checkcast_arraycopy", &entry_checkcast_arraycopy); StubRoutines::_checkcast_arraycopy_uninit = generate_checkcast_copy("checkcast_arraycopy_uninit", NULL, /*dest_uninitialized*/true); StubRoutines::_unsafe_arraycopy = generate_unsafe_copy("unsafe_arraycopy", entry_jbyte_arraycopy, entry_jshort_arraycopy, entry_jint_arraycopy, entry_jlong_arraycopy); StubRoutines::_generic_arraycopy = generate_generic_copy("generic_arraycopy", entry_jbyte_arraycopy, entry_jshort_arraycopy, entry_jint_arraycopy, entry_oop_arraycopy, entry_jlong_arraycopy, entry_checkcast_arraycopy); StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill"); StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill"); StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill"); StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill"); StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill"); StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill"); if (UseBlockZeroing) { StubRoutines::_zero_aligned_words = generate_zero_aligned_words("zero_aligned_words"); } } address generate_aescrypt_encryptBlock() { // required since we read expanded key 'int' array starting first element without alignment considerations assert((arrayOopDesc::base_offset_in_bytes(T_INT) & 7) == 0, "the following code assumes that first element of an int array is aligned to 8 bytes"); __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", "aescrypt_encryptBlock"); Label L_load_misaligned_input, L_load_expanded_key, L_doLast128bit, L_storeOutput, L_store_misaligned_output; address start = __ pc(); Register from = O0; // source byte array Register to = O1; // destination byte array Register key = O2; // expanded key array const Register keylen = O4; //reg for storing expanded key array length // read expanded key length __ ldsw(Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)), keylen, 0); // Method to address arbitrary alignment for load instructions: // Check last 3 bits of 'from' address to see if it is aligned to 8-byte boundary // If zero/aligned then continue with double FP load instructions // If not zero/mis-aligned then alignaddr will set GSR.align with number of bytes to skip during faligndata // alignaddr will also convert arbitrary aligned 'from' address to nearest 8-byte aligned address // load 3 * 8-byte components (to read 16 bytes input) in 3 different FP regs starting at this aligned address // faligndata will then extract (based on GSR.align value) the appropriate 8 bytes from the 2 source regs // check for 8-byte alignment since source byte array may have an arbitrary alignment if offset mod 8 is non-zero __ andcc(from, 7, G0); __ br(Assembler::notZero, true, Assembler::pn, L_load_misaligned_input); __ delayed()->alignaddr(from, G0, from); // aligned case: load input into F54-F56 __ ldf(FloatRegisterImpl::D, from, 0, F54); __ ldf(FloatRegisterImpl::D, from, 8, F56); __ ba_short(L_load_expanded_key); __ BIND(L_load_misaligned_input); __ ldf(FloatRegisterImpl::D, from, 0, F54); __ ldf(FloatRegisterImpl::D, from, 8, F56); __ ldf(FloatRegisterImpl::D, from, 16, F58); __ faligndata(F54, F56, F54); __ faligndata(F56, F58, F56); __ BIND(L_load_expanded_key); // Since we load expanded key buffers starting first element, 8-byte alignment is guaranteed for ( int i = 0; i <= 38; i += 2 ) { __ ldf(FloatRegisterImpl::D, key, i*4, as_FloatRegister(i)); } // perform cipher transformation __ fxor(FloatRegisterImpl::D, F0, F54, F54); __ fxor(FloatRegisterImpl::D, F2, F56, F56); // rounds 1 through 8 for ( int i = 4; i <= 28; i += 8 ) { __ aes_eround01(as_FloatRegister(i), F54, F56, F58); __ aes_eround23(as_FloatRegister(i+2), F54, F56, F60); __ aes_eround01(as_FloatRegister(i+4), F58, F60, F54); __ aes_eround23(as_FloatRegister(i+6), F58, F60, F56); } __ aes_eround01(F36, F54, F56, F58); //round 9 __ aes_eround23(F38, F54, F56, F60); // 128-bit original key size __ cmp_and_brx_short(keylen, 44, Assembler::equal, Assembler::pt, L_doLast128bit); for ( int i = 40; i <= 50; i += 2 ) { __ ldf(FloatRegisterImpl::D, key, i*4, as_FloatRegister(i) ); } __ aes_eround01(F40, F58, F60, F54); //round 10 __ aes_eround23(F42, F58, F60, F56); __ aes_eround01(F44, F54, F56, F58); //round 11 __ aes_eround23(F46, F54, F56, F60); // 192-bit original key size __ cmp_and_brx_short(keylen, 52, Assembler::equal, Assembler::pt, L_storeOutput); __ ldf(FloatRegisterImpl::D, key, 208, F52); __ aes_eround01(F48, F58, F60, F54); //round 12 __ aes_eround23(F50, F58, F60, F56); __ ldf(FloatRegisterImpl::D, key, 216, F46); __ ldf(FloatRegisterImpl::D, key, 224, F48); __ ldf(FloatRegisterImpl::D, key, 232, F50); __ aes_eround01(F52, F54, F56, F58); //round 13 __ aes_eround23(F46, F54, F56, F60); __ ba_short(L_storeOutput); __ BIND(L_doLast128bit); __ ldf(FloatRegisterImpl::D, key, 160, F48); __ ldf(FloatRegisterImpl::D, key, 168, F50); __ BIND(L_storeOutput); // perform last round of encryption common for all key sizes __ aes_eround01_l(F48, F58, F60, F54); //last round __ aes_eround23_l(F50, F58, F60, F56); // Method to address arbitrary alignment for store instructions: // Check last 3 bits of 'dest' address to see if it is aligned to 8-byte boundary // If zero/aligned then continue with double FP store instructions // If not zero/mis-aligned then edge8n will generate edge mask in result reg (O3 in below case) // Example: If dest address is 0x07 and nearest 8-byte aligned address is 0x00 then edge mask will be 00000001 // Compute (8-n) where n is # of bytes skipped by partial store(stpartialf) inst from edge mask, n=7 in this case // We get the value of n from the andcc that checks 'dest' alignment. n is available in O5 in below case. // Set GSR.align to (8-n) using alignaddr // Circular byte shift store values by n places so that the original bytes are at correct position for stpartialf // Set the arbitrarily aligned 'dest' address to nearest 8-byte aligned address // Store (partial) the original first (8-n) bytes starting at the original 'dest' address // Negate the edge mask so that the subsequent stpartialf can store the original (8-n-1)th through 8th bytes at appropriate address // We need to execute this process for both the 8-byte result values // check for 8-byte alignment since dest byte array may have arbitrary alignment if offset mod 8 is non-zero __ andcc(to, 7, O5); __ br(Assembler::notZero, true, Assembler::pn, L_store_misaligned_output); __ delayed()->edge8n(to, G0, O3); // aligned case: store output into the destination array __ stf(FloatRegisterImpl::D, F54, to, 0); __ retl(); __ delayed()->stf(FloatRegisterImpl::D, F56, to, 8); __ BIND(L_store_misaligned_output); __ add(to, 8, O4); __ mov(8, O2); __ sub(O2, O5, O2); __ alignaddr(O2, G0, O2); __ faligndata(F54, F54, F54); __ faligndata(F56, F56, F56); __ and3(to, -8, to); __ and3(O4, -8, O4); __ stpartialf(to, O3, F54, Assembler::ASI_PST8_PRIMARY); __ stpartialf(O4, O3, F56, Assembler::ASI_PST8_PRIMARY); __ add(to, 8, to); __ add(O4, 8, O4); __ orn(G0, O3, O3); __ stpartialf(to, O3, F54, Assembler::ASI_PST8_PRIMARY); __ retl(); __ delayed()->stpartialf(O4, O3, F56, Assembler::ASI_PST8_PRIMARY); return start; } address generate_aescrypt_decryptBlock() { assert((arrayOopDesc::base_offset_in_bytes(T_INT) & 7) == 0, "the following code assumes that first element of an int array is aligned to 8 bytes"); // required since we read original key 'byte' array as well in the decryption stubs assert((arrayOopDesc::base_offset_in_bytes(T_BYTE) & 7) == 0, "the following code assumes that first element of a byte array is aligned to 8 bytes"); __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", "aescrypt_decryptBlock"); address start = __ pc(); Label L_load_misaligned_input, L_load_original_key, L_expand192bit, L_expand256bit, L_reload_misaligned_input; Label L_256bit_transform, L_common_transform, L_store_misaligned_output; Register from = O0; // source byte array Register to = O1; // destination byte array Register key = O2; // expanded key array Register original_key = O3; // original key array only required during decryption const Register keylen = O4; // reg for storing expanded key array length // read expanded key array length __ ldsw(Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)), keylen, 0); // save 'from' since we may need to recheck alignment in case of 256-bit decryption __ mov(from, G1); // check for 8-byte alignment since source byte array may have an arbitrary alignment if offset mod 8 is non-zero __ andcc(from, 7, G0); __ br(Assembler::notZero, true, Assembler::pn, L_load_misaligned_input); __ delayed()->alignaddr(from, G0, from); // aligned case: load input into F52-F54 __ ldf(FloatRegisterImpl::D, from, 0, F52); __ ldf(FloatRegisterImpl::D, from, 8, F54); __ ba_short(L_load_original_key); __ BIND(L_load_misaligned_input); __ ldf(FloatRegisterImpl::D, from, 0, F52); __ ldf(FloatRegisterImpl::D, from, 8, F54); __ ldf(FloatRegisterImpl::D, from, 16, F56); __ faligndata(F52, F54, F52); __ faligndata(F54, F56, F54); __ BIND(L_load_original_key); // load original key from SunJCE expanded decryption key // Since we load original key buffer starting first element, 8-byte alignment is guaranteed for ( int i = 0; i <= 3; i++ ) { __ ldf(FloatRegisterImpl::S, original_key, i*4, as_FloatRegister(i)); } // 256-bit original key size __ cmp_and_brx_short(keylen, 60, Assembler::equal, Assembler::pn, L_expand256bit); // 192-bit original key size __ cmp_and_brx_short(keylen, 52, Assembler::equal, Assembler::pn, L_expand192bit); // 128-bit original key size // perform key expansion since SunJCE decryption-key expansion is not compatible with SPARC crypto instructions for ( int i = 0; i <= 36; i += 4 ) { __ aes_kexpand1(as_FloatRegister(i), as_FloatRegister(i+2), i/4, as_FloatRegister(i+4)); __ aes_kexpand2(as_FloatRegister(i+2), as_FloatRegister(i+4), as_FloatRegister(i+6)); } // perform 128-bit key specific inverse cipher transformation __ fxor(FloatRegisterImpl::D, F42, F54, F54); __ fxor(FloatRegisterImpl::D, F40, F52, F52); __ ba_short(L_common_transform); __ BIND(L_expand192bit); // start loading rest of the 192-bit key __ ldf(FloatRegisterImpl::S, original_key, 16, F4); __ ldf(FloatRegisterImpl::S, original_key, 20, F5); // perform key expansion since SunJCE decryption-key expansion is not compatible with SPARC crypto instructions for ( int i = 0; i <= 36; i += 6 ) { __ aes_kexpand1(as_FloatRegister(i), as_FloatRegister(i+4), i/6, as_FloatRegister(i+6)); __ aes_kexpand2(as_FloatRegister(i+2), as_FloatRegister(i+6), as_FloatRegister(i+8)); __ aes_kexpand2(as_FloatRegister(i+4), as_FloatRegister(i+8), as_FloatRegister(i+10)); } __ aes_kexpand1(F42, F46, 7, F48); __ aes_kexpand2(F44, F48, F50); // perform 192-bit key specific inverse cipher transformation __ fxor(FloatRegisterImpl::D, F50, F54, F54); __ fxor(FloatRegisterImpl::D, F48, F52, F52); __ aes_dround23(F46, F52, F54, F58); __ aes_dround01(F44, F52, F54, F56); __ aes_dround23(F42, F56, F58, F54); __ aes_dround01(F40, F56, F58, F52); __ ba_short(L_common_transform); __ BIND(L_expand256bit); // load rest of the 256-bit key for ( int i = 4; i <= 7; i++ ) { __ ldf(FloatRegisterImpl::S, original_key, i*4, as_FloatRegister(i)); } // perform key expansion since SunJCE decryption-key expansion is not compatible with SPARC crypto instructions for ( int i = 0; i <= 40; i += 8 ) { __ aes_kexpand1(as_FloatRegister(i), as_FloatRegister(i+6), i/8, as_FloatRegister(i+8)); __ aes_kexpand2(as_FloatRegister(i+2), as_FloatRegister(i+8), as_FloatRegister(i+10)); __ aes_kexpand0(as_FloatRegister(i+4), as_FloatRegister(i+10), as_FloatRegister(i+12)); __ aes_kexpand2(as_FloatRegister(i+6), as_FloatRegister(i+12), as_FloatRegister(i+14)); } __ aes_kexpand1(F48, F54, 6, F56); __ aes_kexpand2(F50, F56, F58); for ( int i = 0; i <= 6; i += 2 ) { __ fsrc2(FloatRegisterImpl::D, as_FloatRegister(58-i), as_FloatRegister(i)); } // reload original 'from' address __ mov(G1, from); // re-check 8-byte alignment __ andcc(from, 7, G0); __ br(Assembler::notZero, true, Assembler::pn, L_reload_misaligned_input); __ delayed()->alignaddr(from, G0, from); // aligned case: load input into F52-F54 __ ldf(FloatRegisterImpl::D, from, 0, F52); __ ldf(FloatRegisterImpl::D, from, 8, F54); __ ba_short(L_256bit_transform); __ BIND(L_reload_misaligned_input); __ ldf(FloatRegisterImpl::D, from, 0, F52); __ ldf(FloatRegisterImpl::D, from, 8, F54); __ ldf(FloatRegisterImpl::D, from, 16, F56); __ faligndata(F52, F54, F52); __ faligndata(F54, F56, F54); // perform 256-bit key specific inverse cipher transformation __ BIND(L_256bit_transform); __ fxor(FloatRegisterImpl::D, F0, F54, F54); __ fxor(FloatRegisterImpl::D, F2, F52, F52); __ aes_dround23(F4, F52, F54, F58); __ aes_dround01(F6, F52, F54, F56); __ aes_dround23(F50, F56, F58, F54); __ aes_dround01(F48, F56, F58, F52); __ aes_dround23(F46, F52, F54, F58); __ aes_dround01(F44, F52, F54, F56); __ aes_dround23(F42, F56, F58, F54); __ aes_dround01(F40, F56, F58, F52); for ( int i = 0; i <= 7; i++ ) { __ ldf(FloatRegisterImpl::S, original_key, i*4, as_FloatRegister(i)); } // perform inverse cipher transformations common for all key sizes __ BIND(L_common_transform); for ( int i = 38; i >= 6; i -= 8 ) { __ aes_dround23(as_FloatRegister(i), F52, F54, F58); __ aes_dround01(as_FloatRegister(i-2), F52, F54, F56); if ( i != 6) { __ aes_dround23(as_FloatRegister(i-4), F56, F58, F54); __ aes_dround01(as_FloatRegister(i-6), F56, F58, F52); } else { __ aes_dround23_l(as_FloatRegister(i-4), F56, F58, F54); __ aes_dround01_l(as_FloatRegister(i-6), F56, F58, F52); } } // check for 8-byte alignment since dest byte array may have arbitrary alignment if offset mod 8 is non-zero __ andcc(to, 7, O5); __ br(Assembler::notZero, true, Assembler::pn, L_store_misaligned_output); __ delayed()->edge8n(to, G0, O3); // aligned case: store output into the destination array __ stf(FloatRegisterImpl::D, F52, to, 0); __ retl(); __ delayed()->stf(FloatRegisterImpl::D, F54, to, 8); __ BIND(L_store_misaligned_output); __ add(to, 8, O4); __ mov(8, O2); __ sub(O2, O5, O2); __ alignaddr(O2, G0, O2); __ faligndata(F52, F52, F52); __ faligndata(F54, F54, F54); __ and3(to, -8, to); __ and3(O4, -8, O4); __ stpartialf(to, O3, F52, Assembler::ASI_PST8_PRIMARY); __ stpartialf(O4, O3, F54, Assembler::ASI_PST8_PRIMARY); __ add(to, 8, to); __ add(O4, 8, O4); __ orn(G0, O3, O3); __ stpartialf(to, O3, F52, Assembler::ASI_PST8_PRIMARY); __ retl(); __ delayed()->stpartialf(O4, O3, F54, Assembler::ASI_PST8_PRIMARY); return start; } address generate_cipherBlockChaining_encryptAESCrypt() { assert((arrayOopDesc::base_offset_in_bytes(T_INT) & 7) == 0, "the following code assumes that first element of an int array is aligned to 8 bytes"); assert((arrayOopDesc::base_offset_in_bytes(T_BYTE) & 7) == 0, "the following code assumes that first element of a byte array is aligned to 8 bytes"); __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_encryptAESCrypt"); Label L_cbcenc128, L_load_misaligned_input_128bit, L_128bit_transform, L_store_misaligned_output_128bit; Label L_check_loop_end_128bit, L_cbcenc192, L_load_misaligned_input_192bit, L_192bit_transform; Label L_store_misaligned_output_192bit, L_check_loop_end_192bit, L_cbcenc256, L_load_misaligned_input_256bit; Label L_256bit_transform, L_store_misaligned_output_256bit, L_check_loop_end_256bit; address start = __ pc(); Register from = I0; // source byte array Register to = I1; // destination byte array Register key = I2; // expanded key array Register rvec = I3; // init vector const Register len_reg = I4; // cipher length const Register keylen = I5; // reg for storing expanded key array length __ save_frame(0); // save cipher len to return in the end __ mov(len_reg, L0); // read expanded key length __ ldsw(Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)), keylen, 0); // load initial vector, 8-byte alignment is guranteed __ ldf(FloatRegisterImpl::D, rvec, 0, F60); __ ldf(FloatRegisterImpl::D, rvec, 8, F62); // load key, 8-byte alignment is guranteed __ ldx(key,0,G1); __ ldx(key,8,G5); // start loading expanded key, 8-byte alignment is guranteed for ( int i = 0, j = 16; i <= 38; i += 2, j += 8 ) { __ ldf(FloatRegisterImpl::D, key, j, as_FloatRegister(i)); } // 128-bit original key size __ cmp_and_brx_short(keylen, 44, Assembler::equal, Assembler::pt, L_cbcenc128); for ( int i = 40, j = 176; i <= 46; i += 2, j += 8 ) { __ ldf(FloatRegisterImpl::D, key, j, as_FloatRegister(i)); } // 192-bit original key size __ cmp_and_brx_short(keylen, 52, Assembler::equal, Assembler::pt, L_cbcenc192); for ( int i = 48, j = 208; i <= 54; i += 2, j += 8 ) { __ ldf(FloatRegisterImpl::D, key, j, as_FloatRegister(i)); } // 256-bit original key size __ ba_short(L_cbcenc256); __ align(OptoLoopAlignment); __ BIND(L_cbcenc128); // check for 8-byte alignment since source byte array may have an arbitrary alignment if offset mod 8 is non-zero __ andcc(from, 7, G0); __ br(Assembler::notZero, true, Assembler::pn, L_load_misaligned_input_128bit); __ delayed()->mov(from, L1); // save original 'from' address before alignaddr // aligned case: load input into G3 and G4 __ ldx(from,0,G3); __ ldx(from,8,G4); __ ba_short(L_128bit_transform); __ BIND(L_load_misaligned_input_128bit); // can clobber F48, F50 and F52 as they are not used in 128 and 192-bit key encryption __ alignaddr(from, G0, from); __ ldf(FloatRegisterImpl::D, from, 0, F48); __ ldf(FloatRegisterImpl::D, from, 8, F50); __ ldf(FloatRegisterImpl::D, from, 16, F52); __ faligndata(F48, F50, F48); __ faligndata(F50, F52, F50); __ movdtox(F48, G3); __ movdtox(F50, G4); __ mov(L1, from); __ BIND(L_128bit_transform); __ xor3(G1,G3,G3); __ xor3(G5,G4,G4); __ movxtod(G3,F56); __ movxtod(G4,F58); __ fxor(FloatRegisterImpl::D, F60, F56, F60); __ fxor(FloatRegisterImpl::D, F62, F58, F62); // TEN_EROUNDS for ( int i = 0; i <= 32; i += 8 ) { __ aes_eround01(as_FloatRegister(i), F60, F62, F56); __ aes_eround23(as_FloatRegister(i+2), F60, F62, F58); if (i != 32 ) { __ aes_eround01(as_FloatRegister(i+4), F56, F58, F60); __ aes_eround23(as_FloatRegister(i+6), F56, F58, F62); } else { __ aes_eround01_l(as_FloatRegister(i+4), F56, F58, F60); __ aes_eround23_l(as_FloatRegister(i+6), F56, F58, F62); } } // check for 8-byte alignment since dest byte array may have arbitrary alignment if offset mod 8 is non-zero __ andcc(to, 7, L1); __ br(Assembler::notZero, true, Assembler::pn, L_store_misaligned_output_128bit); __ delayed()->edge8n(to, G0, L2); // aligned case: store output into the destination array __ stf(FloatRegisterImpl::D, F60, to, 0); __ stf(FloatRegisterImpl::D, F62, to, 8); __ ba_short(L_check_loop_end_128bit); __ BIND(L_store_misaligned_output_128bit); __ add(to, 8, L3); __ mov(8, L4); __ sub(L4, L1, L4); __ alignaddr(L4, G0, L4); // save cipher text before circular right shift // as it needs to be stored as iv for next block (see code before next retl) __ movdtox(F60, L6); __ movdtox(F62, L7); __ faligndata(F60, F60, F60); __ faligndata(F62, F62, F62); __ mov(to, L5); __ and3(to, -8, to); __ and3(L3, -8, L3); __ stpartialf(to, L2, F60, Assembler::ASI_PST8_PRIMARY); __ stpartialf(L3, L2, F62, Assembler::ASI_PST8_PRIMARY); __ add(to, 8, to); __ add(L3, 8, L3); __ orn(G0, L2, L2); __ stpartialf(to, L2, F60, Assembler::ASI_PST8_PRIMARY); __ stpartialf(L3, L2, F62, Assembler::ASI_PST8_PRIMARY); __ mov(L5, to); __ movxtod(L6, F60); __ movxtod(L7, F62); __ BIND(L_check_loop_end_128bit); __ add(from, 16, from); __ add(to, 16, to); __ subcc(len_reg, 16, len_reg); __ br(Assembler::notEqual, false, Assembler::pt, L_cbcenc128); __ delayed()->nop(); // re-init intial vector for next block, 8-byte alignment is guaranteed __ stf(FloatRegisterImpl::D, F60, rvec, 0); __ stf(FloatRegisterImpl::D, F62, rvec, 8); __ mov(L0, I0); __ ret(); __ delayed()->restore(); __ align(OptoLoopAlignment); __ BIND(L_cbcenc192); // check for 8-byte alignment since source byte array may have an arbitrary alignment if offset mod 8 is non-zero __ andcc(from, 7, G0); __ br(Assembler::notZero, true, Assembler::pn, L_load_misaligned_input_192bit); __ delayed()->mov(from, L1); // save original 'from' address before alignaddr // aligned case: load input into G3 and G4 __ ldx(from,0,G3); __ ldx(from,8,G4); __ ba_short(L_192bit_transform); __ BIND(L_load_misaligned_input_192bit); // can clobber F48, F50 and F52 as they are not used in 128 and 192-bit key encryption __ alignaddr(from, G0, from); __ ldf(FloatRegisterImpl::D, from, 0, F48); __ ldf(FloatRegisterImpl::D, from, 8, F50); __ ldf(FloatRegisterImpl::D, from, 16, F52); __ faligndata(F48, F50, F48); __ faligndata(F50, F52, F50); __ movdtox(F48, G3); __ movdtox(F50, G4); __ mov(L1, from); __ BIND(L_192bit_transform); __ xor3(G1,G3,G3); __ xor3(G5,G4,G4); __ movxtod(G3,F56); __ movxtod(G4,F58); __ fxor(FloatRegisterImpl::D, F60, F56, F60); __ fxor(FloatRegisterImpl::D, F62, F58, F62); // TWELEVE_EROUNDS for ( int i = 0; i <= 40; i += 8 ) { __ aes_eround01(as_FloatRegister(i), F60, F62, F56); __ aes_eround23(as_FloatRegister(i+2), F60, F62, F58); if (i != 40 ) { __ aes_eround01(as_FloatRegister(i+4), F56, F58, F60); __ aes_eround23(as_FloatRegister(i+6), F56, F58, F62); } else { __ aes_eround01_l(as_FloatRegister(i+4), F56, F58, F60); __ aes_eround23_l(as_FloatRegister(i+6), F56, F58, F62); } } // check for 8-byte alignment since dest byte array may have arbitrary alignment if offset mod 8 is non-zero __ andcc(to, 7, L1); __ br(Assembler::notZero, true, Assembler::pn, L_store_misaligned_output_192bit); __ delayed()->edge8n(to, G0, L2); // aligned case: store output into the destination array __ stf(FloatRegisterImpl::D, F60, to, 0); __ stf(FloatRegisterImpl::D, F62, to, 8); __ ba_short(L_check_loop_end_192bit); __ BIND(L_store_misaligned_output_192bit); __ add(to, 8, L3); __ mov(8, L4); __ sub(L4, L1, L4); __ alignaddr(L4, G0, L4); __ movdtox(F60, L6); __ movdtox(F62, L7); __ faligndata(F60, F60, F60); __ faligndata(F62, F62, F62); __ mov(to, L5); __ and3(to, -8, to); __ and3(L3, -8, L3); __ stpartialf(to, L2, F60, Assembler::ASI_PST8_PRIMARY); __ stpartialf(L3, L2, F62, Assembler::ASI_PST8_PRIMARY); __ add(to, 8, to); __ add(L3, 8, L3); __ orn(G0, L2, L2); __ stpartialf(to, L2, F60, Assembler::ASI_PST8_PRIMARY); __ stpartialf(L3, L2, F62, Assembler::ASI_PST8_PRIMARY); __ mov(L5, to); __ movxtod(L6, F60); __ movxtod(L7, F62); __ BIND(L_check_loop_end_192bit); __ add(from, 16, from); __ subcc(len_reg, 16, len_reg); __ add(to, 16, to); __ br(Assembler::notEqual, false, Assembler::pt, L_cbcenc192); __ delayed()->nop(); // re-init intial vector for next block, 8-byte alignment is guaranteed __ stf(FloatRegisterImpl::D, F60, rvec, 0); __ stf(FloatRegisterImpl::D, F62, rvec, 8); __ mov(L0, I0); __ ret(); __ delayed()->restore(); __ align(OptoLoopAlignment); __ BIND(L_cbcenc256); // check for 8-byte alignment since source byte array may have an arbitrary alignment if offset mod 8 is non-zero __ andcc(from, 7, G0); __ br(Assembler::notZero, true, Assembler::pn, L_load_misaligned_input_256bit); __ delayed()->mov(from, L1); // save original 'from' address before alignaddr // aligned case: load input into G3 and G4 __ ldx(from,0,G3); __ ldx(from,8,G4); __ ba_short(L_256bit_transform); __ BIND(L_load_misaligned_input_256bit); // cannot clobber F48, F50 and F52. F56, F58 can be used though __ alignaddr(from, G0, from); __ movdtox(F60, L2); // save F60 before overwriting __ ldf(FloatRegisterImpl::D, from, 0, F56); __ ldf(FloatRegisterImpl::D, from, 8, F58); __ ldf(FloatRegisterImpl::D, from, 16, F60); __ faligndata(F56, F58, F56); __ faligndata(F58, F60, F58); __ movdtox(F56, G3); __ movdtox(F58, G4); __ mov(L1, from); __ movxtod(L2, F60); __ BIND(L_256bit_transform); __ xor3(G1,G3,G3); __ xor3(G5,G4,G4); __ movxtod(G3,F56); __ movxtod(G4,F58); __ fxor(FloatRegisterImpl::D, F60, F56, F60); __ fxor(FloatRegisterImpl::D, F62, F58, F62); // FOURTEEN_EROUNDS for ( int i = 0; i <= 48; i += 8 ) { __ aes_eround01(as_FloatRegister(i), F60, F62, F56); __ aes_eround23(as_FloatRegister(i+2), F60, F62, F58); if (i != 48 ) { __ aes_eround01(as_FloatRegister(i+4), F56, F58, F60); __ aes_eround23(as_FloatRegister(i+6), F56, F58, F62); } else { __ aes_eround01_l(as_FloatRegister(i+4), F56, F58, F60); __ aes_eround23_l(as_FloatRegister(i+6), F56, F58, F62); } } // check for 8-byte alignment since dest byte array may have arbitrary alignment if offset mod 8 is non-zero __ andcc(to, 7, L1); __ br(Assembler::notZero, true, Assembler::pn, L_store_misaligned_output_256bit); __ delayed()->edge8n(to, G0, L2); // aligned case: store output into the destination array __ stf(FloatRegisterImpl::D, F60, to, 0); __ stf(FloatRegisterImpl::D, F62, to, 8); __ ba_short(L_check_loop_end_256bit); __ BIND(L_store_misaligned_output_256bit); __ add(to, 8, L3); __ mov(8, L4); __ sub(L4, L1, L4); __ alignaddr(L4, G0, L4); __ movdtox(F60, L6); __ movdtox(F62, L7); __ faligndata(F60, F60, F60); __ faligndata(F62, F62, F62); __ mov(to, L5); __ and3(to, -8, to); __ and3(L3, -8, L3); __ stpartialf(to, L2, F60, Assembler::ASI_PST8_PRIMARY); __ stpartialf(L3, L2, F62, Assembler::ASI_PST8_PRIMARY); __ add(to, 8, to); __ add(L3, 8, L3); __ orn(G0, L2, L2); __ stpartialf(to, L2, F60, Assembler::ASI_PST8_PRIMARY); __ stpartialf(L3, L2, F62, Assembler::ASI_PST8_PRIMARY); __ mov(L5, to); __ movxtod(L6, F60); __ movxtod(L7, F62); __ BIND(L_check_loop_end_256bit); __ add(from, 16, from); __ subcc(len_reg, 16, len_reg); __ add(to, 16, to); __ br(Assembler::notEqual, false, Assembler::pt, L_cbcenc256); __ delayed()->nop(); // re-init intial vector for next block, 8-byte alignment is guaranteed __ stf(FloatRegisterImpl::D, F60, rvec, 0); __ stf(FloatRegisterImpl::D, F62, rvec, 8); __ mov(L0, I0); __ ret(); __ delayed()->restore(); return start; } address generate_cipherBlockChaining_decryptAESCrypt_Parallel() { assert((arrayOopDesc::base_offset_in_bytes(T_INT) & 7) == 0, "the following code assumes that first element of an int array is aligned to 8 bytes"); assert((arrayOopDesc::base_offset_in_bytes(T_BYTE) & 7) == 0, "the following code assumes that first element of a byte array is aligned to 8 bytes"); __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_decryptAESCrypt"); Label L_cbcdec_end, L_expand192bit, L_expand256bit, L_dec_first_block_start; Label L_dec_first_block128, L_dec_first_block192, L_dec_next2_blocks128, L_dec_next2_blocks192, L_dec_next2_blocks256; Label L_load_misaligned_input_first_block, L_transform_first_block, L_load_misaligned_next2_blocks128, L_transform_next2_blocks128; Label L_load_misaligned_next2_blocks192, L_transform_next2_blocks192, L_load_misaligned_next2_blocks256, L_transform_next2_blocks256; Label L_store_misaligned_output_first_block, L_check_decrypt_end, L_store_misaligned_output_next2_blocks128; Label L_check_decrypt_loop_end128, L_store_misaligned_output_next2_blocks192, L_check_decrypt_loop_end192; Label L_store_misaligned_output_next2_blocks256, L_check_decrypt_loop_end256; address start = __ pc(); Register from = I0; // source byte array Register to = I1; // destination byte array Register key = I2; // expanded key array Register rvec = I3; // init vector const Register len_reg = I4; // cipher length const Register original_key = I5; // original key array only required during decryption const Register keylen = L6; // reg for storing expanded key array length __ save_frame(0); //args are read from I* registers since we save the frame in the beginning // save cipher len to return in the end __ mov(len_reg, L7); // load original key from SunJCE expanded decryption key // Since we load original key buffer starting first element, 8-byte alignment is guaranteed for ( int i = 0; i <= 3; i++ ) { __ ldf(FloatRegisterImpl::S, original_key, i*4, as_FloatRegister(i)); } // load initial vector, 8-byte alignment is guaranteed __ ldx(rvec,0,L0); __ ldx(rvec,8,L1); // read expanded key array length __ ldsw(Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)), keylen, 0); // 256-bit original key size __ cmp_and_brx_short(keylen, 60, Assembler::equal, Assembler::pn, L_expand256bit); // 192-bit original key size __ cmp_and_brx_short(keylen, 52, Assembler::equal, Assembler::pn, L_expand192bit); // 128-bit original key size // perform key expansion since SunJCE decryption-key expansion is not compatible with SPARC crypto instructions for ( int i = 0; i <= 36; i += 4 ) { __ aes_kexpand1(as_FloatRegister(i), as_FloatRegister(i+2), i/4, as_FloatRegister(i+4)); __ aes_kexpand2(as_FloatRegister(i+2), as_FloatRegister(i+4), as_FloatRegister(i+6)); } // load expanded key[last-1] and key[last] elements __ movdtox(F40,L2); __ movdtox(F42,L3); __ and3(len_reg, 16, L4); __ br_null_short(L4, Assembler::pt, L_dec_next2_blocks128); __ nop(); __ ba_short(L_dec_first_block_start); __ BIND(L_expand192bit); // load rest of the 192-bit key __ ldf(FloatRegisterImpl::S, original_key, 16, F4); __ ldf(FloatRegisterImpl::S, original_key, 20, F5); // perform key expansion since SunJCE decryption-key expansion is not compatible with SPARC crypto instructions for ( int i = 0; i <= 36; i += 6 ) { __ aes_kexpand1(as_FloatRegister(i), as_FloatRegister(i+4), i/6, as_FloatRegister(i+6)); __ aes_kexpand2(as_FloatRegister(i+2), as_FloatRegister(i+6), as_FloatRegister(i+8)); __ aes_kexpand2(as_FloatRegister(i+4), as_FloatRegister(i+8), as_FloatRegister(i+10)); } __ aes_kexpand1(F42, F46, 7, F48); __ aes_kexpand2(F44, F48, F50); // load expanded key[last-1] and key[last] elements __ movdtox(F48,L2); __ movdtox(F50,L3); __ and3(len_reg, 16, L4); __ br_null_short(L4, Assembler::pt, L_dec_next2_blocks192); __ nop(); __ ba_short(L_dec_first_block_start); __ BIND(L_expand256bit); // load rest of the 256-bit key for ( int i = 4; i <= 7; i++ ) { __ ldf(FloatRegisterImpl::S, original_key, i*4, as_FloatRegister(i)); } // perform key expansion since SunJCE decryption-key expansion is not compatible with SPARC crypto instructions for ( int i = 0; i <= 40; i += 8 ) { __ aes_kexpand1(as_FloatRegister(i), as_FloatRegister(i+6), i/8, as_FloatRegister(i+8)); __ aes_kexpand2(as_FloatRegister(i+2), as_FloatRegister(i+8), as_FloatRegister(i+10)); __ aes_kexpand0(as_FloatRegister(i+4), as_FloatRegister(i+10), as_FloatRegister(i+12)); __ aes_kexpand2(as_FloatRegister(i+6), as_FloatRegister(i+12), as_FloatRegister(i+14)); } __ aes_kexpand1(F48, F54, 6, F56); __ aes_kexpand2(F50, F56, F58); // load expanded key[last-1] and key[last] elements __ movdtox(F56,L2); __ movdtox(F58,L3); __ and3(len_reg, 16, L4); __ br_null_short(L4, Assembler::pt, L_dec_next2_blocks256); __ BIND(L_dec_first_block_start); // check for 8-byte alignment since source byte array may have an arbitrary alignment if offset mod 8 is non-zero __ andcc(from, 7, G0); __ br(Assembler::notZero, true, Assembler::pn, L_load_misaligned_input_first_block); __ delayed()->mov(from, G1); // save original 'from' address before alignaddr // aligned case: load input into L4 and L5 __ ldx(from,0,L4); __ ldx(from,8,L5); __ ba_short(L_transform_first_block); __ BIND(L_load_misaligned_input_first_block); __ alignaddr(from, G0, from); // F58, F60, F62 can be clobbered __ ldf(FloatRegisterImpl::D, from, 0, F58); __ ldf(FloatRegisterImpl::D, from, 8, F60); __ ldf(FloatRegisterImpl::D, from, 16, F62); __ faligndata(F58, F60, F58); __ faligndata(F60, F62, F60); __ movdtox(F58, L4); __ movdtox(F60, L5); __ mov(G1, from); __ BIND(L_transform_first_block); __ xor3(L2,L4,G1); __ movxtod(G1,F60); __ xor3(L3,L5,G1); __ movxtod(G1,F62); // 128-bit original key size __ cmp_and_brx_short(keylen, 44, Assembler::equal, Assembler::pn, L_dec_first_block128); // 192-bit original key size __ cmp_and_brx_short(keylen, 52, Assembler::equal, Assembler::pn, L_dec_first_block192); __ aes_dround23(F54, F60, F62, F58); __ aes_dround01(F52, F60, F62, F56); __ aes_dround23(F50, F56, F58, F62); __ aes_dround01(F48, F56, F58, F60); __ BIND(L_dec_first_block192); __ aes_dround23(F46, F60, F62, F58); __ aes_dround01(F44, F60, F62, F56); __ aes_dround23(F42, F56, F58, F62); __ aes_dround01(F40, F56, F58, F60); __ BIND(L_dec_first_block128); for ( int i = 38; i >= 6; i -= 8 ) { __ aes_dround23(as_FloatRegister(i), F60, F62, F58); __ aes_dround01(as_FloatRegister(i-2), F60, F62, F56); if ( i != 6) { __ aes_dround23(as_FloatRegister(i-4), F56, F58, F62); __ aes_dround01(as_FloatRegister(i-6), F56, F58, F60); } else { __ aes_dround23_l(as_FloatRegister(i-4), F56, F58, F62); __ aes_dround01_l(as_FloatRegister(i-6), F56, F58, F60); } } __ movxtod(L0,F56); __ movxtod(L1,F58); __ mov(L4,L0); __ mov(L5,L1); __ fxor(FloatRegisterImpl::D, F56, F60, F60); __ fxor(FloatRegisterImpl::D, F58, F62, F62); // check for 8-byte alignment since dest byte array may have arbitrary alignment if offset mod 8 is non-zero __ andcc(to, 7, G1); __ br(Assembler::notZero, true, Assembler::pn, L_store_misaligned_output_first_block); __ delayed()->edge8n(to, G0, G2); // aligned case: store output into the destination array __ stf(FloatRegisterImpl::D, F60, to, 0); __ stf(FloatRegisterImpl::D, F62, to, 8); __ ba_short(L_check_decrypt_end); __ BIND(L_store_misaligned_output_first_block); __ add(to, 8, G3); __ mov(8, G4); __ sub(G4, G1, G4); __ alignaddr(G4, G0, G4); __ faligndata(F60, F60, F60); __ faligndata(F62, F62, F62); __ mov(to, G1); __ and3(to, -8, to); __ and3(G3, -8, G3); __ stpartialf(to, G2, F60, Assembler::ASI_PST8_PRIMARY); __ stpartialf(G3, G2, F62, Assembler::ASI_PST8_PRIMARY); __ add(to, 8, to); __ add(G3, 8, G3); __ orn(G0, G2, G2); __ stpartialf(to, G2, F60, Assembler::ASI_PST8_PRIMARY); __ stpartialf(G3, G2, F62, Assembler::ASI_PST8_PRIMARY); __ mov(G1, to); __ BIND(L_check_decrypt_end); __ add(from, 16, from); __ add(to, 16, to); __ subcc(len_reg, 16, len_reg); __ br(Assembler::equal, false, Assembler::pt, L_cbcdec_end); __ delayed()->nop(); // 256-bit original key size __ cmp_and_brx_short(keylen, 60, Assembler::equal, Assembler::pn, L_dec_next2_blocks256); // 192-bit original key size __ cmp_and_brx_short(keylen, 52, Assembler::equal, Assembler::pn, L_dec_next2_blocks192); __ align(OptoLoopAlignment); __ BIND(L_dec_next2_blocks128); __ nop(); // check for 8-byte alignment since source byte array may have an arbitrary alignment if offset mod 8 is non-zero __ andcc(from, 7, G0); __ br(Assembler::notZero, true, Assembler::pn, L_load_misaligned_next2_blocks128); __ delayed()->mov(from, G1); // save original 'from' address before alignaddr // aligned case: load input into G4, G5, L4 and L5 __ ldx(from,0,G4); __ ldx(from,8,G5); __ ldx(from,16,L4); __ ldx(from,24,L5); __ ba_short(L_transform_next2_blocks128); __ BIND(L_load_misaligned_next2_blocks128); __ alignaddr(from, G0, from); // F40, F42, F58, F60, F62 can be clobbered __ ldf(FloatRegisterImpl::D, from, 0, F40); __ ldf(FloatRegisterImpl::D, from, 8, F42); __ ldf(FloatRegisterImpl::D, from, 16, F60); __ ldf(FloatRegisterImpl::D, from, 24, F62); __ ldf(FloatRegisterImpl::D, from, 32, F58); __ faligndata(F40, F42, F40); __ faligndata(F42, F60, F42); __ faligndata(F60, F62, F60); __ faligndata(F62, F58, F62); __ movdtox(F40, G4); __ movdtox(F42, G5); __ movdtox(F60, L4); __ movdtox(F62, L5); __ mov(G1, from); __ BIND(L_transform_next2_blocks128); // F40:F42 used for first 16-bytes __ xor3(L2,G4,G1); __ movxtod(G1,F40); __ xor3(L3,G5,G1); __ movxtod(G1,F42); // F60:F62 used for next 16-bytes __ xor3(L2,L4,G1); __ movxtod(G1,F60); __ xor3(L3,L5,G1); __ movxtod(G1,F62); for ( int i = 38; i >= 6; i -= 8 ) { __ aes_dround23(as_FloatRegister(i), F40, F42, F44); __ aes_dround01(as_FloatRegister(i-2), F40, F42, F46); __ aes_dround23(as_FloatRegister(i), F60, F62, F58); __ aes_dround01(as_FloatRegister(i-2), F60, F62, F56); if (i != 6 ) { __ aes_dround23(as_FloatRegister(i-4), F46, F44, F42); __ aes_dround01(as_FloatRegister(i-6), F46, F44, F40); __ aes_dround23(as_FloatRegister(i-4), F56, F58, F62); __ aes_dround01(as_FloatRegister(i-6), F56, F58, F60); } else { __ aes_dround23_l(as_FloatRegister(i-4), F46, F44, F42); __ aes_dround01_l(as_FloatRegister(i-6), F46, F44, F40); __ aes_dround23_l(as_FloatRegister(i-4), F56, F58, F62); __ aes_dround01_l(as_FloatRegister(i-6), F56, F58, F60); } } __ movxtod(L0,F46); __ movxtod(L1,F44); __ fxor(FloatRegisterImpl::D, F46, F40, F40); __ fxor(FloatRegisterImpl::D, F44, F42, F42); __ movxtod(G4,F56); __ movxtod(G5,F58); __ mov(L4,L0); __ mov(L5,L1); __ fxor(FloatRegisterImpl::D, F56, F60, F60); __ fxor(FloatRegisterImpl::D, F58, F62, F62); // For mis-aligned store of 32 bytes of result we can do: // Circular right-shift all 4 FP registers so that 'head' and 'tail' // parts that need to be stored starting at mis-aligned address are in a FP reg // the other 3 FP regs can thus be stored using regular store // we then use the edge + partial-store mechanism to store the 'head' and 'tail' parts // check for 8-byte alignment since dest byte array may have arbitrary alignment if offset mod 8 is non-zero __ andcc(to, 7, G1); __ br(Assembler::notZero, true, Assembler::pn, L_store_misaligned_output_next2_blocks128); __ delayed()->edge8n(to, G0, G2); // aligned case: store output into the destination array __ stf(FloatRegisterImpl::D, F40, to, 0); __ stf(FloatRegisterImpl::D, F42, to, 8); __ stf(FloatRegisterImpl::D, F60, to, 16); __ stf(FloatRegisterImpl::D, F62, to, 24); __ ba_short(L_check_decrypt_loop_end128); __ BIND(L_store_misaligned_output_next2_blocks128); __ mov(8, G4); __ sub(G4, G1, G4); __ alignaddr(G4, G0, G4); __ faligndata(F40, F42, F56); // F56 can be clobbered __ faligndata(F42, F60, F42); __ faligndata(F60, F62, F60); __ faligndata(F62, F40, F40); __ mov(to, G1); __ and3(to, -8, to); __ stpartialf(to, G2, F40, Assembler::ASI_PST8_PRIMARY); __ stf(FloatRegisterImpl::D, F56, to, 8); __ stf(FloatRegisterImpl::D, F42, to, 16); __ stf(FloatRegisterImpl::D, F60, to, 24); __ add(to, 32, to); __ orn(G0, G2, G2); __ stpartialf(to, G2, F40, Assembler::ASI_PST8_PRIMARY); __ mov(G1, to); __ BIND(L_check_decrypt_loop_end128); __ add(from, 32, from); __ add(to, 32, to); __ subcc(len_reg, 32, len_reg); __ br(Assembler::notEqual, false, Assembler::pt, L_dec_next2_blocks128); __ delayed()->nop(); __ ba_short(L_cbcdec_end); __ align(OptoLoopAlignment); __ BIND(L_dec_next2_blocks192); __ nop(); // check for 8-byte alignment since source byte array may have an arbitrary alignment if offset mod 8 is non-zero __ andcc(from, 7, G0); __ br(Assembler::notZero, true, Assembler::pn, L_load_misaligned_next2_blocks192); __ delayed()->mov(from, G1); // save original 'from' address before alignaddr // aligned case: load input into G4, G5, L4 and L5 __ ldx(from,0,G4); __ ldx(from,8,G5); __ ldx(from,16,L4); __ ldx(from,24,L5); __ ba_short(L_transform_next2_blocks192); __ BIND(L_load_misaligned_next2_blocks192); __ alignaddr(from, G0, from); // F48, F50, F52, F60, F62 can be clobbered __ ldf(FloatRegisterImpl::D, from, 0, F48); __ ldf(FloatRegisterImpl::D, from, 8, F50); __ ldf(FloatRegisterImpl::D, from, 16, F60); __ ldf(FloatRegisterImpl::D, from, 24, F62); __ ldf(FloatRegisterImpl::D, from, 32, F52); __ faligndata(F48, F50, F48); __ faligndata(F50, F60, F50); __ faligndata(F60, F62, F60); __ faligndata(F62, F52, F62); __ movdtox(F48, G4); __ movdtox(F50, G5); __ movdtox(F60, L4); __ movdtox(F62, L5); __ mov(G1, from); __ BIND(L_transform_next2_blocks192); // F48:F50 used for first 16-bytes __ xor3(L2,G4,G1); __ movxtod(G1,F48); __ xor3(L3,G5,G1); __ movxtod(G1,F50); // F60:F62 used for next 16-bytes __ xor3(L2,L4,G1); __ movxtod(G1,F60); __ xor3(L3,L5,G1); __ movxtod(G1,F62); for ( int i = 46; i >= 6; i -= 8 ) { __ aes_dround23(as_FloatRegister(i), F48, F50, F52); __ aes_dround01(as_FloatRegister(i-2), F48, F50, F54); __ aes_dround23(as_FloatRegister(i), F60, F62, F58); __ aes_dround01(as_FloatRegister(i-2), F60, F62, F56); if (i != 6 ) { __ aes_dround23(as_FloatRegister(i-4), F54, F52, F50); __ aes_dround01(as_FloatRegister(i-6), F54, F52, F48); __ aes_dround23(as_FloatRegister(i-4), F56, F58, F62); __ aes_dround01(as_FloatRegister(i-6), F56, F58, F60); } else { __ aes_dround23_l(as_FloatRegister(i-4), F54, F52, F50); __ aes_dround01_l(as_FloatRegister(i-6), F54, F52, F48); __ aes_dround23_l(as_FloatRegister(i-4), F56, F58, F62); __ aes_dround01_l(as_FloatRegister(i-6), F56, F58, F60); } } __ movxtod(L0,F54); __ movxtod(L1,F52); __ fxor(FloatRegisterImpl::D, F54, F48, F48); __ fxor(FloatRegisterImpl::D, F52, F50, F50); __ movxtod(G4,F56); __ movxtod(G5,F58); __ mov(L4,L0); __ mov(L5,L1); __ fxor(FloatRegisterImpl::D, F56, F60, F60); __ fxor(FloatRegisterImpl::D, F58, F62, F62); // check for 8-byte alignment since dest byte array may have arbitrary alignment if offset mod 8 is non-zero __ andcc(to, 7, G1); __ br(Assembler::notZero, true, Assembler::pn, L_store_misaligned_output_next2_blocks192); __ delayed()->edge8n(to, G0, G2); // aligned case: store output into the destination array __ stf(FloatRegisterImpl::D, F48, to, 0); __ stf(FloatRegisterImpl::D, F50, to, 8); __ stf(FloatRegisterImpl::D, F60, to, 16); __ stf(FloatRegisterImpl::D, F62, to, 24); __ ba_short(L_check_decrypt_loop_end192); __ BIND(L_store_misaligned_output_next2_blocks192); __ mov(8, G4); __ sub(G4, G1, G4); __ alignaddr(G4, G0, G4); __ faligndata(F48, F50, F56); // F56 can be clobbered __ faligndata(F50, F60, F50); __ faligndata(F60, F62, F60); __ faligndata(F62, F48, F48); __ mov(to, G1); __ and3(to, -8, to); __ stpartialf(to, G2, F48, Assembler::ASI_PST8_PRIMARY); __ stf(FloatRegisterImpl::D, F56, to, 8); __ stf(FloatRegisterImpl::D, F50, to, 16); __ stf(FloatRegisterImpl::D, F60, to, 24); __ add(to, 32, to); __ orn(G0, G2, G2); __ stpartialf(to, G2, F48, Assembler::ASI_PST8_PRIMARY); __ mov(G1, to); __ BIND(L_check_decrypt_loop_end192); __ add(from, 32, from); __ add(to, 32, to); __ subcc(len_reg, 32, len_reg); __ br(Assembler::notEqual, false, Assembler::pt, L_dec_next2_blocks192); __ delayed()->nop(); __ ba_short(L_cbcdec_end); __ align(OptoLoopAlignment); __ BIND(L_dec_next2_blocks256); __ nop(); // check for 8-byte alignment since source byte array may have an arbitrary alignment if offset mod 8 is non-zero __ andcc(from, 7, G0); __ br(Assembler::notZero, true, Assembler::pn, L_load_misaligned_next2_blocks256); __ delayed()->mov(from, G1); // save original 'from' address before alignaddr // aligned case: load input into G4, G5, L4 and L5 __ ldx(from,0,G4); __ ldx(from,8,G5); __ ldx(from,16,L4); __ ldx(from,24,L5); __ ba_short(L_transform_next2_blocks256); __ BIND(L_load_misaligned_next2_blocks256); __ alignaddr(from, G0, from); // F0, F2, F4, F60, F62 can be clobbered __ ldf(FloatRegisterImpl::D, from, 0, F0); __ ldf(FloatRegisterImpl::D, from, 8, F2); __ ldf(FloatRegisterImpl::D, from, 16, F60); __ ldf(FloatRegisterImpl::D, from, 24, F62); __ ldf(FloatRegisterImpl::D, from, 32, F4); __ faligndata(F0, F2, F0); __ faligndata(F2, F60, F2); __ faligndata(F60, F62, F60); __ faligndata(F62, F4, F62); __ movdtox(F0, G4); __ movdtox(F2, G5); __ movdtox(F60, L4); __ movdtox(F62, L5); __ mov(G1, from); __ BIND(L_transform_next2_blocks256); // F0:F2 used for first 16-bytes __ xor3(L2,G4,G1); __ movxtod(G1,F0); __ xor3(L3,G5,G1); __ movxtod(G1,F2); // F60:F62 used for next 16-bytes __ xor3(L2,L4,G1); __ movxtod(G1,F60); __ xor3(L3,L5,G1); __ movxtod(G1,F62); __ aes_dround23(F54, F0, F2, F4); __ aes_dround01(F52, F0, F2, F6); __ aes_dround23(F54, F60, F62, F58); __ aes_dround01(F52, F60, F62, F56); __ aes_dround23(F50, F6, F4, F2); __ aes_dround01(F48, F6, F4, F0); __ aes_dround23(F50, F56, F58, F62); __ aes_dround01(F48, F56, F58, F60); // save F48:F54 in temp registers __ movdtox(F54,G2); __ movdtox(F52,G3); __ movdtox(F50,G6); __ movdtox(F48,G1); for ( int i = 46; i >= 14; i -= 8 ) { __ aes_dround23(as_FloatRegister(i), F0, F2, F4); __ aes_dround01(as_FloatRegister(i-2), F0, F2, F6); __ aes_dround23(as_FloatRegister(i), F60, F62, F58); __ aes_dround01(as_FloatRegister(i-2), F60, F62, F56); __ aes_dround23(as_FloatRegister(i-4), F6, F4, F2); __ aes_dround01(as_FloatRegister(i-6), F6, F4, F0); __ aes_dround23(as_FloatRegister(i-4), F56, F58, F62); __ aes_dround01(as_FloatRegister(i-6), F56, F58, F60); } // init F48:F54 with F0:F6 values (original key) __ ldf(FloatRegisterImpl::D, original_key, 0, F48); __ ldf(FloatRegisterImpl::D, original_key, 8, F50); __ ldf(FloatRegisterImpl::D, original_key, 16, F52); __ ldf(FloatRegisterImpl::D, original_key, 24, F54); __ aes_dround23(F54, F0, F2, F4); __ aes_dround01(F52, F0, F2, F6); __ aes_dround23(F54, F60, F62, F58); __ aes_dround01(F52, F60, F62, F56); __ aes_dround23_l(F50, F6, F4, F2); __ aes_dround01_l(F48, F6, F4, F0); __ aes_dround23_l(F50, F56, F58, F62); __ aes_dround01_l(F48, F56, F58, F60); // re-init F48:F54 with their original values __ movxtod(G2,F54); __ movxtod(G3,F52); __ movxtod(G6,F50); __ movxtod(G1,F48); __ movxtod(L0,F6); __ movxtod(L1,F4); __ fxor(FloatRegisterImpl::D, F6, F0, F0); __ fxor(FloatRegisterImpl::D, F4, F2, F2); __ movxtod(G4,F56); __ movxtod(G5,F58); __ mov(L4,L0); __ mov(L5,L1); __ fxor(FloatRegisterImpl::D, F56, F60, F60); __ fxor(FloatRegisterImpl::D, F58, F62, F62); // check for 8-byte alignment since dest byte array may have arbitrary alignment if offset mod 8 is non-zero __ andcc(to, 7, G1); __ br(Assembler::notZero, true, Assembler::pn, L_store_misaligned_output_next2_blocks256); __ delayed()->edge8n(to, G0, G2); // aligned case: store output into the destination array __ stf(FloatRegisterImpl::D, F0, to, 0); __ stf(FloatRegisterImpl::D, F2, to, 8); __ stf(FloatRegisterImpl::D, F60, to, 16); __ stf(FloatRegisterImpl::D, F62, to, 24); __ ba_short(L_check_decrypt_loop_end256); __ BIND(L_store_misaligned_output_next2_blocks256); __ mov(8, G4); __ sub(G4, G1, G4); __ alignaddr(G4, G0, G4); __ faligndata(F0, F2, F56); // F56 can be clobbered __ faligndata(F2, F60, F2); __ faligndata(F60, F62, F60); __ faligndata(F62, F0, F0); __ mov(to, G1); __ and3(to, -8, to); __ stpartialf(to, G2, F0, Assembler::ASI_PST8_PRIMARY); __ stf(FloatRegisterImpl::D, F56, to, 8); __ stf(FloatRegisterImpl::D, F2, to, 16); __ stf(FloatRegisterImpl::D, F60, to, 24); __ add(to, 32, to); __ orn(G0, G2, G2); __ stpartialf(to, G2, F0, Assembler::ASI_PST8_PRIMARY); __ mov(G1, to); __ BIND(L_check_decrypt_loop_end256); __ add(from, 32, from); __ add(to, 32, to); __ subcc(len_reg, 32, len_reg); __ br(Assembler::notEqual, false, Assembler::pt, L_dec_next2_blocks256); __ delayed()->nop(); __ BIND(L_cbcdec_end); // re-init intial vector for next block, 8-byte alignment is guaranteed __ stx(L0, rvec, 0); __ stx(L1, rvec, 8); __ mov(L7, I0); __ ret(); __ delayed()->restore(); return start; } address generate_sha1_implCompress(bool multi_block, const char *name) { __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", name); address start = __ pc(); Label L_sha1_loop, L_sha1_unaligned_input, L_sha1_unaligned_input_loop; int i; Register buf = O0; // byte[] source+offset Register state = O1; // int[] SHA.state Register ofs = O2; // int offset Register limit = O3; // int limit // load state into F0-F4 for (i = 0; i < 5; i++) { __ ldf(FloatRegisterImpl::S, state, i*4, as_FloatRegister(i)); } __ andcc(buf, 7, G0); __ br(Assembler::notZero, false, Assembler::pn, L_sha1_unaligned_input); __ delayed()->nop(); __ BIND(L_sha1_loop); // load buf into F8-F22 for (i = 0; i < 8; i++) { __ ldf(FloatRegisterImpl::D, buf, i*8, as_FloatRegister(i*2 + 8)); } __ sha1(); if (multi_block) { __ add(ofs, 64, ofs); __ add(buf, 64, buf); __ cmp_and_brx_short(ofs, limit, Assembler::lessEqual, Assembler::pt, L_sha1_loop); __ mov(ofs, O0); // to be returned } // store F0-F4 into state and return for (i = 0; i < 4; i++) { __ stf(FloatRegisterImpl::S, as_FloatRegister(i), state, i*4); } __ retl(); __ delayed()->stf(FloatRegisterImpl::S, F4, state, 0x10); __ BIND(L_sha1_unaligned_input); __ alignaddr(buf, G0, buf); __ BIND(L_sha1_unaligned_input_loop); // load buf into F8-F22 for (i = 0; i < 9; i++) { __ ldf(FloatRegisterImpl::D, buf, i*8, as_FloatRegister(i*2 + 8)); } for (i = 0; i < 8; i++) { __ faligndata(as_FloatRegister(i*2 + 8), as_FloatRegister(i*2 + 10), as_FloatRegister(i*2 + 8)); } __ sha1(); if (multi_block) { __ add(ofs, 64, ofs); __ add(buf, 64, buf); __ cmp_and_brx_short(ofs, limit, Assembler::lessEqual, Assembler::pt, L_sha1_unaligned_input_loop); __ mov(ofs, O0); // to be returned } // store F0-F4 into state and return for (i = 0; i < 4; i++) { __ stf(FloatRegisterImpl::S, as_FloatRegister(i), state, i*4); } __ retl(); __ delayed()->stf(FloatRegisterImpl::S, F4, state, 0x10); return start; } address generate_sha256_implCompress(bool multi_block, const char *name) { __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", name); address start = __ pc(); Label L_sha256_loop, L_sha256_unaligned_input, L_sha256_unaligned_input_loop; int i; Register buf = O0; // byte[] source+offset Register state = O1; // int[] SHA2.state Register ofs = O2; // int offset Register limit = O3; // int limit // load state into F0-F7 for (i = 0; i < 8; i++) { __ ldf(FloatRegisterImpl::S, state, i*4, as_FloatRegister(i)); } __ andcc(buf, 7, G0); __ br(Assembler::notZero, false, Assembler::pn, L_sha256_unaligned_input); __ delayed()->nop(); __ BIND(L_sha256_loop); // load buf into F8-F22 for (i = 0; i < 8; i++) { __ ldf(FloatRegisterImpl::D, buf, i*8, as_FloatRegister(i*2 + 8)); } __ sha256(); if (multi_block) { __ add(ofs, 64, ofs); __ add(buf, 64, buf); __ cmp_and_brx_short(ofs, limit, Assembler::lessEqual, Assembler::pt, L_sha256_loop); __ mov(ofs, O0); // to be returned } // store F0-F7 into state and return for (i = 0; i < 7; i++) { __ stf(FloatRegisterImpl::S, as_FloatRegister(i), state, i*4); } __ retl(); __ delayed()->stf(FloatRegisterImpl::S, F7, state, 0x1c); __ BIND(L_sha256_unaligned_input); __ alignaddr(buf, G0, buf); __ BIND(L_sha256_unaligned_input_loop); // load buf into F8-F22 for (i = 0; i < 9; i++) { __ ldf(FloatRegisterImpl::D, buf, i*8, as_FloatRegister(i*2 + 8)); } for (i = 0; i < 8; i++) { __ faligndata(as_FloatRegister(i*2 + 8), as_FloatRegister(i*2 + 10), as_FloatRegister(i*2 + 8)); } __ sha256(); if (multi_block) { __ add(ofs, 64, ofs); __ add(buf, 64, buf); __ cmp_and_brx_short(ofs, limit, Assembler::lessEqual, Assembler::pt, L_sha256_unaligned_input_loop); __ mov(ofs, O0); // to be returned } // store F0-F7 into state and return for (i = 0; i < 7; i++) { __ stf(FloatRegisterImpl::S, as_FloatRegister(i), state, i*4); } __ retl(); __ delayed()->stf(FloatRegisterImpl::S, F7, state, 0x1c); return start; } address generate_sha512_implCompress(bool multi_block, const char *name) { __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", name); address start = __ pc(); Label L_sha512_loop, L_sha512_unaligned_input, L_sha512_unaligned_input_loop; int i; Register buf = O0; // byte[] source+offset Register state = O1; // long[] SHA5.state Register ofs = O2; // int offset Register limit = O3; // int limit // load state into F0-F14 for (i = 0; i < 8; i++) { __ ldf(FloatRegisterImpl::D, state, i*8, as_FloatRegister(i*2)); } __ andcc(buf, 7, G0); __ br(Assembler::notZero, false, Assembler::pn, L_sha512_unaligned_input); __ delayed()->nop(); __ BIND(L_sha512_loop); // load buf into F16-F46 for (i = 0; i < 16; i++) { __ ldf(FloatRegisterImpl::D, buf, i*8, as_FloatRegister(i*2 + 16)); } __ sha512(); if (multi_block) { __ add(ofs, 128, ofs); __ add(buf, 128, buf); __ cmp_and_brx_short(ofs, limit, Assembler::lessEqual, Assembler::pt, L_sha512_loop); __ mov(ofs, O0); // to be returned } // store F0-F14 into state and return for (i = 0; i < 7; i++) { __ stf(FloatRegisterImpl::D, as_FloatRegister(i*2), state, i*8); } __ retl(); __ delayed()->stf(FloatRegisterImpl::D, F14, state, 0x38); __ BIND(L_sha512_unaligned_input); __ alignaddr(buf, G0, buf); __ BIND(L_sha512_unaligned_input_loop); // load buf into F16-F46 for (i = 0; i < 17; i++) { __ ldf(FloatRegisterImpl::D, buf, i*8, as_FloatRegister(i*2 + 16)); } for (i = 0; i < 16; i++) { __ faligndata(as_FloatRegister(i*2 + 16), as_FloatRegister(i*2 + 18), as_FloatRegister(i*2 + 16)); } __ sha512(); if (multi_block) { __ add(ofs, 128, ofs); __ add(buf, 128, buf); __ cmp_and_brx_short(ofs, limit, Assembler::lessEqual, Assembler::pt, L_sha512_unaligned_input_loop); __ mov(ofs, O0); // to be returned } // store F0-F14 into state and return for (i = 0; i < 7; i++) { __ stf(FloatRegisterImpl::D, as_FloatRegister(i*2), state, i*8); } __ retl(); __ delayed()->stf(FloatRegisterImpl::D, F14, state, 0x38); return start; } /* Single and multi-block ghash operations */ address generate_ghash_processBlocks() { __ align(CodeEntryAlignment); Label L_ghash_loop, L_aligned, L_main; StubCodeMark mark(this, "StubRoutines", "ghash_processBlocks"); address start = __ pc(); Register state = I0; Register subkeyH = I1; Register data = I2; Register len = I3; __ save_frame(0); __ ldx(state, 0, O0); __ ldx(state, 8, O1); // Loop label for multiblock operations __ BIND(L_ghash_loop); // Check if 'data' is unaligned __ andcc(data, 7, G1); __ br(Assembler::zero, false, Assembler::pt, L_aligned); __ delayed()->nop(); Register left_shift = L1; Register right_shift = L2; Register data_ptr = L3; // Get left and right shift values in bits __ sll(G1, LogBitsPerByte, left_shift); __ mov(64, right_shift); __ sub(right_shift, left_shift, right_shift); // Align to read 'data' __ sub(data, G1, data_ptr); // Load first 8 bytes of 'data' __ ldx(data_ptr, 0, O4); __ sllx(O4, left_shift, O4); __ ldx(data_ptr, 8, O5); __ srlx(O5, right_shift, G4); __ bset(G4, O4); // Load second 8 bytes of 'data' __ sllx(O5, left_shift, O5); __ ldx(data_ptr, 16, G4); __ srlx(G4, right_shift, G4); __ ba(L_main); __ delayed()->bset(G4, O5); // If 'data' is aligned, load normally __ BIND(L_aligned); __ ldx(data, 0, O4); __ ldx(data, 8, O5); __ BIND(L_main); __ ldx(subkeyH, 0, O2); __ ldx(subkeyH, 8, O3); __ xor3(O0, O4, O0); __ xor3(O1, O5, O1); __ xmulxhi(O0, O3, G3); __ xmulx(O0, O2, O5); __ xmulxhi(O1, O2, G4); __ xmulxhi(O1, O3, G5); __ xmulx(O0, O3, G1); __ xmulx(O1, O3, G2); __ xmulx(O1, O2, O3); __ xmulxhi(O0, O2, O4); __ mov(0xE1, O0); __ sllx(O0, 56, O0); __ xor3(O5, G3, O5); __ xor3(O5, G4, O5); __ xor3(G5, G1, G1); __ xor3(G1, O3, G1); __ srlx(G2, 63, O1); __ srlx(G1, 63, G3); __ sllx(G2, 63, O3); __ sllx(G2, 58, O2); __ xor3(O3, O2, O2); __ sllx(G1, 1, G1); __ or3(G1, O1, G1); __ xor3(G1, O2, G1); __ sllx(G2, 1, G2); __ xmulxhi(G1, O0, O1); __ xmulx(G1, O0, O2); __ xmulxhi(G2, O0, O3); __ xmulx(G2, O0, G1); __ xor3(O4, O1, O4); __ xor3(O5, O2, O5); __ xor3(O5, O3, O5); __ sllx(O4, 1, O2); __ srlx(O5, 63, O3); __ or3(O2, O3, O0); __ sllx(O5, 1, O1); __ srlx(G1, 63, O2); __ or3(O1, O2, O1); __ xor3(O1, G3, O1); __ deccc(len); __ br(Assembler::notZero, true, Assembler::pt, L_ghash_loop); __ delayed()->add(data, 16, data); __ stx(O0, I0, 0); __ stx(O1, I0, 8); __ ret(); __ delayed()->restore(); return start; } /** * Arguments: * * Inputs: * O0 - int crc * O1 - byte* buf * O2 - int len * O3 - int* table * * Output: * O0 - int crc result */ address generate_updateBytesCRC32C() { assert(UseCRC32CIntrinsics, "need CRC32C instruction"); __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", "updateBytesCRC32C"); address start = __ pc(); const Register crc = O0; // crc const Register buf = O1; // source java byte array address const Register len = O2; // number of bytes const Register table = O3; // byteTable __ kernel_crc32c(crc, buf, len, table); __ retl(); __ delayed()->nop(); return start; } #define ADLER32_NUM_TEMPS 16 /** * Arguments: * * Inputs: * O0 - int adler * O1 - byte* buff * O2 - int len * * Output: * O0 - int adler result */ address generate_updateBytesAdler32() { __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", "updateBytesAdler32"); address start = __ pc(); Label L_cleanup_loop, L_cleanup_loop_check; Label L_main_loop_check, L_main_loop, L_inner_loop, L_inner_loop_check; Label L_nmax_check_done; // Aliases Register s1 = O0; Register s2 = O3; Register buff = O1; Register len = O2; Register temp[ADLER32_NUM_TEMPS] = {L0, L1, L2, L3, L4, L5, L6, L7, I0, I1, I2, I3, I4, I5, G3, I7}; // Max number of bytes we can process before having to take the mod // 0x15B0 is 5552 in decimal, the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 unsigned long NMAX = 0x15B0; // Zero-out the upper bits of len __ clruwu(len); // Create the mask 0xFFFF __ set64(0x00FFFF, O4, O5); // O5 is the temp register // s1 is initialized to the lower 16 bits of adler // s2 is initialized to the upper 16 bits of adler __ srlx(O0, 16, O5); // adler >> 16 __ and3(O0, O4, s1); // s1 = (adler & 0xFFFF) __ and3(O5, O4, s2); // s2 = ((adler >> 16) & 0xFFFF) // The pipelined loop needs at least 16 elements for 1 iteration // It does check this, but it is more effective to skip to the cleanup loop // Setup the constant for cutoff checking __ mov(15, O4); // Check if we are above the cutoff, if not go to the cleanup loop immediately __ cmp_and_br_short(len, O4, Assembler::lessEqualUnsigned, Assembler::pt, L_cleanup_loop_check); // Free up some registers for our use for (int i = 0; i < ADLER32_NUM_TEMPS; i++) { __ movxtod(temp[i], as_FloatRegister(2*i)); } // Loop maintenance stuff is done at the end of the loop, so skip to there __ ba_short(L_main_loop_check); __ BIND(L_main_loop); // Prologue for inner loop __ ldub(buff, 0, L0); __ dec(O5); for (int i = 1; i < 8; i++) { __ ldub(buff, i, temp[i]); } __ inc(buff, 8); // Inner loop processes 16 elements at a time, might never execute if only 16 elements // to be processed by the outter loop __ ba_short(L_inner_loop_check); __ BIND(L_inner_loop); for (int i = 0; i < 8; i++) { __ ldub(buff, (2*i), temp[(8+(2*i)) % ADLER32_NUM_TEMPS]); __ add(s1, temp[i], s1); __ ldub(buff, (2*i)+1, temp[(8+(2*i)+1) % ADLER32_NUM_TEMPS]); __ add(s2, s1, s2); } // Original temp 0-7 used and new loads to temp 0-7 issued // temp 8-15 ready to be consumed __ add(s1, I0, s1); __ dec(O5); __ add(s2, s1, s2); __ add(s1, I1, s1); __ inc(buff, 16); __ add(s2, s1, s2); for (int i = 0; i < 6; i++) { __ add(s1, temp[10+i], s1); __ add(s2, s1, s2); } __ BIND(L_inner_loop_check); __ nop(); __ cmp_and_br_short(O5, 0, Assembler::notEqual, Assembler::pt, L_inner_loop); // Epilogue for (int i = 0; i < 4; i++) { __ ldub(buff, (2*i), temp[8+(2*i)]); __ add(s1, temp[i], s1); __ ldub(buff, (2*i)+1, temp[8+(2*i)+1]); __ add(s2, s1, s2); } __ add(s1, temp[4], s1); __ inc(buff, 8); for (int i = 0; i < 11; i++) { __ add(s2, s1, s2); __ add(s1, temp[5+i], s1); } __ add(s2, s1, s2); // Take the mod for s1 and s2 __ set64(0xFFF1, L0, L1); __ udivx(s1, L0, L1); __ udivx(s2, L0, L2); __ mulx(L0, L1, L1); __ mulx(L0, L2, L2); __ sub(s1, L1, s1); __ sub(s2, L2, s2); // Make sure there is something left to process __ BIND(L_main_loop_check); __ set64(NMAX, L0, L1); // k = len < NMAX ? len : NMAX __ cmp_and_br_short(len, L0, Assembler::greaterEqualUnsigned, Assembler::pt, L_nmax_check_done); __ andn(len, 0x0F, L0); // only loop a multiple of 16 times __ BIND(L_nmax_check_done); __ mov(L0, O5); __ sub(len, L0, len); // len -= k __ srlx(O5, 4, O5); // multiplies of 16 __ cmp_and_br_short(O5, 0, Assembler::notEqual, Assembler::pt, L_main_loop); // Restore anything we used, take the mod one last time, combine and return // Restore any registers we saved for (int i = 0; i < ADLER32_NUM_TEMPS; i++) { __ movdtox(as_FloatRegister(2*i), temp[i]); } // There might be nothing left to process __ ba_short(L_cleanup_loop_check); __ BIND(L_cleanup_loop); __ ldub(buff, 0, O4); // load single byte form buffer __ inc(buff); // buff++ __ add(s1, O4, s1); // s1 += *buff++; __ dec(len); // len-- __ add(s1, s2, s2); // s2 += s1; __ BIND(L_cleanup_loop_check); __ nop(); __ cmp_and_br_short(len, 0, Assembler::notEqual, Assembler::pt, L_cleanup_loop); // Take the mod one last time __ set64(0xFFF1, O1, O2); __ udivx(s1, O1, O2); __ udivx(s2, O1, O5); __ mulx(O1, O2, O2); __ mulx(O1, O5, O5); __ sub(s1, O2, s1); __ sub(s2, O5, s2); // Combine lower bits and higher bits __ sllx(s2, 16, s2); // s2 = s2 << 16 __ or3(s1, s2, s1); // adler = s2 | s1 // Final return value is in O0 __ retl(); __ delayed()->nop(); return start; } /** * Arguments: * * Inputs: * O0 - int crc * O1 - byte* buf * O2 - int len * O3 - int* table * * Output: * O0 - int crc result */ address generate_updateBytesCRC32() { assert(UseCRC32Intrinsics, "need VIS3 instructions"); __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", "updateBytesCRC32"); address start = __ pc(); const Register crc = O0; // crc const Register buf = O1; // source java byte array address const Register len = O2; // length const Register table = O3; // crc_table address (reuse register) __ kernel_crc32(crc, buf, len, table); __ retl(); __ delayed()->nop(); return start; } /** * Arguments: * * Inputs: * I0 - int* x-addr * I1 - int x-len * I2 - int* y-addr * I3 - int y-len * I4 - int* z-addr (output vector) * I5 - int z-len */ address generate_multiplyToLen() { assert(UseMultiplyToLenIntrinsic, "need VIS3 instructions"); __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", "multiplyToLen"); address start = __ pc(); __ save_frame(0); const Register xptr = I0; // input address const Register xlen = I1; // ...and length in 32b-words const Register yptr = I2; // const Register ylen = I3; // const Register zptr = I4; // output address const Register zlen = I5; // ...and length in 32b-words /* The minimal "limb" representation suggest that odd length vectors are as * likely as even length dittos. This in turn suggests that we need to cope * with odd/even length arrays and data not aligned properly for 64-bit read * and write operations. We thus use a number of different kernels: * * if (is_even(x.len) && is_even(y.len)) * if (is_align64(x) && is_align64(y) && is_align64(z)) * if (x.len == y.len && 16 <= x.len && x.len <= 64) * memv_mult_mpmul(...) * else * memv_mult_64x64(...) * else * memv_mult_64x64u(...) * else * memv_mult_32x32(...) * * Here we assume VIS3 support (for 'umulxhi', 'addxc' and 'addxccc'). * In case CBCOND instructions are supported, we will use 'cxbX'. If the * MPMUL instruction is supported, we will generate a kernel using 'mpmul' * (for vectors with proper characteristics). */ const Register tmp0 = L0; const Register tmp1 = L1; Label L_mult_32x32; Label L_mult_64x64u; Label L_mult_64x64; Label L_exit; if_both_even(xlen, ylen, tmp0, false, L_mult_32x32); if_all3_aligned(xptr, yptr, zptr, tmp1, 64, false, L_mult_64x64u); if (UseMPMUL) { if_eq(xlen, ylen, false, L_mult_64x64); if_in_rng(xlen, 16, 64, tmp0, tmp1, false, L_mult_64x64); // 1. Multiply naturally aligned 64b-datums using a generic 'mpmul' kernel, // operating on equal length vectors of size [16..64]. gen_mult_mpmul(xlen, xptr, yptr, zptr, L_exit); } // 2. Multiply naturally aligned 64-bit datums (64x64). __ bind(L_mult_64x64); gen_mult_64x64(xptr, xlen, yptr, ylen, zptr, zlen, L_exit); // 3. Multiply unaligned 64-bit datums (64x64). __ bind(L_mult_64x64u); gen_mult_64x64_unaligned(xptr, xlen, yptr, ylen, zptr, zlen, L_exit); // 4. Multiply naturally aligned 32-bit datums (32x32). __ bind(L_mult_32x32); gen_mult_32x32(xptr, xlen, yptr, ylen, zptr, zlen, L_exit); __ bind(L_exit); __ ret(); __ delayed()->restore(); return start; } // Additional help functions used by multiplyToLen generation. void if_both_even(Register r1, Register r2, Register tmp, bool iseven, Label &L) { __ or3(r1, r2, tmp); __ andcc(tmp, 0x1, tmp); __ br_icc_zero(iseven, Assembler::pn, L); } void if_all3_aligned(Register r1, Register r2, Register r3, Register tmp, uint align, bool isalign, Label &L) { __ or3(r1, r2, tmp); __ or3(r3, tmp, tmp); __ andcc(tmp, (align - 1), tmp); __ br_icc_zero(isalign, Assembler::pn, L); } void if_eq(Register x, Register y, bool iseq, Label &L) { Assembler::Condition cf = (iseq ? Assembler::equal : Assembler::notEqual); __ cmp_and_br_short(x, y, cf, Assembler::pt, L); } void if_in_rng(Register x, int lb, int ub, Register t1, Register t2, bool inrng, Label &L) { assert(Assembler::is_simm13(lb), "Small ints only!"); assert(Assembler::is_simm13(ub), "Small ints only!"); // Compute (x - lb) * (ub - x) >= 0 // NOTE: With the local use of this routine, we rely on small integers to // guarantee that we do not overflow in the multiplication. __ add(G0, ub, t2); __ sub(x, lb, t1); __ sub(t2, x, t2); __ mulx(t1, t2, t1); Assembler::Condition cf = (inrng ? Assembler::greaterEqual : Assembler::less); __ cmp_and_br_short(t1, G0, cf, Assembler::pt, L); } void ldd_entry(Register base, Register offs, FloatRegister dest) { __ ldd(base, offs, dest); __ inc(offs, 8); } void ldx_entry(Register base, Register offs, Register dest) { __ ldx(base, offs, dest); __ inc(offs, 8); } void mpmul_entry(int m, Label &next) { __ mpmul(m); __ cbcond(Assembler::equal, Assembler::icc, G0, G0, next); } void stx_entry(Label &L, Register r1, Register r2, Register base, Register offs) { __ bind(L); __ stx(r1, base, offs); __ inc(offs, 8); __ stx(r2, base, offs); __ inc(offs, 8); } void offs_entry(Label &Lbl0, Label &Lbl1) { assert(Lbl0.is_bound(), "must be"); assert(Lbl1.is_bound(), "must be"); int offset = Lbl0.loc_pos() - Lbl1.loc_pos(); __ emit_data(offset); } /* Generate the actual multiplication kernels for BigInteger vectors: * * 1. gen_mult_mpmul(...) * * 2. gen_mult_64x64(...) * * 3. gen_mult_64x64_unaligned(...) * * 4. gen_mult_32x32(...) */ void gen_mult_mpmul(Register len, Register xptr, Register yptr, Register zptr, Label &L_exit) { const Register zero = G0; const Register gxp = G1; // Need to use global registers across RWs. const Register gyp = G2; const Register gzp = G3; const Register offs = G4; const Register disp = G5; __ mov(xptr, gxp); __ mov(yptr, gyp); __ mov(zptr, gzp); /* Compute jump vector entry: * * 1. mpmul input size (0..31) x 64b * 2. vector input size in 32b limbs (even number) * 3. branch entries in reverse order (31..0), using two * instructions per entry (2 * 4 bytes). * * displacement = byte_offset(bra_offset(len)) * = byte_offset((64 - len)/2) * = 8 * (64 - len)/2 * = 4 * (64 - len) */ Register temp = I5; // Alright to use input regs. in first batch. __ sub(zero, len, temp); __ add(temp, 64, temp); __ sllx(temp, 2, disp); // disp := (64 - len) << 2 // Dispatch relative current PC, into instruction table below. __ rdpc(temp); __ add(temp, 16, temp); __ jmp(temp, disp); __ delayed()->clr(offs); ldd_entry(gxp, offs, F22); ldd_entry(gxp, offs, F20); ldd_entry(gxp, offs, F18); ldd_entry(gxp, offs, F16); ldd_entry(gxp, offs, F14); ldd_entry(gxp, offs, F12); ldd_entry(gxp, offs, F10); ldd_entry(gxp, offs, F8); ldd_entry(gxp, offs, F6); ldd_entry(gxp, offs, F4); ldx_entry(gxp, offs, I5); ldx_entry(gxp, offs, I4); ldx_entry(gxp, offs, I3); ldx_entry(gxp, offs, I2); ldx_entry(gxp, offs, I1); ldx_entry(gxp, offs, I0); ldx_entry(gxp, offs, L7); ldx_entry(gxp, offs, L6); ldx_entry(gxp, offs, L5); ldx_entry(gxp, offs, L4); ldx_entry(gxp, offs, L3); ldx_entry(gxp, offs, L2); ldx_entry(gxp, offs, L1); ldx_entry(gxp, offs, L0); ldd_entry(gxp, offs, F2); ldd_entry(gxp, offs, F0); ldx_entry(gxp, offs, O5); ldx_entry(gxp, offs, O4); ldx_entry(gxp, offs, O3); ldx_entry(gxp, offs, O2); ldx_entry(gxp, offs, O1); ldx_entry(gxp, offs, O0); __ save(SP, -176, SP); const Register addr = gxp; // Alright to reuse 'gxp'. // Dispatch relative current PC, into instruction table below. __ rdpc(addr); __ add(addr, 16, addr); __ jmp(addr, disp); __ delayed()->clr(offs); ldd_entry(gyp, offs, F58); ldd_entry(gyp, offs, F56); ldd_entry(gyp, offs, F54); ldd_entry(gyp, offs, F52); ldd_entry(gyp, offs, F50); ldd_entry(gyp, offs, F48); ldd_entry(gyp, offs, F46); ldd_entry(gyp, offs, F44); ldd_entry(gyp, offs, F42); ldd_entry(gyp, offs, F40); ldd_entry(gyp, offs, F38); ldd_entry(gyp, offs, F36); ldd_entry(gyp, offs, F34); ldd_entry(gyp, offs, F32); ldd_entry(gyp, offs, F30); ldd_entry(gyp, offs, F28); ldd_entry(gyp, offs, F26); ldd_entry(gyp, offs, F24); ldx_entry(gyp, offs, O5); ldx_entry(gyp, offs, O4); ldx_entry(gyp, offs, O3); ldx_entry(gyp, offs, O2); ldx_entry(gyp, offs, O1); ldx_entry(gyp, offs, O0); ldx_entry(gyp, offs, L7); ldx_entry(gyp, offs, L6); ldx_entry(gyp, offs, L5); ldx_entry(gyp, offs, L4); ldx_entry(gyp, offs, L3); ldx_entry(gyp, offs, L2); ldx_entry(gyp, offs, L1); ldx_entry(gyp, offs, L0); __ save(SP, -176, SP); __ save(SP, -176, SP); __ save(SP, -176, SP); __ save(SP, -176, SP); __ save(SP, -176, SP); Label L_mpmul_restore_4, L_mpmul_restore_3, L_mpmul_restore_2; Label L_mpmul_restore_1, L_mpmul_restore_0; // Dispatch relative current PC, into instruction table below. __ rdpc(addr); __ add(addr, 16, addr); __ jmp(addr, disp); __ delayed()->clr(offs); mpmul_entry(31, L_mpmul_restore_0); mpmul_entry(30, L_mpmul_restore_0); mpmul_entry(29, L_mpmul_restore_0); mpmul_entry(28, L_mpmul_restore_0); mpmul_entry(27, L_mpmul_restore_1); mpmul_entry(26, L_mpmul_restore_1); mpmul_entry(25, L_mpmul_restore_1); mpmul_entry(24, L_mpmul_restore_1); mpmul_entry(23, L_mpmul_restore_1); mpmul_entry(22, L_mpmul_restore_1); mpmul_entry(21, L_mpmul_restore_1); mpmul_entry(20, L_mpmul_restore_2); mpmul_entry(19, L_mpmul_restore_2); mpmul_entry(18, L_mpmul_restore_2); mpmul_entry(17, L_mpmul_restore_2); mpmul_entry(16, L_mpmul_restore_2); mpmul_entry(15, L_mpmul_restore_2); mpmul_entry(14, L_mpmul_restore_2); mpmul_entry(13, L_mpmul_restore_3); mpmul_entry(12, L_mpmul_restore_3); mpmul_entry(11, L_mpmul_restore_3); mpmul_entry(10, L_mpmul_restore_3); mpmul_entry( 9, L_mpmul_restore_3); mpmul_entry( 8, L_mpmul_restore_3); mpmul_entry( 7, L_mpmul_restore_3); mpmul_entry( 6, L_mpmul_restore_4); mpmul_entry( 5, L_mpmul_restore_4); mpmul_entry( 4, L_mpmul_restore_4); mpmul_entry( 3, L_mpmul_restore_4); mpmul_entry( 2, L_mpmul_restore_4); mpmul_entry( 1, L_mpmul_restore_4); mpmul_entry( 0, L_mpmul_restore_4); Label L_z31, L_z30, L_z29, L_z28, L_z27, L_z26, L_z25, L_z24; Label L_z23, L_z22, L_z21, L_z20, L_z19, L_z18, L_z17, L_z16; Label L_z15, L_z14, L_z13, L_z12, L_z11, L_z10, L_z09, L_z08; Label L_z07, L_z06, L_z05, L_z04, L_z03, L_z02, L_z01, L_z00; Label L_zst_base; // Store sequence base address. __ bind(L_zst_base); stx_entry(L_z31, L7, L6, gzp, offs); stx_entry(L_z30, L5, L4, gzp, offs); stx_entry(L_z29, L3, L2, gzp, offs); stx_entry(L_z28, L1, L0, gzp, offs); __ restore(); stx_entry(L_z27, O5, O4, gzp, offs); stx_entry(L_z26, O3, O2, gzp, offs); stx_entry(L_z25, O1, O0, gzp, offs); stx_entry(L_z24, L7, L6, gzp, offs); stx_entry(L_z23, L5, L4, gzp, offs); stx_entry(L_z22, L3, L2, gzp, offs); stx_entry(L_z21, L1, L0, gzp, offs); __ restore(); stx_entry(L_z20, O5, O4, gzp, offs); stx_entry(L_z19, O3, O2, gzp, offs); stx_entry(L_z18, O1, O0, gzp, offs); stx_entry(L_z17, L7, L6, gzp, offs); stx_entry(L_z16, L5, L4, gzp, offs); stx_entry(L_z15, L3, L2, gzp, offs); stx_entry(L_z14, L1, L0, gzp, offs); __ restore(); stx_entry(L_z13, O5, O4, gzp, offs); stx_entry(L_z12, O3, O2, gzp, offs); stx_entry(L_z11, O1, O0, gzp, offs); stx_entry(L_z10, L7, L6, gzp, offs); stx_entry(L_z09, L5, L4, gzp, offs); stx_entry(L_z08, L3, L2, gzp, offs); stx_entry(L_z07, L1, L0, gzp, offs); __ restore(); stx_entry(L_z06, O5, O4, gzp, offs); stx_entry(L_z05, O3, O2, gzp, offs); stx_entry(L_z04, O1, O0, gzp, offs); stx_entry(L_z03, L7, L6, gzp, offs); stx_entry(L_z02, L5, L4, gzp, offs); stx_entry(L_z01, L3, L2, gzp, offs); stx_entry(L_z00, L1, L0, gzp, offs); __ restore(); __ restore(); // Exit out of 'mpmul' routine, back to multiplyToLen. __ ba_short(L_exit); Label L_zst_offs; __ bind(L_zst_offs); offs_entry(L_z31, L_zst_base); // index 31: 2048x2048 offs_entry(L_z30, L_zst_base); offs_entry(L_z29, L_zst_base); offs_entry(L_z28, L_zst_base); offs_entry(L_z27, L_zst_base); offs_entry(L_z26, L_zst_base); offs_entry(L_z25, L_zst_base); offs_entry(L_z24, L_zst_base); offs_entry(L_z23, L_zst_base); offs_entry(L_z22, L_zst_base); offs_entry(L_z21, L_zst_base); offs_entry(L_z20, L_zst_base); offs_entry(L_z19, L_zst_base); offs_entry(L_z18, L_zst_base); offs_entry(L_z17, L_zst_base); offs_entry(L_z16, L_zst_base); offs_entry(L_z15, L_zst_base); offs_entry(L_z14, L_zst_base); offs_entry(L_z13, L_zst_base); offs_entry(L_z12, L_zst_base); offs_entry(L_z11, L_zst_base); offs_entry(L_z10, L_zst_base); offs_entry(L_z09, L_zst_base); offs_entry(L_z08, L_zst_base); offs_entry(L_z07, L_zst_base); offs_entry(L_z06, L_zst_base); offs_entry(L_z05, L_zst_base); offs_entry(L_z04, L_zst_base); offs_entry(L_z03, L_zst_base); offs_entry(L_z02, L_zst_base); offs_entry(L_z01, L_zst_base); offs_entry(L_z00, L_zst_base); // index 0: 64x64 __ bind(L_mpmul_restore_4); __ restore(); __ bind(L_mpmul_restore_3); __ restore(); __ bind(L_mpmul_restore_2); __ restore(); __ bind(L_mpmul_restore_1); __ restore(); __ bind(L_mpmul_restore_0); // Dispatch via offset vector entry, into z-store sequence. Label L_zst_rdpc; __ bind(L_zst_rdpc); assert(L_zst_base.is_bound(), "must be"); assert(L_zst_offs.is_bound(), "must be"); assert(L_zst_rdpc.is_bound(), "must be"); int dbase = L_zst_rdpc.loc_pos() - L_zst_base.loc_pos(); int doffs = L_zst_rdpc.loc_pos() - L_zst_offs.loc_pos(); temp = gyp; // Alright to reuse 'gyp'. __ rdpc(addr); __ sub(addr, doffs, temp); __ srlx(disp, 1, disp); __ lduw(temp, disp, offs); __ sub(addr, dbase, temp); __ jmp(temp, offs); __ delayed()->clr(offs); } void gen_mult_64x64(Register xp, Register xn, Register yp, Register yn, Register zp, Register zn, Label &L_exit) { // Assuming that a stack frame has already been created, i.e. local and // output registers are available for immediate use. const Register ri = L0; // Outer loop index, xv[i] const Register rj = L1; // Inner loop index, yv[j] const Register rk = L2; // Output loop index, zv[k] const Register rx = L4; // x-vector datum [i] const Register ry = L5; // y-vector datum [j] const Register rz = L6; // z-vector datum [k] const Register rc = L7; // carry over (to z-vector datum [k-1]) const Register lop = O0; // lo-64b product const Register hip = O1; // hi-64b product const Register zero = G0; Label L_loop_i, L_exit_loop_i; Label L_loop_j; Label L_loop_i2, L_exit_loop_i2; __ srlx(xn, 1, xn); // index for u32 to u64 ditto __ srlx(yn, 1, yn); // index for u32 to u64 ditto __ srlx(zn, 1, zn); // index for u32 to u64 ditto __ dec(xn); // Adjust [0..(N/2)-1] __ dec(yn); __ dec(zn); __ clr(rc); // u64 c = 0 __ sllx(xn, 3, ri); // int i = xn (byte offset i = 8*xn) __ sllx(yn, 3, rj); // int j = yn (byte offset i = 8*xn) __ sllx(zn, 3, rk); // int k = zn (byte offset k = 8*zn) __ ldx(yp, rj, ry); // u64 y = yp[yn] // for (int i = xn; i >= 0; i--) __ bind(L_loop_i); __ cmp_and_br_short(ri, 0, // i >= 0 Assembler::less, Assembler::pn, L_exit_loop_i); __ ldx(xp, ri, rx); // x = xp[i] __ mulx(rx, ry, lop); // lo-64b-part of result 64x64 __ umulxhi(rx, ry, hip); // hi-64b-part of result 64x64 __ addcc(rc, lop, lop); // Accumulate lower order bits (producing carry) __ addxc(hip, zero, rc); // carry over to next datum [k-1] __ stx(lop, zp, rk); // z[k] = lop __ dec(rk, 8); // k-- __ dec(ri, 8); // i-- __ ba_short(L_loop_i); __ bind(L_exit_loop_i); __ stx(rc, zp, rk); // z[k] = c // for (int j = yn - 1; j >= 0; j--) __ sllx(yn, 3, rj); // int j = yn - 1 (byte offset j = 8*yn) __ dec(rj, 8); __ bind(L_loop_j); __ cmp_and_br_short(rj, 0, // j >= 0 Assembler::less, Assembler::pn, L_exit); __ clr(rc); // u64 c = 0 __ ldx(yp, rj, ry); // u64 y = yp[j] // for (int i = xn, k = --zn; i >= 0; i--) __ dec(zn); // --zn __ sllx(xn, 3, ri); // int i = xn (byte offset i = 8*xn) __ sllx(zn, 3, rk); // int k = zn (byte offset k = 8*zn) __ bind(L_loop_i2); __ cmp_and_br_short(ri, 0, // i >= 0 Assembler::less, Assembler::pn, L_exit_loop_i2); __ ldx(xp, ri, rx); // x = xp[i] __ ldx(zp, rk, rz); // z = zp[k], accumulator __ mulx(rx, ry, lop); // lo-64b-part of result 64x64 __ umulxhi(rx, ry, hip); // hi-64b-part of result 64x64 __ addcc(rz, rc, rz); // Accumulate lower order bits, __ addxc(hip, zero, rc); // Accumulate higher order bits to carry __ addcc(rz, lop, rz); // z += lo(p) + c __ addxc(rc, zero, rc); __ stx(rz, zp, rk); // zp[k] = z __ dec(rk, 8); // k-- __ dec(ri, 8); // i-- __ ba_short(L_loop_i2); __ bind(L_exit_loop_i2); __ stx(rc, zp, rk); // z[k] = c __ dec(rj, 8); // j-- __ ba_short(L_loop_j); } void gen_mult_64x64_unaligned(Register xp, Register xn, Register yp, Register yn, Register zp, Register zn, Label &L_exit) { // Assuming that a stack frame has already been created, i.e. local and // output registers are available for use. const Register xpc = L0; // Outer loop cursor, xp[i] const Register ypc = L1; // Inner loop cursor, yp[j] const Register zpc = L2; // Output loop cursor, zp[k] const Register rx = L4; // x-vector datum [i] const Register ry = L5; // y-vector datum [j] const Register rz = L6; // z-vector datum [k] const Register rc = L7; // carry over (to z-vector datum [k-1]) const Register rt = O2; const Register lop = O0; // lo-64b product const Register hip = O1; // hi-64b product const Register zero = G0; Label L_loop_i, L_exit_loop_i; Label L_loop_j; Label L_loop_i2, L_exit_loop_i2; __ srlx(xn, 1, xn); // index for u32 to u64 ditto __ srlx(yn, 1, yn); // index for u32 to u64 ditto __ srlx(zn, 1, zn); // index for u32 to u64 ditto __ dec(xn); // Adjust [0..(N/2)-1] __ dec(yn); __ dec(zn); __ clr(rc); // u64 c = 0 __ sllx(xn, 3, xpc); // u32* xpc = &xp[xn] (byte offset 8*xn) __ add(xp, xpc, xpc); __ sllx(yn, 3, ypc); // u32* ypc = &yp[yn] (byte offset 8*yn) __ add(yp, ypc, ypc); __ sllx(zn, 3, zpc); // u32* zpc = &zp[zn] (byte offset 8*zn) __ add(zp, zpc, zpc); __ lduw(ypc, 0, rt); // u64 y = yp[yn] __ lduw(ypc, 4, ry); // ... __ sllx(rt, 32, rt); __ or3(rt, ry, ry); // for (int i = xn; i >= 0; i--) __ bind(L_loop_i); __ cmp_and_br_short(xpc, xp,// i >= 0 Assembler::less, Assembler::pn, L_exit_loop_i); __ lduw(xpc, 0, rt); // u64 x = xp[i] __ lduw(xpc, 4, rx); // ... __ sllx(rt, 32, rt); __ or3(rt, rx, rx); __ mulx(rx, ry, lop); // lo-64b-part of result 64x64 __ umulxhi(rx, ry, hip); // hi-64b-part of result 64x64 __ addcc(rc, lop, lop); // Accumulate lower order bits (producing carry) __ addxc(hip, zero, rc); // carry over to next datum [k-1] __ srlx(lop, 32, rt); __ stw(rt, zpc, 0); // z[k] = lop __ stw(lop, zpc, 4); // ... __ dec(zpc, 8); // k-- (zpc--) __ dec(xpc, 8); // i-- (xpc--) __ ba_short(L_loop_i); __ bind(L_exit_loop_i); __ srlx(rc, 32, rt); __ stw(rt, zpc, 0); // z[k] = c __ stw(rc, zpc, 4); // for (int j = yn - 1; j >= 0; j--) __ sllx(yn, 3, ypc); // u32* ypc = &yp[yn] (byte offset 8*yn) __ add(yp, ypc, ypc); __ dec(ypc, 8); // yn - 1 (ypc--) __ bind(L_loop_j); __ cmp_and_br_short(ypc, yp,// j >= 0 Assembler::less, Assembler::pn, L_exit); __ clr(rc); // u64 c = 0 __ lduw(ypc, 0, rt); // u64 y = yp[j] (= *ypc) __ lduw(ypc, 4, ry); // ... __ sllx(rt, 32, rt); __ or3(rt, ry, ry); // for (int i = xn, k = --zn; i >= 0; i--) __ sllx(xn, 3, xpc); // u32* xpc = &xp[xn] (byte offset 8*xn) __ add(xp, xpc, xpc); __ dec(zn); // --zn __ sllx(zn, 3, zpc); // u32* zpc = &zp[zn] (byte offset 8*zn) __ add(zp, zpc, zpc); __ bind(L_loop_i2); __ cmp_and_br_short(xpc, xp,// i >= 0 Assembler::less, Assembler::pn, L_exit_loop_i2); __ lduw(xpc, 0, rt); // u64 x = xp[i] (= *xpc) __ lduw(xpc, 4, rx); // ... __ sllx(rt, 32, rt); __ or3(rt, rx, rx); __ lduw(zpc, 0, rt); // u64 z = zp[k] (= *zpc) __ lduw(zpc, 4, rz); // ... __ sllx(rt, 32, rt); __ or3(rt, rz, rz); __ mulx(rx, ry, lop); // lo-64b-part of result 64x64 __ umulxhi(rx, ry, hip); // hi-64b-part of result 64x64 __ addcc(rz, rc, rz); // Accumulate lower order bits... __ addxc(hip, zero, rc); // Accumulate higher order bits to carry __ addcc(rz, lop, rz); // ... z += lo(p) + c __ addxccc(rc, zero, rc); __ srlx(rz, 32, rt); __ stw(rt, zpc, 0); // zp[k] = z (*zpc = z) __ stw(rz, zpc, 4); __ dec(zpc, 8); // k-- (zpc--) __ dec(xpc, 8); // i-- (xpc--) __ ba_short(L_loop_i2); __ bind(L_exit_loop_i2); __ srlx(rc, 32, rt); __ stw(rt, zpc, 0); // z[k] = c __ stw(rc, zpc, 4); __ dec(ypc, 8); // j-- (ypc--) __ ba_short(L_loop_j); } void gen_mult_32x32(Register xp, Register xn, Register yp, Register yn, Register zp, Register zn, Label &L_exit) { // Assuming that a stack frame has already been created, i.e. local and // output registers are available for use. const Register ri = L0; // Outer loop index, xv[i] const Register rj = L1; // Inner loop index, yv[j] const Register rk = L2; // Output loop index, zv[k] const Register rx = L4; // x-vector datum [i] const Register ry = L5; // y-vector datum [j] const Register rz = L6; // z-vector datum [k] const Register rc = L7; // carry over (to z-vector datum [k-1]) const Register p64 = O0; // 64b product const Register z65 = O1; // carry+64b accumulator const Register c65 = O2; // carry at bit 65 const Register c33 = O2; // carry at bit 33 (after shift) const Register zero = G0; Label L_loop_i, L_exit_loop_i; Label L_loop_j; Label L_loop_i2, L_exit_loop_i2; __ dec(xn); // Adjust [0..N-1] __ dec(yn); __ dec(zn); __ clr(rc); // u32 c = 0 __ sllx(xn, 2, ri); // int i = xn (byte offset i = 4*xn) __ sllx(yn, 2, rj); // int j = yn (byte offset i = 4*xn) __ sllx(zn, 2, rk); // int k = zn (byte offset k = 4*zn) __ lduw(yp, rj, ry); // u32 y = yp[yn] // for (int i = xn; i >= 0; i--) __ bind(L_loop_i); __ cmp_and_br_short(ri, 0, // i >= 0 Assembler::less, Assembler::pn, L_exit_loop_i); __ lduw(xp, ri, rx); // x = xp[i] __ mulx(rx, ry, p64); // 64b result of 32x32 __ addcc(rc, p64, z65); // Accumulate to 65 bits (producing carry) __ addxc(zero, zero, c65); // Materialise carry (in bit 65) into lsb, __ sllx(c65, 32, c33); // and shift into bit 33 __ srlx(z65, 32, rc); // carry = c33 | hi(z65) >> 32 __ add(c33, rc, rc); // carry over to next datum [k-1] __ stw(z65, zp, rk); // z[k] = lo(z65) __ dec(rk, 4); // k-- __ dec(ri, 4); // i-- __ ba_short(L_loop_i); __ bind(L_exit_loop_i); __ stw(rc, zp, rk); // z[k] = c // for (int j = yn - 1; j >= 0; j--) __ sllx(yn, 2, rj); // int j = yn - 1 (byte offset j = 4*yn) __ dec(rj, 4); __ bind(L_loop_j); __ cmp_and_br_short(rj, 0, // j >= 0 Assembler::less, Assembler::pn, L_exit); __ clr(rc); // u32 c = 0 __ lduw(yp, rj, ry); // u32 y = yp[j] // for (int i = xn, k = --zn; i >= 0; i--) __ dec(zn); // --zn __ sllx(xn, 2, ri); // int i = xn (byte offset i = 4*xn) __ sllx(zn, 2, rk); // int k = zn (byte offset k = 4*zn) __ bind(L_loop_i2); __ cmp_and_br_short(ri, 0, // i >= 0 Assembler::less, Assembler::pn, L_exit_loop_i2); __ lduw(xp, ri, rx); // x = xp[i] __ lduw(zp, rk, rz); // z = zp[k], accumulator __ mulx(rx, ry, p64); // 64b result of 32x32 __ add(rz, rc, rz); // Accumulate lower order bits, __ addcc(rz, p64, z65); // z += lo(p64) + c __ addxc(zero, zero, c65); // Materialise carry (in bit 65) into lsb, __ sllx(c65, 32, c33); // and shift into bit 33 __ srlx(z65, 32, rc); // carry = c33 | hi(z65) >> 32 __ add(c33, rc, rc); // carry over to next datum [k-1] __ stw(z65, zp, rk); // zp[k] = lo(z65) __ dec(rk, 4); // k-- __ dec(ri, 4); // i-- __ ba_short(L_loop_i2); __ bind(L_exit_loop_i2); __ stw(rc, zp, rk); // z[k] = c __ dec(rj, 4); // j-- __ ba_short(L_loop_j); } void generate_initial() { // Generates all stubs and initializes the entry points //------------------------------------------------------------------------------------------------------------------------ // entry points that exist in all platforms // Note: This is code that could be shared among different platforms - however the benefit seems to be smaller than // the disadvantage of having a much more complicated generator structure. See also comment in stubRoutines.hpp. StubRoutines::_forward_exception_entry = generate_forward_exception(); StubRoutines::_call_stub_entry = generate_call_stub(StubRoutines::_call_stub_return_address); StubRoutines::_catch_exception_entry = generate_catch_exception(); //------------------------------------------------------------------------------------------------------------------------ // entry points that are platform specific StubRoutines::Sparc::_test_stop_entry = generate_test_stop(); StubRoutines::Sparc::_stop_subroutine_entry = generate_stop_subroutine(); StubRoutines::Sparc::_flush_callers_register_windows_entry = generate_flush_callers_register_windows(); // Build this early so it's available for the interpreter. StubRoutines::_throw_StackOverflowError_entry = generate_throw_exception("StackOverflowError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError)); StubRoutines::_throw_delayed_StackOverflowError_entry = generate_throw_exception("delayed StackOverflowError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_delayed_StackOverflowError)); if (UseCRC32Intrinsics) { // set table address before stub generation which use it StubRoutines::_crc_table_adr = (address)StubRoutines::Sparc::_crc_table; StubRoutines::_updateBytesCRC32 = generate_updateBytesCRC32(); } if (UseCRC32CIntrinsics) { // set table address before stub generation which use it StubRoutines::_crc32c_table_addr = (address)StubRoutines::Sparc::_crc32c_table; StubRoutines::_updateBytesCRC32C = generate_updateBytesCRC32C(); } } void generate_all() { // Generates all stubs and initializes the entry points // Generate partial_subtype_check first here since its code depends on // UseZeroBaseCompressedOops which is defined after heap initialization. StubRoutines::Sparc::_partial_subtype_check = generate_partial_subtype_check(); // These entry points require SharedInfo::stack0 to be set up in non-core builds StubRoutines::_throw_AbstractMethodError_entry = generate_throw_exception("AbstractMethodError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError)); StubRoutines::_throw_IncompatibleClassChangeError_entry= generate_throw_exception("IncompatibleClassChangeError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError)); StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call)); // support for verify_oop (must happen after universe_init) StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop_subroutine(); // arraycopy stubs used by compilers generate_arraycopy_stubs(); // Don't initialize the platform math functions since sparc // doesn't have intrinsics for these operations. // Safefetch stubs. generate_safefetch("SafeFetch32", sizeof(int), &StubRoutines::_safefetch32_entry, &StubRoutines::_safefetch32_fault_pc, &StubRoutines::_safefetch32_continuation_pc); generate_safefetch("SafeFetchN", sizeof(intptr_t), &StubRoutines::_safefetchN_entry, &StubRoutines::_safefetchN_fault_pc, &StubRoutines::_safefetchN_continuation_pc); // generate AES intrinsics code if (UseAESIntrinsics) { StubRoutines::_aescrypt_encryptBlock = generate_aescrypt_encryptBlock(); StubRoutines::_aescrypt_decryptBlock = generate_aescrypt_decryptBlock(); StubRoutines::_cipherBlockChaining_encryptAESCrypt = generate_cipherBlockChaining_encryptAESCrypt(); StubRoutines::_cipherBlockChaining_decryptAESCrypt = generate_cipherBlockChaining_decryptAESCrypt_Parallel(); } // generate GHASH intrinsics code if (UseGHASHIntrinsics) { StubRoutines::_ghash_processBlocks = generate_ghash_processBlocks(); } // generate SHA1/SHA256/SHA512 intrinsics code if (UseSHA1Intrinsics) { StubRoutines::_sha1_implCompress = generate_sha1_implCompress(false, "sha1_implCompress"); StubRoutines::_sha1_implCompressMB = generate_sha1_implCompress(true, "sha1_implCompressMB"); } if (UseSHA256Intrinsics) { StubRoutines::_sha256_implCompress = generate_sha256_implCompress(false, "sha256_implCompress"); StubRoutines::_sha256_implCompressMB = generate_sha256_implCompress(true, "sha256_implCompressMB"); } if (UseSHA512Intrinsics) { StubRoutines::_sha512_implCompress = generate_sha512_implCompress(false, "sha512_implCompress"); StubRoutines::_sha512_implCompressMB = generate_sha512_implCompress(true, "sha512_implCompressMB"); } // generate Adler32 intrinsics code if (UseAdler32Intrinsics) { StubRoutines::_updateBytesAdler32 = generate_updateBytesAdler32(); } #ifdef COMPILER2 // Intrinsics supported by C2 only: if (UseMultiplyToLenIntrinsic) { StubRoutines::_multiplyToLen = generate_multiplyToLen(); } #endif // COMPILER2 } public: StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) { // replace the standard masm with a special one: _masm = new MacroAssembler(code); _stub_count = !all ? 0x100 : 0x200; if (all) { generate_all(); } else { generate_initial(); } // make sure this stub is available for all local calls if (_atomic_add_stub.is_unbound()) { // generate a second time, if necessary (void) generate_atomic_add(); } } private: int _stub_count; void stub_prolog(StubCodeDesc* cdesc) { # ifdef ASSERT // put extra information in the stub code, to make it more readable // Write the high part of the address // [RGV] Check if there is a dependency on the size of this prolog __ emit_data((intptr_t)cdesc >> 32, relocInfo::none); __ emit_data((intptr_t)cdesc, relocInfo::none); __ emit_data(++_stub_count, relocInfo::none); # endif align(true); } void align(bool at_header = false) { // %%%%% move this constant somewhere else // UltraSPARC cache line size is 8 instructions: const unsigned int icache_line_size = 32; const unsigned int icache_half_line_size = 16; if (at_header) { while ((intptr_t)(__ pc()) % icache_line_size != 0) { __ emit_data(0, relocInfo::none); } } else { while ((intptr_t)(__ pc()) % icache_half_line_size != 0) { __ nop(); } } } }; // end class declaration void StubGenerator_generate(CodeBuffer* code, bool all) { StubGenerator g(code, all); }