/* * Copyright 1999-2005 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. * */ // ciBytecodeStream // // The class is used to iterate over the bytecodes of a method. // It hides the details of constant pool structure/access by // providing accessors for constant pool items. It returns only pure // Java bytecodes; VM-internal _fast bytecodes are translated back to // their original form during iteration. class ciBytecodeStream : StackObj { private: // Handling for the weird bytecodes Bytecodes::Code wide(); // Handle wide bytecode Bytecodes::Code table(Bytecodes::Code); // Handle complicated inline table static Bytecodes::Code check_java(Bytecodes::Code c) { assert(Bytecodes::is_java_code(c), "should not return _fast bytecodes"); return c; } ciMethod* _method; // the method ciInstanceKlass* _holder; address _bc_start; // Start of current bytecode for table address _was_wide; // Address past last wide bytecode jint* _table_base; // Aligned start of last table or switch address _start; // Start of bytecodes address _end; // Past end of bytecodes address _pc; // Current PC Bytecodes::Code _bc; // Current bytecode void reset( address base, unsigned int size ) { _bc_start =_was_wide = 0; _start = _pc = base; _end = base + size; } public: // End-Of-Bytecodes static Bytecodes::Code EOBC() { return Bytecodes::_illegal; } ciBytecodeStream(ciMethod* m) { reset_to_method(m); } ciBytecodeStream() { reset_to_method(NULL); } ciMethod* method() const { return _method; } void reset_to_method(ciMethod* m) { _method = m; if (m == NULL) { _holder = NULL; reset(NULL, 0); } else { _holder = m->holder(); reset(m->code(), m->code_size()); } } void reset_to_bci( int bci ); // Force the iterator to report a certain bci. void force_bci(int bci); void set_max_bci( int max ) { _end = _start + max; } address cur_bcp() { return _bc_start; } // Returns bcp to current instruction int next_bci() const { return _pc -_start; } int cur_bci() const { return _bc_start - _start; } Bytecodes::Code cur_bc() const{ return check_java(_bc); } Bytecodes::Code next_bc() { return Bytecodes::java_code((Bytecodes::Code)* _pc); } // Return current ByteCode and increment PC to next bytecode, skipping all // intermediate constants. Returns EOBC at end. // Expected usage: // while( (bc = iter.next()) != EOBC() ) { ... } Bytecodes::Code next() { _bc_start = _pc; // Capture start of bc if( _pc >= _end ) return EOBC(); // End-Of-Bytecodes // Fetch Java bytecode // All rewritten bytecodes maintain the size of original bytecode. _bc = Bytecodes::java_code((Bytecodes::Code)*_pc); int csize = Bytecodes::length_for(_bc); // Expected size if( _bc == Bytecodes::_wide ) { _bc=wide(); // Handle wide bytecode } else if( csize == 0 ) { _bc=table(_bc); // Handle inline tables } else { _pc += csize; // Bump PC past bytecode } return check_java(_bc); } bool is_wide() { return ( _pc == _was_wide ); } // Get a byte index following this bytecode. // If prefixed with a wide bytecode, get a wide index. int get_index() const { return (_pc == _was_wide) // was widened? ? Bytes::get_Java_u2(_bc_start+2) // yes, return wide index : _bc_start[1]; // no, return narrow index } // Set a byte index following this bytecode. // If prefixed with a wide bytecode, get a wide index. void put_index(int idx) { if (_pc == _was_wide) // was widened? Bytes::put_Java_u2(_bc_start+2,idx); // yes, set wide index else _bc_start[1]=idx; // no, set narrow index } // Get 2-byte index (getfield/putstatic/etc) int get_index_big() const { return Bytes::get_Java_u2(_bc_start+1); } // Get dimensions byte (multinewarray) int get_dimensions() const { return *(unsigned char*)(_pc-1); } // Get unsigned index fast int get_index_fast() const { return Bytes::get_native_u2(_pc-2); } // Sign-extended index byte/short, no widening int get_byte() const { return (int8_t)(_pc[-1]); } int get_short() const { return (int16_t)Bytes::get_Java_u2(_pc-2); } int get_long() const { return (int32_t)Bytes::get_Java_u4(_pc-4); } // Get a byte signed constant for "iinc". Invalid for other bytecodes. // If prefixed with a wide bytecode, get a wide constant int get_iinc_con() const {return (_pc==_was_wide) ? get_short() :get_byte();} // 2-byte branch offset from current pc int get_dest( ) const { assert( Bytecodes::length_at(_bc_start) == sizeof(jshort)+1, "get_dest called with bad bytecode" ); return _bc_start-_start + (short)Bytes::get_Java_u2(_pc-2); } // 2-byte branch offset from next pc int next_get_dest( ) const { address next_bc_start = _pc; assert( _pc < _end, "" ); Bytecodes::Code next_bc = (Bytecodes::Code)*_pc; assert( next_bc != Bytecodes::_wide, ""); int next_csize = Bytecodes::length_for(next_bc); assert( next_csize != 0, "" ); assert( next_bc <= Bytecodes::_jsr_w, ""); address next_pc = _pc + next_csize; assert( Bytecodes::length_at(next_bc_start) == sizeof(jshort)+1, "next_get_dest called with bad bytecode" ); return next_bc_start-_start + (short)Bytes::get_Java_u2(next_pc-2); } // 4-byte branch offset from current pc int get_far_dest( ) const { assert( Bytecodes::length_at(_bc_start) == sizeof(jint)+1, "dest4 called with bad bytecode" ); return _bc_start-_start + (int)Bytes::get_Java_u4(_pc-4); } // For a lookup or switch table, return target destination int get_int_table( int index ) const { return Bytes::get_Java_u4((address)&_table_base[index]); } // For tableswitch - get length of offset part int get_tableswitch_length() { return get_int_table(2)-get_int_table(1)+1; } int get_dest_table( int index ) const { return cur_bci() + get_int_table(index); } // --- Constant pool access --- int get_constant_index() const; int get_field_index(); int get_method_index(); // If this bytecode is a new, newarray, multianewarray, instanceof, // or checkcast, get the referenced klass. ciKlass* get_klass(bool& will_link); int get_klass_index() const; // If this bytecode is one of the ldc variants, get the referenced // constant ciConstant get_constant(); // True if the ldc variant points to an unresolved string bool is_unresolved_string() const; // True if the ldc variant points to an unresolved klass bool is_unresolved_klass() const; // If this bytecode is one of get_field, get_static, put_field, // or put_static, get the referenced field. ciField* get_field(bool& will_link); ciInstanceKlass* get_declared_field_holder(); int get_field_holder_index(); int get_field_signature_index(); // If this is a method invocation bytecode, get the invoked method. ciMethod* get_method(bool& will_link); ciKlass* get_declared_method_holder(); int get_method_holder_index(); int get_method_signature_index(); }; // ciSignatureStream // // The class is used to iterate over the elements of a method signature. class ciSignatureStream : public StackObj { private: ciSignature* _sig; int _pos; public: ciSignatureStream(ciSignature* signature) { _sig = signature; _pos = 0; } bool at_return_type() { return _pos == _sig->count(); } bool is_done() { return _pos > _sig->count(); } void next() { if (_pos <= _sig->count()) { _pos++; } } ciType* type() { if (at_return_type()) { return _sig->return_type(); } else { return _sig->type_at(_pos); } } }; // ciExceptionHandlerStream // // The class is used to iterate over the exception handlers of // a method. class ciExceptionHandlerStream : public StackObj { private: // The method whose handlers we are traversing ciMethod* _method; // Our current position in the list of handlers int _pos; int _end; ciInstanceKlass* _exception_klass; int _bci; bool _is_exact; public: ciExceptionHandlerStream(ciMethod* method) { _method = method; // Force loading of method code and handlers. _method->code(); _pos = 0; _end = _method->_handler_count; _exception_klass = NULL; _bci = -1; _is_exact = false; } ciExceptionHandlerStream(ciMethod* method, int bci, ciInstanceKlass* exception_klass = NULL, bool is_exact = false) { _method = method; // Force loading of method code and handlers. _method->code(); _pos = -1; _end = _method->_handler_count + 1; // include the rethrow handler _exception_klass = (exception_klass != NULL && exception_klass->is_loaded() ? exception_klass : NULL); _bci = bci; assert(_bci >= 0, "bci out of range"); _is_exact = is_exact; next(); } // These methods are currently implemented in an odd way. // Count the number of handlers the iterator has ever produced // or will ever produce. Do not include the final rethrow handler. // That is, a trivial exception handler stream will have a count // of zero and produce just the rethrow handler. int count(); // Count the number of handlers this stream will produce from now on. // Include the current handler, and the final rethrow handler. // The remaining count will be zero iff is_done() is true, int count_remaining(); bool is_done() { return (_pos >= _end); } void next() { _pos++; if (_bci != -1) { // We are not iterating over all handlers... while (!is_done()) { ciExceptionHandler* handler = _method->_exception_handlers[_pos]; if (handler->is_in_range(_bci)) { if (handler->is_catch_all()) { // Found final active catch block. _end = _pos+1; return; } else if (_exception_klass == NULL || !handler->catch_klass()->is_loaded()) { // We cannot do any type analysis here. Must conservatively assume // catch block is reachable. return; } else if (_exception_klass->is_subtype_of(handler->catch_klass())) { // This catch clause will definitely catch the exception. // Final candidate. _end = _pos+1; return; } else if (!_is_exact && handler->catch_klass()->is_subtype_of(_exception_klass)) { // This catch block may be reachable. return; } } // The catch block was not pertinent. Go on. _pos++; } } else { // This is an iteration over all handlers. return; } } ciExceptionHandler* handler() { return _method->_exception_handlers[_pos]; } };