/* * Copyright (c) 2016, 2017, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "gc/g1/concurrentMarkThread.hpp" #include "gc/g1/g1Allocator.inline.hpp" #include "gc/g1/g1CollectedHeap.hpp" #include "gc/g1/g1CollectedHeap.inline.hpp" #include "gc/g1/g1HeapVerifier.hpp" #include "gc/g1/g1Policy.hpp" #include "gc/g1/g1RemSet.hpp" #include "gc/g1/g1RootProcessor.hpp" #include "gc/g1/heapRegion.hpp" #include "gc/g1/heapRegion.inline.hpp" #include "gc/g1/heapRegionRemSet.hpp" #include "gc/g1/g1StringDedup.hpp" #include "logging/log.hpp" #include "logging/logStream.hpp" #include "memory/resourceArea.hpp" #include "oops/oop.inline.hpp" class VerifyRootsClosure: public OopClosure { private: G1CollectedHeap* _g1h; VerifyOption _vo; bool _failures; public: // _vo == UsePrevMarking -> use "prev" marking information, // _vo == UseNextMarking -> use "next" marking information, // _vo == UseMarkWord -> use mark word from object header. VerifyRootsClosure(VerifyOption vo) : _g1h(G1CollectedHeap::heap()), _vo(vo), _failures(false) { } bool failures() { return _failures; } template void do_oop_nv(T* p) { T heap_oop = oopDesc::load_heap_oop(p); if (!oopDesc::is_null(heap_oop)) { oop obj = oopDesc::decode_heap_oop_not_null(heap_oop); if (_g1h->is_obj_dead_cond(obj, _vo)) { Log(gc, verify) log; log.error("Root location " PTR_FORMAT " points to dead obj " PTR_FORMAT, p2i(p), p2i(obj)); if (_vo == VerifyOption_G1UseMarkWord) { log.error(" Mark word: " PTR_FORMAT, p2i(obj->mark())); } ResourceMark rm; LogStream ls(log.error()); obj->print_on(&ls); _failures = true; } } } void do_oop(oop* p) { do_oop_nv(p); } void do_oop(narrowOop* p) { do_oop_nv(p); } }; class G1VerifyCodeRootOopClosure: public OopClosure { G1CollectedHeap* _g1h; OopClosure* _root_cl; nmethod* _nm; VerifyOption _vo; bool _failures; template void do_oop_work(T* p) { // First verify that this root is live _root_cl->do_oop(p); if (!G1VerifyHeapRegionCodeRoots) { // We're not verifying the code roots attached to heap region. return; } // Don't check the code roots during marking verification in a full GC if (_vo == VerifyOption_G1UseMarkWord) { return; } // Now verify that the current nmethod (which contains p) is // in the code root list of the heap region containing the // object referenced by p. T heap_oop = oopDesc::load_heap_oop(p); if (!oopDesc::is_null(heap_oop)) { oop obj = oopDesc::decode_heap_oop_not_null(heap_oop); // Now fetch the region containing the object HeapRegion* hr = _g1h->heap_region_containing(obj); HeapRegionRemSet* hrrs = hr->rem_set(); // Verify that the strong code root list for this region // contains the nmethod if (!hrrs->strong_code_roots_list_contains(_nm)) { log_error(gc, verify)("Code root location " PTR_FORMAT " " "from nmethod " PTR_FORMAT " not in strong " "code roots for region [" PTR_FORMAT "," PTR_FORMAT ")", p2i(p), p2i(_nm), p2i(hr->bottom()), p2i(hr->end())); _failures = true; } } } public: G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo): _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {} void do_oop(oop* p) { do_oop_work(p); } void do_oop(narrowOop* p) { do_oop_work(p); } void set_nmethod(nmethod* nm) { _nm = nm; } bool failures() { return _failures; } }; class G1VerifyCodeRootBlobClosure: public CodeBlobClosure { G1VerifyCodeRootOopClosure* _oop_cl; public: G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl): _oop_cl(oop_cl) {} void do_code_blob(CodeBlob* cb) { nmethod* nm = cb->as_nmethod_or_null(); if (nm != NULL) { _oop_cl->set_nmethod(nm); nm->oops_do(_oop_cl); } } }; class YoungRefCounterClosure : public OopClosure { G1CollectedHeap* _g1h; int _count; public: YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {} void do_oop(oop* p) { if (_g1h->is_in_young(*p)) { _count++; } } void do_oop(narrowOop* p) { ShouldNotReachHere(); } int count() { return _count; } void reset_count() { _count = 0; }; }; class VerifyCLDClosure: public CLDClosure { YoungRefCounterClosure _young_ref_counter_closure; OopClosure *_oop_closure; public: VerifyCLDClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {} void do_cld(ClassLoaderData* cld) { cld->oops_do(_oop_closure, false); _young_ref_counter_closure.reset_count(); cld->oops_do(&_young_ref_counter_closure, false); if (_young_ref_counter_closure.count() > 0) { guarantee(cld->has_modified_oops(), "CLD " PTR_FORMAT ", has young %d refs but is not dirty.", p2i(cld), _young_ref_counter_closure.count()); } } }; class VerifyLivenessOopClosure: public OopClosure { G1CollectedHeap* _g1h; VerifyOption _vo; public: VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo): _g1h(g1h), _vo(vo) { } void do_oop(narrowOop *p) { do_oop_work(p); } void do_oop( oop *p) { do_oop_work(p); } template void do_oop_work(T *p) { oop obj = oopDesc::load_decode_heap_oop(p); guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo), "Dead object referenced by a not dead object"); } }; class VerifyObjsInRegionClosure: public ObjectClosure { private: G1CollectedHeap* _g1h; size_t _live_bytes; HeapRegion *_hr; VerifyOption _vo; public: // _vo == UsePrevMarking -> use "prev" marking information, // _vo == UseNextMarking -> use "next" marking information, // _vo == UseMarkWord -> use mark word from object header. VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo) : _live_bytes(0), _hr(hr), _vo(vo) { _g1h = G1CollectedHeap::heap(); } void do_object(oop o) { VerifyLivenessOopClosure isLive(_g1h, _vo); assert(o != NULL, "Huh?"); if (!_g1h->is_obj_dead_cond(o, _vo)) { // If the object is alive according to the mark word, // then verify that the marking information agrees. // Note we can't verify the contra-positive of the // above: if the object is dead (according to the mark // word), it may not be marked, or may have been marked // but has since became dead, or may have been allocated // since the last marking. if (_vo == VerifyOption_G1UseMarkWord) { guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch"); } o->oop_iterate_no_header(&isLive); if (!_hr->obj_allocated_since_prev_marking(o)) { size_t obj_size = o->size(); // Make sure we don't overflow _live_bytes += (obj_size * HeapWordSize); } } } size_t live_bytes() { return _live_bytes; } }; class VerifyArchiveOopClosure: public OopClosure { HeapRegion* _hr; public: VerifyArchiveOopClosure(HeapRegion *hr) : _hr(hr) { } void do_oop(narrowOop *p) { do_oop_work(p); } void do_oop( oop *p) { do_oop_work(p); } template void do_oop_work(T *p) { oop obj = oopDesc::load_decode_heap_oop(p); if (_hr->is_open_archive()) { guarantee(obj == NULL || G1ArchiveAllocator::is_archive_object(obj), "Archive object at " PTR_FORMAT " references a non-archive object at " PTR_FORMAT, p2i(p), p2i(obj)); } else { assert(_hr->is_closed_archive(), "should be closed archive region"); guarantee(obj == NULL || G1ArchiveAllocator::is_closed_archive_object(obj), "Archive object at " PTR_FORMAT " references a non-archive object at " PTR_FORMAT, p2i(p), p2i(obj)); } } }; class VerifyObjectInArchiveRegionClosure: public ObjectClosure { HeapRegion* _hr; public: VerifyObjectInArchiveRegionClosure(HeapRegion *hr, bool verbose) : _hr(hr) { } // Verify that all object pointers are to archive regions. void do_object(oop o) { VerifyArchiveOopClosure checkOop(_hr); assert(o != NULL, "Should not be here for NULL oops"); o->oop_iterate_no_header(&checkOop); } }; // Should be only used at CDS dump time class VerifyArchivePointerRegionClosure: public HeapRegionClosure { private: G1CollectedHeap* _g1h; public: VerifyArchivePointerRegionClosure(G1CollectedHeap* g1h) { } virtual bool doHeapRegion(HeapRegion* r) { if (r->is_archive()) { VerifyObjectInArchiveRegionClosure verify_oop_pointers(r, false); r->object_iterate(&verify_oop_pointers); } return false; } }; void G1HeapVerifier::verify_archive_regions() { G1CollectedHeap* g1h = G1CollectedHeap::heap(); VerifyArchivePointerRegionClosure cl(NULL); g1h->heap_region_iterate(&cl); } class VerifyRegionClosure: public HeapRegionClosure { private: bool _par; VerifyOption _vo; bool _failures; public: // _vo == UsePrevMarking -> use "prev" marking information, // _vo == UseNextMarking -> use "next" marking information, // _vo == UseMarkWord -> use mark word from object header. VerifyRegionClosure(bool par, VerifyOption vo) : _par(par), _vo(vo), _failures(false) {} bool failures() { return _failures; } bool doHeapRegion(HeapRegion* r) { // For archive regions, verify there are no heap pointers to // non-pinned regions. For all others, verify liveness info. if (r->is_closed_archive()) { VerifyObjectInArchiveRegionClosure verify_oop_pointers(r, false); r->object_iterate(&verify_oop_pointers); return true; } else if (r->is_open_archive()) { VerifyObjsInRegionClosure verify_open_archive_oop(r, _vo); r->object_iterate(&verify_open_archive_oop); return true; } else if (!r->is_continues_humongous()) { bool failures = false; r->verify(_vo, &failures); if (failures) { _failures = true; } else if (!r->is_starts_humongous()) { VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo); r->object_iterate(¬_dead_yet_cl); if (_vo != VerifyOption_G1UseNextMarking) { if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) { log_error(gc, verify)("[" PTR_FORMAT "," PTR_FORMAT "] max_live_bytes " SIZE_FORMAT " < calculated " SIZE_FORMAT, p2i(r->bottom()), p2i(r->end()), r->max_live_bytes(), not_dead_yet_cl.live_bytes()); _failures = true; } } else { // When vo == UseNextMarking we cannot currently do a sanity // check on the live bytes as the calculation has not been // finalized yet. } } } return false; // stop the region iteration if we hit a failure } }; // This is the task used for parallel verification of the heap regions class G1ParVerifyTask: public AbstractGangTask { private: G1CollectedHeap* _g1h; VerifyOption _vo; bool _failures; HeapRegionClaimer _hrclaimer; public: // _vo == UsePrevMarking -> use "prev" marking information, // _vo == UseNextMarking -> use "next" marking information, // _vo == UseMarkWord -> use mark word from object header. G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) : AbstractGangTask("Parallel verify task"), _g1h(g1h), _vo(vo), _failures(false), _hrclaimer(g1h->workers()->active_workers()) {} bool failures() { return _failures; } void work(uint worker_id) { HandleMark hm; VerifyRegionClosure blk(true, _vo); _g1h->heap_region_par_iterate(&blk, worker_id, &_hrclaimer); if (blk.failures()) { _failures = true; } } }; void G1HeapVerifier::verify(VerifyOption vo) { if (!SafepointSynchronize::is_at_safepoint()) { log_info(gc, verify)("Skipping verification. Not at safepoint."); } assert(Thread::current()->is_VM_thread(), "Expected to be executed serially by the VM thread at this point"); log_debug(gc, verify)("Roots"); VerifyRootsClosure rootsCl(vo); VerifyCLDClosure cldCl(_g1h, &rootsCl); // We apply the relevant closures to all the oops in the // system dictionary, class loader data graph, the string table // and the nmethods in the code cache. G1VerifyCodeRootOopClosure codeRootsCl(_g1h, &rootsCl, vo); G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl); { G1RootProcessor root_processor(_g1h, 1); root_processor.process_all_roots(&rootsCl, &cldCl, &blobsCl); } bool failures = rootsCl.failures() || codeRootsCl.failures(); if (vo != VerifyOption_G1UseMarkWord) { // If we're verifying during a full GC then the region sets // will have been torn down at the start of the GC. Therefore // verifying the region sets will fail. So we only verify // the region sets when not in a full GC. log_debug(gc, verify)("HeapRegionSets"); verify_region_sets(); } log_debug(gc, verify)("HeapRegions"); if (GCParallelVerificationEnabled && ParallelGCThreads > 1) { G1ParVerifyTask task(_g1h, vo); _g1h->workers()->run_task(&task); if (task.failures()) { failures = true; } } else { VerifyRegionClosure blk(false, vo); _g1h->heap_region_iterate(&blk); if (blk.failures()) { failures = true; } } if (G1StringDedup::is_enabled()) { log_debug(gc, verify)("StrDedup"); G1StringDedup::verify(); } if (failures) { log_error(gc, verify)("Heap after failed verification:"); // It helps to have the per-region information in the output to // help us track down what went wrong. This is why we call // print_extended_on() instead of print_on(). Log(gc, verify) log; ResourceMark rm; LogStream ls(log.error()); _g1h->print_extended_on(&ls); } guarantee(!failures, "there should not have been any failures"); } // Heap region set verification class VerifyRegionListsClosure : public HeapRegionClosure { private: HeapRegionSet* _old_set; HeapRegionSet* _humongous_set; HeapRegionManager* _hrm; public: uint _old_count; uint _humongous_count; uint _free_count; VerifyRegionListsClosure(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* hrm) : _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm), _old_count(), _humongous_count(), _free_count(){ } bool doHeapRegion(HeapRegion* hr) { if (hr->is_young()) { // TODO } else if (hr->is_humongous()) { assert(hr->containing_set() == _humongous_set, "Heap region %u is humongous but not in humongous set.", hr->hrm_index()); _humongous_count++; } else if (hr->is_empty()) { assert(_hrm->is_free(hr), "Heap region %u is empty but not on the free list.", hr->hrm_index()); _free_count++; } else if (hr->is_old()) { assert(hr->containing_set() == _old_set, "Heap region %u is old but not in the old set.", hr->hrm_index()); _old_count++; } else { // There are no other valid region types. Check for one invalid // one we can identify: pinned without old or humongous set. assert(!hr->is_pinned(), "Heap region %u is pinned but not old (archive) or humongous.", hr->hrm_index()); ShouldNotReachHere(); } return false; } void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) { guarantee(old_set->length() == _old_count, "Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count); guarantee(humongous_set->length() == _humongous_count, "Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count); guarantee(free_list->num_free_regions() == _free_count, "Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count); } }; void G1HeapVerifier::verify_region_sets() { assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */); // First, check the explicit lists. _g1h->_hrm.verify(); { // Given that a concurrent operation might be adding regions to // the secondary free list we have to take the lock before // verifying it. MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag); _g1h->_secondary_free_list.verify_list(); } // If a concurrent region freeing operation is in progress it will // be difficult to correctly attributed any free regions we come // across to the correct free list given that they might belong to // one of several (free_list, secondary_free_list, any local lists, // etc.). So, if that's the case we will skip the rest of the // verification operation. Alternatively, waiting for the concurrent // operation to complete will have a non-trivial effect on the GC's // operation (no concurrent operation will last longer than the // interval between two calls to verification) and it might hide // any issues that we would like to catch during testing. if (_g1h->free_regions_coming()) { return; } // Make sure we append the secondary_free_list on the free_list so // that all free regions we will come across can be safely // attributed to the free_list. _g1h->append_secondary_free_list_if_not_empty_with_lock(); // Finally, make sure that the region accounting in the lists is // consistent with what we see in the heap. VerifyRegionListsClosure cl(&_g1h->_old_set, &_g1h->_humongous_set, &_g1h->_hrm); _g1h->heap_region_iterate(&cl); cl.verify_counts(&_g1h->_old_set, &_g1h->_humongous_set, &_g1h->_hrm); } void G1HeapVerifier::prepare_for_verify() { if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) { _g1h->ensure_parsability(false); } } double G1HeapVerifier::verify(bool guard, const char* msg) { double verify_time_ms = 0.0; if (guard && _g1h->total_collections() >= VerifyGCStartAt) { double verify_start = os::elapsedTime(); HandleMark hm; // Discard invalid handles created during verification prepare_for_verify(); Universe::verify(VerifyOption_G1UsePrevMarking, msg); verify_time_ms = (os::elapsedTime() - verify_start) * 1000; } return verify_time_ms; } void G1HeapVerifier::verify_before_gc() { double verify_time_ms = verify(VerifyBeforeGC, "Before GC"); _g1h->g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms); } void G1HeapVerifier::verify_after_gc() { double verify_time_ms = verify(VerifyAfterGC, "After GC"); _g1h->g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms); } #ifndef PRODUCT class G1VerifyCardTableCleanup: public HeapRegionClosure { G1HeapVerifier* _verifier; G1SATBCardTableModRefBS* _ct_bs; public: G1VerifyCardTableCleanup(G1HeapVerifier* verifier, G1SATBCardTableModRefBS* ct_bs) : _verifier(verifier), _ct_bs(ct_bs) { } virtual bool doHeapRegion(HeapRegion* r) { if (r->is_survivor()) { _verifier->verify_dirty_region(r); } else { _verifier->verify_not_dirty_region(r); } return false; } }; void G1HeapVerifier::verify_card_table_cleanup() { if (G1VerifyCTCleanup || VerifyAfterGC) { G1VerifyCardTableCleanup cleanup_verifier(this, _g1h->g1_barrier_set()); _g1h->heap_region_iterate(&cleanup_verifier); } } void G1HeapVerifier::verify_not_dirty_region(HeapRegion* hr) { // All of the region should be clean. G1SATBCardTableModRefBS* ct_bs = _g1h->g1_barrier_set(); MemRegion mr(hr->bottom(), hr->end()); ct_bs->verify_not_dirty_region(mr); } void G1HeapVerifier::verify_dirty_region(HeapRegion* hr) { // We cannot guarantee that [bottom(),end()] is dirty. Threads // dirty allocated blocks as they allocate them. The thread that // retires each region and replaces it with a new one will do a // maximal allocation to fill in [pre_dummy_top(),end()] but will // not dirty that area (one less thing to have to do while holding // a lock). So we can only verify that [bottom(),pre_dummy_top()] // is dirty. G1SATBCardTableModRefBS* ct_bs = _g1h->g1_barrier_set(); MemRegion mr(hr->bottom(), hr->pre_dummy_top()); if (hr->is_young()) { ct_bs->verify_g1_young_region(mr); } else { ct_bs->verify_dirty_region(mr); } } class G1VerifyDirtyYoungListClosure : public HeapRegionClosure { private: G1HeapVerifier* _verifier; public: G1VerifyDirtyYoungListClosure(G1HeapVerifier* verifier) : HeapRegionClosure(), _verifier(verifier) { } virtual bool doHeapRegion(HeapRegion* r) { _verifier->verify_dirty_region(r); return false; } }; void G1HeapVerifier::verify_dirty_young_regions() { G1VerifyDirtyYoungListClosure cl(this); _g1h->collection_set()->iterate(&cl); } bool G1HeapVerifier::verify_no_bits_over_tams(const char* bitmap_name, const G1CMBitMap* const bitmap, HeapWord* tams, HeapWord* end) { guarantee(tams <= end, "tams: " PTR_FORMAT " end: " PTR_FORMAT, p2i(tams), p2i(end)); HeapWord* result = bitmap->get_next_marked_addr(tams, end); if (result < end) { log_error(gc, verify)("## wrong marked address on %s bitmap: " PTR_FORMAT, bitmap_name, p2i(result)); log_error(gc, verify)("## %s tams: " PTR_FORMAT " end: " PTR_FORMAT, bitmap_name, p2i(tams), p2i(end)); return false; } return true; } bool G1HeapVerifier::verify_bitmaps(const char* caller, HeapRegion* hr) { const G1CMBitMap* const prev_bitmap = _g1h->concurrent_mark()->prev_mark_bitmap(); const G1CMBitMap* const next_bitmap = _g1h->concurrent_mark()->next_mark_bitmap(); HeapWord* ptams = hr->prev_top_at_mark_start(); HeapWord* ntams = hr->next_top_at_mark_start(); HeapWord* end = hr->end(); bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end); bool res_n = true; // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap // if we happen to be in that state. if (_g1h->collector_state()->mark_in_progress() || !_g1h->_cmThread->in_progress()) { res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end); } if (!res_p || !res_n) { log_error(gc, verify)("#### Bitmap verification failed for " HR_FORMAT, HR_FORMAT_PARAMS(hr)); log_error(gc, verify)("#### Caller: %s", caller); return false; } return true; } void G1HeapVerifier::check_bitmaps(const char* caller, HeapRegion* hr) { if (!G1VerifyBitmaps) return; guarantee(verify_bitmaps(caller, hr), "bitmap verification"); } class G1VerifyBitmapClosure : public HeapRegionClosure { private: const char* _caller; G1HeapVerifier* _verifier; bool _failures; public: G1VerifyBitmapClosure(const char* caller, G1HeapVerifier* verifier) : _caller(caller), _verifier(verifier), _failures(false) { } bool failures() { return _failures; } virtual bool doHeapRegion(HeapRegion* hr) { bool result = _verifier->verify_bitmaps(_caller, hr); if (!result) { _failures = true; } return false; } }; void G1HeapVerifier::check_bitmaps(const char* caller) { if (!G1VerifyBitmaps) return; G1VerifyBitmapClosure cl(caller, this); _g1h->heap_region_iterate(&cl); guarantee(!cl.failures(), "bitmap verification"); } class G1CheckCSetFastTableClosure : public HeapRegionClosure { private: bool _failures; public: G1CheckCSetFastTableClosure() : HeapRegionClosure(), _failures(false) { } virtual bool doHeapRegion(HeapRegion* hr) { uint i = hr->hrm_index(); InCSetState cset_state = (InCSetState) G1CollectedHeap::heap()->_in_cset_fast_test.get_by_index(i); if (hr->is_humongous()) { if (hr->in_collection_set()) { log_error(gc, verify)("## humongous region %u in CSet", i); _failures = true; return true; } if (cset_state.is_in_cset()) { log_error(gc, verify)("## inconsistent cset state " CSETSTATE_FORMAT " for humongous region %u", cset_state.value(), i); _failures = true; return true; } if (hr->is_continues_humongous() && cset_state.is_humongous()) { log_error(gc, verify)("## inconsistent cset state " CSETSTATE_FORMAT " for continues humongous region %u", cset_state.value(), i); _failures = true; return true; } } else { if (cset_state.is_humongous()) { log_error(gc, verify)("## inconsistent cset state " CSETSTATE_FORMAT " for non-humongous region %u", cset_state.value(), i); _failures = true; return true; } if (hr->in_collection_set() != cset_state.is_in_cset()) { log_error(gc, verify)("## in CSet %d / cset state " CSETSTATE_FORMAT " inconsistency for region %u", hr->in_collection_set(), cset_state.value(), i); _failures = true; return true; } if (cset_state.is_in_cset()) { if (hr->is_young() != (cset_state.is_young())) { log_error(gc, verify)("## is_young %d / cset state " CSETSTATE_FORMAT " inconsistency for region %u", hr->is_young(), cset_state.value(), i); _failures = true; return true; } if (hr->is_old() != (cset_state.is_old())) { log_error(gc, verify)("## is_old %d / cset state " CSETSTATE_FORMAT " inconsistency for region %u", hr->is_old(), cset_state.value(), i); _failures = true; return true; } } } return false; } bool failures() const { return _failures; } }; bool G1HeapVerifier::check_cset_fast_test() { G1CheckCSetFastTableClosure cl; _g1h->_hrm.iterate(&cl); return !cl.failures(); } #endif // PRODUCT