/* * Copyright (c) 2017, 2022, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "utilities/bitMap.inline.hpp" #include "utilities/debug.hpp" #include "utilities/globalDefinitions.hpp" #include "unittest.hpp" typedef BitMap::idx_t idx_t; typedef BitMap::bm_word_t bm_word_t; static const idx_t BITMAP_SIZE = 1024; static const size_t search_chunk_size = 64; // Entries must be monotonically increasing. // Maximum entry must be < search_chunk_size. // Cluster values around possible word-size boundaries. static const size_t search_offsets[] = { 0, 1, 2, 29, 30, 31, 32, 33, 34, 60, 62, 63 }; static const size_t search_noffsets = ARRAY_SIZE(search_offsets); static const size_t search_nchunks = BITMAP_SIZE / search_chunk_size; STATIC_ASSERT(search_nchunks * search_chunk_size == BITMAP_SIZE); namespace { class TestIteratorFn : public BitMapClosure { public: TestIteratorFn(size_t start, size_t end, size_t left, size_t right); virtual bool do_bit(size_t offset); private: size_t _entries[2]; size_t _index; size_t _count; size_t _start; size_t _end; size_t _left; size_t _right; void do_bit_aux(size_t offset); }; } // anonymous namespace TestIteratorFn::TestIteratorFn(size_t start, size_t end, size_t left, size_t right) : _index(0), _count(0), _start(start), _end(end), _left(left), _right(right) { if ((_start <= _left) && (_left < _end)) { _entries[_count++] = _left; } if ((_start <= _right) && (_right < _end)) { _entries[_count++] = _right; } } void TestIteratorFn::do_bit_aux(size_t offset) { EXPECT_LT(_index, _count); if (_index < _count) { EXPECT_EQ(_entries[_index], offset); _index += 1; } } bool TestIteratorFn::do_bit(size_t offset) { do_bit_aux(offset); return true; } static idx_t compute_expected(idx_t search_start, idx_t search_end, idx_t left_bit, idx_t right_bit) { idx_t expected = search_end; if (search_start <= left_bit) { if (left_bit < search_end) { expected = left_bit; } } else if (search_start <= right_bit) { if (right_bit < search_end) { expected = right_bit; } } return expected; } static void test_search_ranges(BitMap& test_ones, BitMap& test_zeros, idx_t left, idx_t right) { // Test get_next_one_offset with full range of map. EXPECT_EQ(left, test_ones.get_next_one_offset(0)); EXPECT_EQ(right, test_ones.get_next_one_offset(left + 1)); EXPECT_EQ(BITMAP_SIZE, test_ones.get_next_one_offset(right + 1)); // Test get_next_one_offset_aligned_right with full range of map. EXPECT_EQ(left, test_ones.get_next_one_offset_aligned_right(0, BITMAP_SIZE)); EXPECT_EQ(right, test_ones.get_next_one_offset_aligned_right(left + 1, BITMAP_SIZE)); EXPECT_EQ(BITMAP_SIZE, test_ones.get_next_one_offset_aligned_right(right + 1, BITMAP_SIZE)); // Test get_next_zero_offset with full range of map. EXPECT_EQ(left, test_zeros.get_next_zero_offset(0)); EXPECT_EQ(right, test_zeros.get_next_zero_offset(left + 1)); EXPECT_EQ(BITMAP_SIZE, test_zeros.get_next_zero_offset(right + 1)); // Check that iterate invokes the closure function on left and right values. TestIteratorFn test_iteration(0, BITMAP_SIZE, left, right); test_ones.iterate(&test_iteration, 0, BITMAP_SIZE); // Test searches with various start and end ranges. for (size_t c_start = 0; c_start < search_nchunks; ++c_start) { for (size_t o_start = 0; o_start < search_noffsets; ++o_start) { idx_t start = c_start * search_chunk_size + search_offsets[o_start]; // Terminate start iteration if start is more than two full // chunks beyond left. There isn't anything new to learn by // continuing the iteration, and this noticably reduces the // time to run the test. if (left + 2 * search_chunk_size < start) { c_start = search_nchunks; // Set to limit to terminate iteration. break; } for (size_t c_end = c_start; c_end < search_nchunks; ++c_end) { for (size_t o_end = (c_start == c_end) ? o_start : 0; o_end < search_noffsets; ++o_end) { idx_t end = c_end * search_chunk_size + search_offsets[o_end]; // Similarly to start and left, terminate end iteration if // end is more than two full chunks beyond right. if (right + 2 * search_chunk_size < end) { c_end = search_nchunks; // Set to limit to terminate iteration. break; } // Skip this chunk if right is much larger than max(left, start) // and this chunk is one of many similar chunks in between, // again to reduce testing time. if (MAX2(start, left) + 2 * search_chunk_size < end) { if (end + 2 * search_chunk_size < right) { break; } } bool aligned_right = search_offsets[o_end] == 0; ASSERT_LE(start, end); // test bug if fail ASSERT_LT(end, BITMAP_SIZE); // test bug if fail idx_t expected = compute_expected(start, end, left, right); EXPECT_EQ(expected, test_ones.get_next_one_offset(start, end)); EXPECT_EQ(expected, test_zeros.get_next_zero_offset(start, end)); if (aligned_right) { EXPECT_EQ( expected, test_ones.get_next_one_offset_aligned_right(start, end)); } idx_t start2 = MIN2(expected + 1, end); idx_t expected2 = compute_expected(start2, end, left, right); EXPECT_EQ(expected2, test_ones.get_next_one_offset(start2, end)); EXPECT_EQ(expected2, test_zeros.get_next_zero_offset(start2, end)); if (aligned_right) { EXPECT_EQ( expected2, test_ones.get_next_one_offset_aligned_right(start2, end)); } } } } } } TEST(BitMap, search) { CHeapBitMap test_ones(BITMAP_SIZE); CHeapBitMap test_zeros(BITMAP_SIZE); // test_ones is used to test searching for 1s in a region of 0s. // test_zeros is used to test searching for 0s in a region of 1s. test_ones.clear_range(0, test_ones.size()); test_zeros.set_range(0, test_zeros.size()); // Searching "empty" sequence should return size. EXPECT_EQ(BITMAP_SIZE, test_ones.get_next_one_offset(0)); EXPECT_EQ(BITMAP_SIZE, test_zeros.get_next_zero_offset(0)); // With left being in the first or second chunk... for (size_t c_left = 0; c_left < 2; ++c_left) { // Right bit is in the same chunk as left, or next chunk, or far away... for (size_t c_right = c_left; c_right < search_nchunks; (c_right == c_left + 1) ? c_right = search_nchunks - 1 : ++c_right) { // For each offset within the left chunk... for (size_t o_left = 0; o_left < search_noffsets; ++o_left) { // left is start of left chunk + offset. idx_t left = c_left * search_chunk_size + search_offsets[o_left]; // Install the left bit. test_ones.set_bit(left); test_zeros.clear_bit(left); EXPECT_TRUE(test_ones.at(left)); EXPECT_FALSE(test_zeros.at(left)); // For each offset within the right chunk and > left... for (size_t o_right = (c_left == c_right) ? o_left + 1 : 0; o_right < search_noffsets; ++o_right) { // right is start of right chunk + offset. idx_t right = c_right * search_chunk_size + search_offsets[o_right]; // Install the right bit. test_ones.set_bit(right); test_zeros.clear_bit(right); EXPECT_TRUE(test_ones.at(right)); EXPECT_FALSE(test_zeros.at(right)); // Apply the test. test_search_ranges(test_ones, test_zeros, left, right); // Remove the right bit. test_ones.clear_bit(right); test_zeros.set_bit(right); EXPECT_FALSE(test_ones.at(right)); EXPECT_TRUE(test_zeros.at(right)); } // Remove the left bit. test_ones.clear_bit(left); test_zeros.set_bit(left); EXPECT_FALSE(test_ones.at(left)); EXPECT_TRUE(test_zeros.at(left)); } } } }