/* * Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "classfile/altHashing.hpp" #include "classfile/javaClasses.hpp" #include "gc_implementation/g1/g1CollectedHeap.inline.hpp" #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp" #include "gc_implementation/g1/g1StringDedupTable.hpp" #include "memory/gcLocker.hpp" #include "memory/padded.inline.hpp" #include "oops/typeArrayOop.hpp" #include "runtime/mutexLocker.hpp" // // Freelist in the deduplication table entry cache. Links table // entries together using their _next fields. // class G1StringDedupEntryFreeList : public CHeapObj { private: G1StringDedupEntry* _list; size_t _length; public: G1StringDedupEntryFreeList() : _list(NULL), _length(0) { } void add(G1StringDedupEntry* entry) { entry->set_next(_list); _list = entry; _length++; } G1StringDedupEntry* remove() { G1StringDedupEntry* entry = _list; if (entry != NULL) { _list = entry->next(); _length--; } return entry; } size_t length() { return _length; } }; // // Cache of deduplication table entries. This cache provides fast allocation and // reuse of table entries to lower the pressure on the underlying allocator. // But more importantly, it provides fast/deferred freeing of table entries. This // is important because freeing of table entries is done during stop-the-world // phases and it is not uncommon for large number of entries to be freed at once. // Tables entries that are freed during these phases are placed onto a freelist in // the cache. The deduplication thread, which executes in a concurrent phase, will // later reuse or free the underlying memory for these entries. // // The cache allows for single-threaded allocations and multi-threaded frees. // Allocations are synchronized by StringDedupTable_lock as part of a table // modification. // class G1StringDedupEntryCache : public CHeapObj { private: // One freelist per GC worker to allow lock less freeing of // entries while doing a parallel scan of the table. Using // PaddedEnd to avoid false sharing. PaddedEnd* _lists; size_t _nlists; public: G1StringDedupEntryCache(); ~G1StringDedupEntryCache(); // Get a table entry from the cache freelist, or allocate a new // entry if the cache is empty. G1StringDedupEntry* alloc(); // Insert a table entry into the cache freelist. void free(G1StringDedupEntry* entry, uint worker_id); // Returns current number of entries in the cache. size_t size(); // If the cache has grown above the given max size, trim it down // and deallocate the memory occupied by trimmed of entries. void trim(size_t max_size); }; G1StringDedupEntryCache::G1StringDedupEntryCache() { _nlists = MAX2(ParallelGCThreads, (size_t)1); _lists = PaddedArray::create_unfreeable((uint)_nlists); } G1StringDedupEntryCache::~G1StringDedupEntryCache() { ShouldNotReachHere(); } G1StringDedupEntry* G1StringDedupEntryCache::alloc() { for (size_t i = 0; i < _nlists; i++) { G1StringDedupEntry* entry = _lists[i].remove(); if (entry != NULL) { return entry; } } return new G1StringDedupEntry(); } void G1StringDedupEntryCache::free(G1StringDedupEntry* entry, uint worker_id) { assert(entry->obj() != NULL, "Double free"); assert(worker_id < _nlists, "Invalid worker id"); entry->set_obj(NULL); entry->set_hash(0); _lists[worker_id].add(entry); } size_t G1StringDedupEntryCache::size() { size_t size = 0; for (size_t i = 0; i < _nlists; i++) { size += _lists[i].length(); } return size; } void G1StringDedupEntryCache::trim(size_t max_size) { size_t cache_size = 0; for (size_t i = 0; i < _nlists; i++) { G1StringDedupEntryFreeList* list = &_lists[i]; cache_size += list->length(); while (cache_size > max_size) { G1StringDedupEntry* entry = list->remove(); assert(entry != NULL, "Should not be null"); cache_size--; delete entry; } } } G1StringDedupTable* G1StringDedupTable::_table = NULL; G1StringDedupEntryCache* G1StringDedupTable::_entry_cache = NULL; const size_t G1StringDedupTable::_min_size = (1 << 10); // 1024 const size_t G1StringDedupTable::_max_size = (1 << 24); // 16777216 const double G1StringDedupTable::_grow_load_factor = 2.0; // Grow table at 200% load const double G1StringDedupTable::_shrink_load_factor = _grow_load_factor / 3.0; // Shrink table at 67% load const double G1StringDedupTable::_max_cache_factor = 0.1; // Cache a maximum of 10% of the table size const uintx G1StringDedupTable::_rehash_multiple = 60; // Hash bucket has 60 times more collisions than expected const uintx G1StringDedupTable::_rehash_threshold = (uintx)(_rehash_multiple * _grow_load_factor); uintx G1StringDedupTable::_entries_added = 0; uintx G1StringDedupTable::_entries_removed = 0; uintx G1StringDedupTable::_resize_count = 0; uintx G1StringDedupTable::_rehash_count = 0; G1StringDedupTable::G1StringDedupTable(size_t size, jint hash_seed) : _size(size), _entries(0), _grow_threshold((uintx)(size * _grow_load_factor)), _shrink_threshold((uintx)(size * _shrink_load_factor)), _rehash_needed(false), _hash_seed(hash_seed) { assert(is_power_of_2(size), "Table size must be a power of 2"); _buckets = NEW_C_HEAP_ARRAY(G1StringDedupEntry*, _size, mtGC); memset(_buckets, 0, _size * sizeof(G1StringDedupEntry*)); } G1StringDedupTable::~G1StringDedupTable() { FREE_C_HEAP_ARRAY(G1StringDedupEntry*, _buckets, mtGC); } void G1StringDedupTable::create() { assert(_table == NULL, "One string deduplication table allowed"); _entry_cache = new G1StringDedupEntryCache(); _table = new G1StringDedupTable(_min_size); } void G1StringDedupTable::add(typeArrayOop value, unsigned int hash, G1StringDedupEntry** list) { G1StringDedupEntry* entry = _entry_cache->alloc(); entry->set_obj(value); entry->set_hash(hash); entry->set_next(*list); *list = entry; _entries++; } void G1StringDedupTable::remove(G1StringDedupEntry** pentry, uint worker_id) { G1StringDedupEntry* entry = *pentry; *pentry = entry->next(); _entry_cache->free(entry, worker_id); } void G1StringDedupTable::transfer(G1StringDedupEntry** pentry, G1StringDedupTable* dest) { G1StringDedupEntry* entry = *pentry; *pentry = entry->next(); unsigned int hash = entry->hash(); size_t index = dest->hash_to_index(hash); G1StringDedupEntry** list = dest->bucket(index); entry->set_next(*list); *list = entry; } bool G1StringDedupTable::equals(typeArrayOop value1, typeArrayOop value2) { return (value1 == value2 || (value1->length() == value2->length() && (!memcmp(value1->base(T_CHAR), value2->base(T_CHAR), value1->length() * sizeof(jchar))))); } typeArrayOop G1StringDedupTable::lookup(typeArrayOop value, unsigned int hash, G1StringDedupEntry** list, uintx &count) { for (G1StringDedupEntry* entry = *list; entry != NULL; entry = entry->next()) { if (entry->hash() == hash) { typeArrayOop existing_value = entry->obj(); if (equals(value, existing_value)) { // Match found return existing_value; } } count++; } // Not found return NULL; } typeArrayOop G1StringDedupTable::lookup_or_add_inner(typeArrayOop value, unsigned int hash) { size_t index = hash_to_index(hash); G1StringDedupEntry** list = bucket(index); uintx count = 0; // Lookup in list typeArrayOop existing_value = lookup(value, hash, list, count); // Check if rehash is needed if (count > _rehash_threshold) { _rehash_needed = true; } if (existing_value == NULL) { // Not found, add new entry add(value, hash, list); // Update statistics _entries_added++; } return existing_value; } unsigned int G1StringDedupTable::hash_code(typeArrayOop value) { unsigned int hash; int length = value->length(); const jchar* data = (jchar*)value->base(T_CHAR); if (use_java_hash()) { hash = java_lang_String::hash_code(data, length); } else { hash = AltHashing::murmur3_32(_table->_hash_seed, data, length); } return hash; } void G1StringDedupTable::deduplicate(oop java_string, G1StringDedupStat& stat) { assert(java_lang_String::is_instance(java_string), "Must be a string"); No_Safepoint_Verifier nsv; stat.inc_inspected(); typeArrayOop value = java_lang_String::value(java_string); if (value == NULL) { // String has no value stat.inc_skipped(); return; } unsigned int hash = 0; if (use_java_hash()) { // Get hash code from cache hash = java_lang_String::hash(java_string); } if (hash == 0) { // Compute hash hash = hash_code(value); stat.inc_hashed(); } if (use_java_hash() && hash != 0) { // Store hash code in cache java_lang_String::set_hash(java_string, hash); } typeArrayOop existing_value = lookup_or_add(value, hash); if (existing_value == value) { // Same value, already known stat.inc_known(); return; } // Get size of value array uintx size_in_bytes = value->size() * HeapWordSize; stat.inc_new(size_in_bytes); if (existing_value != NULL) { // Enqueue the reference to make sure it is kept alive. Concurrent mark might // otherwise declare it dead if there are no other strong references to this object. G1SATBCardTableModRefBS::enqueue(existing_value); // Existing value found, deduplicate string java_lang_String::set_value(java_string, existing_value); if (G1CollectedHeap::heap()->is_in_young(value)) { stat.inc_deduped_young(size_in_bytes); } else { stat.inc_deduped_old(size_in_bytes); } } } G1StringDedupTable* G1StringDedupTable::prepare_resize() { size_t size = _table->_size; // Check if the hashtable needs to be resized if (_table->_entries > _table->_grow_threshold) { // Grow table, double the size size *= 2; if (size > _max_size) { // Too big, don't resize return NULL; } } else if (_table->_entries < _table->_shrink_threshold) { // Shrink table, half the size size /= 2; if (size < _min_size) { // Too small, don't resize return NULL; } } else if (StringDeduplicationResizeALot) { // Force grow size *= 2; if (size > _max_size) { // Too big, force shrink instead size /= 4; } } else { // Resize not needed return NULL; } // Update statistics _resize_count++; // Allocate the new table. The new table will be populated by workers // calling unlink_or_oops_do() and finally installed by finish_resize(). return new G1StringDedupTable(size, _table->_hash_seed); } void G1StringDedupTable::finish_resize(G1StringDedupTable* resized_table) { assert(resized_table != NULL, "Invalid table"); resized_table->_entries = _table->_entries; // Free old table delete _table; // Install new table _table = resized_table; } void G1StringDedupTable::unlink_or_oops_do(G1StringDedupUnlinkOrOopsDoClosure* cl, uint worker_id) { // The table is divided into partitions to allow lock-less parallel processing by // multiple worker threads. A worker thread first claims a partition, which ensures // exclusive access to that part of the table, then continues to process it. To allow // shrinking of the table in parallel we also need to make sure that the same worker // thread processes all partitions where entries will hash to the same destination // partition. Since the table size is always a power of two and we always shrink by // dividing the table in half, we know that for a given partition there is only one // other partition whoes entries will hash to the same destination partition. That // other partition is always the sibling partition in the second half of the table. // For example, if the table is divided into 8 partitions, the sibling of partition 0 // is partition 4, the sibling of partition 1 is partition 5, etc. size_t table_half = _table->_size / 2; // Let each partition be one page worth of buckets size_t partition_size = MIN2(table_half, os::vm_page_size() / sizeof(G1StringDedupEntry*)); assert(table_half % partition_size == 0, "Invalid partition size"); // Number of entries removed during the scan uintx removed = 0; for (;;) { // Grab next partition to scan size_t partition_begin = cl->claim_table_partition(partition_size); size_t partition_end = partition_begin + partition_size; if (partition_begin >= table_half) { // End of table break; } // Scan the partition followed by the sibling partition in the second half of the table removed += unlink_or_oops_do(cl, partition_begin, partition_end, worker_id); removed += unlink_or_oops_do(cl, table_half + partition_begin, table_half + partition_end, worker_id); } // Delayed update avoid contention on the table lock if (removed > 0) { MutexLockerEx ml(StringDedupTable_lock, Mutex::_no_safepoint_check_flag); _table->_entries -= removed; _entries_removed += removed; } } uintx G1StringDedupTable::unlink_or_oops_do(G1StringDedupUnlinkOrOopsDoClosure* cl, size_t partition_begin, size_t partition_end, uint worker_id) { uintx removed = 0; for (size_t bucket = partition_begin; bucket < partition_end; bucket++) { G1StringDedupEntry** entry = _table->bucket(bucket); while (*entry != NULL) { oop* p = (oop*)(*entry)->obj_addr(); if (cl->is_alive(*p)) { cl->keep_alive(p); if (cl->is_resizing()) { // We are resizing the table, transfer entry to the new table _table->transfer(entry, cl->resized_table()); } else { if (cl->is_rehashing()) { // We are rehashing the table, rehash the entry but keep it // in the table. We can't transfer entries into the new table // at this point since we don't have exclusive access to all // destination partitions. finish_rehash() will do a single // threaded transfer of all entries. typeArrayOop value = (typeArrayOop)*p; unsigned int hash = hash_code(value); (*entry)->set_hash(hash); } // Move to next entry entry = (*entry)->next_addr(); } } else { // Not alive, remove entry from table _table->remove(entry, worker_id); removed++; } } } return removed; } G1StringDedupTable* G1StringDedupTable::prepare_rehash() { if (!_table->_rehash_needed && !StringDeduplicationRehashALot) { // Rehash not needed return NULL; } // Update statistics _rehash_count++; // Compute new hash seed _table->_hash_seed = AltHashing::compute_seed(); // Allocate the new table, same size and hash seed return new G1StringDedupTable(_table->_size, _table->_hash_seed); } void G1StringDedupTable::finish_rehash(G1StringDedupTable* rehashed_table) { assert(rehashed_table != NULL, "Invalid table"); // Move all newly rehashed entries into the correct buckets in the new table for (size_t bucket = 0; bucket < _table->_size; bucket++) { G1StringDedupEntry** entry = _table->bucket(bucket); while (*entry != NULL) { _table->transfer(entry, rehashed_table); } } rehashed_table->_entries = _table->_entries; // Free old table delete _table; // Install new table _table = rehashed_table; } void G1StringDedupTable::verify() { for (size_t bucket = 0; bucket < _table->_size; bucket++) { // Verify entries G1StringDedupEntry** entry = _table->bucket(bucket); while (*entry != NULL) { typeArrayOop value = (*entry)->obj(); guarantee(value != NULL, "Object must not be NULL"); guarantee(Universe::heap()->is_in_reserved(value), "Object must be on the heap"); guarantee(!value->is_forwarded(), "Object must not be forwarded"); guarantee(value->is_typeArray(), "Object must be a typeArrayOop"); unsigned int hash = hash_code(value); guarantee((*entry)->hash() == hash, "Table entry has inorrect hash"); guarantee(_table->hash_to_index(hash) == bucket, "Table entry has incorrect index"); entry = (*entry)->next_addr(); } // Verify that we do not have entries with identical oops or identical arrays. // We only need to compare entries in the same bucket. If the same oop or an // identical array has been inserted more than once into different/incorrect // buckets the verification step above will catch that. G1StringDedupEntry** entry1 = _table->bucket(bucket); while (*entry1 != NULL) { typeArrayOop value1 = (*entry1)->obj(); G1StringDedupEntry** entry2 = (*entry1)->next_addr(); while (*entry2 != NULL) { typeArrayOop value2 = (*entry2)->obj(); guarantee(!equals(value1, value2), "Table entries must not have identical arrays"); entry2 = (*entry2)->next_addr(); } entry1 = (*entry1)->next_addr(); } } } void G1StringDedupTable::trim_entry_cache() { MutexLockerEx ml(StringDedupTable_lock, Mutex::_no_safepoint_check_flag); size_t max_cache_size = (size_t)(_table->_size * _max_cache_factor); _entry_cache->trim(max_cache_size); } void G1StringDedupTable::print_statistics(outputStream* st) { st->print_cr( " [Table]\n" " [Memory Usage: "G1_STRDEDUP_BYTES_FORMAT_NS"]\n" " [Size: "SIZE_FORMAT", Min: "SIZE_FORMAT", Max: "SIZE_FORMAT"]\n" " [Entries: "UINTX_FORMAT", Load: "G1_STRDEDUP_PERCENT_FORMAT_NS", Cached: " UINTX_FORMAT ", Added: "UINTX_FORMAT", Removed: "UINTX_FORMAT"]\n" " [Resize Count: "UINTX_FORMAT", Shrink Threshold: "UINTX_FORMAT"("G1_STRDEDUP_PERCENT_FORMAT_NS"), Grow Threshold: "UINTX_FORMAT"("G1_STRDEDUP_PERCENT_FORMAT_NS")]\n" " [Rehash Count: "UINTX_FORMAT", Rehash Threshold: "UINTX_FORMAT", Hash Seed: 0x%x]\n" " [Age Threshold: "UINTX_FORMAT"]", G1_STRDEDUP_BYTES_PARAM(_table->_size * sizeof(G1StringDedupEntry*) + (_table->_entries + _entry_cache->size()) * sizeof(G1StringDedupEntry)), _table->_size, _min_size, _max_size, _table->_entries, (double)_table->_entries / (double)_table->_size * 100.0, _entry_cache->size(), _entries_added, _entries_removed, _resize_count, _table->_shrink_threshold, _shrink_load_factor * 100.0, _table->_grow_threshold, _grow_load_factor * 100.0, _rehash_count, _rehash_threshold, _table->_hash_seed, StringDeduplicationAgeThreshold); }