/* * Copyright (c) 2013, 2016, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "gc/g1/concurrentG1Refine.hpp" #include "gc/g1/g1CollectedHeap.inline.hpp" #include "gc/g1/g1GCPhaseTimes.hpp" #include "gc/g1/g1StringDedup.hpp" #include "gc/g1/workerDataArray.inline.hpp" #include "memory/resourceArea.hpp" #include "logging/log.hpp" #include "runtime/timer.hpp" #include "runtime/os.hpp" static const char* Indents[5] = {"", " ", " ", " ", " "}; G1GCPhaseTimes::G1GCPhaseTimes(uint max_gc_threads) : _max_gc_threads(max_gc_threads) { assert(max_gc_threads > 0, "Must have some GC threads"); _gc_par_phases[GCWorkerStart] = new WorkerDataArray(max_gc_threads, "GC Worker Start (ms):"); _gc_par_phases[ExtRootScan] = new WorkerDataArray(max_gc_threads, "Ext Root Scanning (ms):"); // Root scanning phases _gc_par_phases[ThreadRoots] = new WorkerDataArray(max_gc_threads, "Thread Roots (ms):"); _gc_par_phases[StringTableRoots] = new WorkerDataArray(max_gc_threads, "StringTable Roots (ms):"); _gc_par_phases[UniverseRoots] = new WorkerDataArray(max_gc_threads, "Universe Roots (ms):"); _gc_par_phases[JNIRoots] = new WorkerDataArray(max_gc_threads, "JNI Handles Roots (ms):"); _gc_par_phases[ObjectSynchronizerRoots] = new WorkerDataArray(max_gc_threads, "ObjectSynchronizer Roots (ms):"); _gc_par_phases[FlatProfilerRoots] = new WorkerDataArray(max_gc_threads, "FlatProfiler Roots (ms):"); _gc_par_phases[ManagementRoots] = new WorkerDataArray(max_gc_threads, "Management Roots (ms):"); _gc_par_phases[SystemDictionaryRoots] = new WorkerDataArray(max_gc_threads, "SystemDictionary Roots (ms):"); _gc_par_phases[CLDGRoots] = new WorkerDataArray(max_gc_threads, "CLDG Roots (ms):"); _gc_par_phases[JVMTIRoots] = new WorkerDataArray(max_gc_threads, "JVMTI Roots (ms):"); _gc_par_phases[CMRefRoots] = new WorkerDataArray(max_gc_threads, "CM RefProcessor Roots (ms):"); _gc_par_phases[WaitForStrongCLD] = new WorkerDataArray(max_gc_threads, "Wait For Strong CLD (ms):"); _gc_par_phases[WeakCLDRoots] = new WorkerDataArray(max_gc_threads, "Weak CLD Roots (ms):"); _gc_par_phases[SATBFiltering] = new WorkerDataArray(max_gc_threads, "SATB Filtering (ms):"); _gc_par_phases[UpdateRS] = new WorkerDataArray(max_gc_threads, "Update RS (ms):"); if (ConcurrentG1Refine::hot_card_cache_enabled()) { _gc_par_phases[ScanHCC] = new WorkerDataArray(max_gc_threads, "Scan HCC (ms):"); } else { _gc_par_phases[ScanHCC] = NULL; } _gc_par_phases[ScanRS] = new WorkerDataArray(max_gc_threads, "Scan RS (ms):"); _gc_par_phases[CodeRoots] = new WorkerDataArray(max_gc_threads, "Code Root Scanning (ms):"); _gc_par_phases[ObjCopy] = new WorkerDataArray(max_gc_threads, "Object Copy (ms):"); _gc_par_phases[Termination] = new WorkerDataArray(max_gc_threads, "Termination (ms):"); _gc_par_phases[GCWorkerTotal] = new WorkerDataArray(max_gc_threads, "GC Worker Total (ms):"); _gc_par_phases[GCWorkerEnd] = new WorkerDataArray(max_gc_threads, "GC Worker End (ms):"); _gc_par_phases[Other] = new WorkerDataArray(max_gc_threads, "GC Worker Other (ms):"); _update_rs_processed_buffers = new WorkerDataArray(max_gc_threads, "Processed Buffers:"); _gc_par_phases[UpdateRS]->link_thread_work_items(_update_rs_processed_buffers); _termination_attempts = new WorkerDataArray(max_gc_threads, "Termination Attempts:"); _gc_par_phases[Termination]->link_thread_work_items(_termination_attempts); if (UseStringDeduplication) { _gc_par_phases[StringDedupQueueFixup] = new WorkerDataArray(max_gc_threads, "Queue Fixup (ms):"); _gc_par_phases[StringDedupTableFixup] = new WorkerDataArray(max_gc_threads, "Table Fixup (ms):"); } else { _gc_par_phases[StringDedupQueueFixup] = NULL; _gc_par_phases[StringDedupTableFixup] = NULL; } _gc_par_phases[RedirtyCards] = new WorkerDataArray(max_gc_threads, "Parallel Redirty (ms):"); _redirtied_cards = new WorkerDataArray(max_gc_threads, "Redirtied Cards:"); _gc_par_phases[RedirtyCards]->link_thread_work_items(_redirtied_cards); _gc_par_phases[PreserveCMReferents] = new WorkerDataArray(max_gc_threads, "Parallel Preserve CM Refs (ms):"); } void G1GCPhaseTimes::note_gc_start() { _gc_start_counter = os::elapsed_counter(); _cur_expand_heap_time_ms = 0.0; _external_accounted_time_ms = 0.0; for (int i = 0; i < GCParPhasesSentinel; i++) { if (_gc_par_phases[i] != NULL) { _gc_par_phases[i]->reset(); } } } #define ASSERT_PHASE_UNINITIALIZED(phase) \ assert(_gc_par_phases[phase]->get(i) == uninitialized, "Phase " #phase " reported for thread that was not started"); double G1GCPhaseTimes::worker_time(GCParPhases phase, uint worker) { double value = _gc_par_phases[phase]->get(worker); if (value != WorkerDataArray::uninitialized()) { return value; } return 0.0; } void G1GCPhaseTimes::note_gc_end() { _gc_pause_time_ms = TimeHelper::counter_to_millis(os::elapsed_counter() - _gc_start_counter); double uninitialized = WorkerDataArray::uninitialized(); for (uint i = 0; i < _max_gc_threads; i++) { double worker_start = _gc_par_phases[GCWorkerStart]->get(i); if (worker_start != uninitialized) { assert(_gc_par_phases[GCWorkerEnd]->get(i) != uninitialized, "Worker started but not ended."); double total_worker_time = _gc_par_phases[GCWorkerEnd]->get(i) - _gc_par_phases[GCWorkerStart]->get(i); record_time_secs(GCWorkerTotal, i , total_worker_time); double worker_known_time = worker_time(ExtRootScan, i) + worker_time(SATBFiltering, i) + worker_time(UpdateRS, i) + worker_time(ScanRS, i) + worker_time(CodeRoots, i) + worker_time(ObjCopy, i) + worker_time(Termination, i); record_time_secs(Other, i, total_worker_time - worker_known_time); } else { // Make sure all slots are uninitialized since this thread did not seem to have been started ASSERT_PHASE_UNINITIALIZED(GCWorkerEnd); ASSERT_PHASE_UNINITIALIZED(ExtRootScan); ASSERT_PHASE_UNINITIALIZED(SATBFiltering); ASSERT_PHASE_UNINITIALIZED(UpdateRS); ASSERT_PHASE_UNINITIALIZED(ScanRS); ASSERT_PHASE_UNINITIALIZED(CodeRoots); ASSERT_PHASE_UNINITIALIZED(ObjCopy); ASSERT_PHASE_UNINITIALIZED(Termination); } } } #undef ASSERT_PHASE_UNINITIALIZED // record the time a phase took in seconds void G1GCPhaseTimes::record_time_secs(GCParPhases phase, uint worker_i, double secs) { _gc_par_phases[phase]->set(worker_i, secs); } // add a number of seconds to a phase void G1GCPhaseTimes::add_time_secs(GCParPhases phase, uint worker_i, double secs) { _gc_par_phases[phase]->add(worker_i, secs); } void G1GCPhaseTimes::record_thread_work_item(GCParPhases phase, uint worker_i, size_t count) { _gc_par_phases[phase]->set_thread_work_item(worker_i, count); } // return the average time for a phase in milliseconds double G1GCPhaseTimes::average_time_ms(GCParPhases phase) { return _gc_par_phases[phase]->average() * 1000.0; } size_t G1GCPhaseTimes::sum_thread_work_items(GCParPhases phase) { assert(_gc_par_phases[phase]->thread_work_items() != NULL, "No sub count"); return _gc_par_phases[phase]->thread_work_items()->sum(); } template void G1GCPhaseTimes::details(T* phase, const char* indent) { LogHandle(gc, phases, task) log; if (log.is_level(LogLevel::Trace)) { outputStream* trace_out = log.trace_stream(); trace_out->print("%s", indent); phase->print_details_on(trace_out); } } void G1GCPhaseTimes::log_phase(WorkerDataArray* phase, uint indent, outputStream* out, bool print_sum) { out->print("%s", Indents[indent]); phase->print_summary_on(out, print_sum); details(phase, Indents[indent]); WorkerDataArray* work_items = phase->thread_work_items(); if (work_items != NULL) { out->print("%s", Indents[indent + 1]); work_items->print_summary_on(out, true); details(work_items, Indents[indent + 1]); } } void G1GCPhaseTimes::debug_phase(WorkerDataArray* phase) { LogHandle(gc, phases) log; if (log.is_level(LogLevel::Debug)) { ResourceMark rm; log_phase(phase, 2, log.debug_stream(), true); } } void G1GCPhaseTimes::trace_phase(WorkerDataArray* phase, bool print_sum) { LogHandle(gc, phases) log; if (log.is_level(LogLevel::Trace)) { ResourceMark rm; log_phase(phase, 3, log.trace_stream(), print_sum); } } #define PHASE_DOUBLE_FORMAT "%s%s: %.1lfms" #define PHASE_SIZE_FORMAT "%s%s: " SIZE_FORMAT #define info_line(str, value) \ log_info(gc, phases)(PHASE_DOUBLE_FORMAT, Indents[1], str, value); #define debug_line(str, value) \ log_debug(gc, phases)(PHASE_DOUBLE_FORMAT, Indents[2], str, value); #define trace_line(str, value) \ log_trace(gc, phases)(PHASE_DOUBLE_FORMAT, Indents[3], str, value); #define trace_line_sz(str, value) \ log_trace(gc, phases)(PHASE_SIZE_FORMAT, Indents[3], str, value); #define trace_line_ms(str, value) \ log_trace(gc, phases)(PHASE_SIZE_FORMAT, Indents[3], str, value); #define info_line_and_account(str, value) \ info_line(str, value); \ accounted_time_ms += value; void G1GCPhaseTimes::print() { note_gc_end(); double accounted_time_ms = _external_accounted_time_ms; if (_root_region_scan_wait_time_ms > 0.0) { info_line_and_account("Root Region Scan Waiting", _root_region_scan_wait_time_ms); } info_line_and_account("Evacuate Collection Set", _cur_collection_par_time_ms); trace_phase(_gc_par_phases[GCWorkerStart], false); debug_phase(_gc_par_phases[ExtRootScan]); for (int i = ThreadRoots; i <= SATBFiltering; i++) { trace_phase(_gc_par_phases[i]); } debug_phase(_gc_par_phases[UpdateRS]); if (ConcurrentG1Refine::hot_card_cache_enabled()) { trace_phase(_gc_par_phases[ScanHCC]); } debug_phase(_gc_par_phases[ScanRS]); debug_phase(_gc_par_phases[CodeRoots]); debug_phase(_gc_par_phases[ObjCopy]); debug_phase(_gc_par_phases[Termination]); debug_phase(_gc_par_phases[Other]); debug_phase(_gc_par_phases[GCWorkerTotal]); trace_phase(_gc_par_phases[GCWorkerEnd], false); info_line_and_account("Code Roots", _cur_collection_code_root_fixup_time_ms + _cur_strong_code_root_purge_time_ms); debug_line("Code Roots Fixup", _cur_collection_code_root_fixup_time_ms); debug_line("Code Roots Purge", _cur_strong_code_root_purge_time_ms); if (G1StringDedup::is_enabled()) { info_line_and_account("String Dedup Fixup", _cur_string_dedup_fixup_time_ms); debug_phase(_gc_par_phases[StringDedupQueueFixup]); debug_phase(_gc_par_phases[StringDedupTableFixup]); } info_line_and_account("Clear Card Table", _cur_clear_ct_time_ms); info_line_and_account("Expand Heap After Collection", _cur_expand_heap_time_ms); double free_cset_time = _recorded_young_free_cset_time_ms + _recorded_non_young_free_cset_time_ms; info_line_and_account("Free Collection Set", free_cset_time); debug_line("Young Free Collection Set", _recorded_young_free_cset_time_ms); debug_line("Non-Young Free Collection Set", _recorded_non_young_free_cset_time_ms); info_line_and_account("Merge Per-Thread State", _recorded_merge_pss_time_ms); info_line("Other", _gc_pause_time_ms - accounted_time_ms); if (_cur_verify_before_time_ms > 0.0) { debug_line("Verify Before", _cur_verify_before_time_ms); } if (G1CollectedHeap::heap()->evacuation_failed()) { double evac_fail_handling = _cur_evac_fail_recalc_used + _cur_evac_fail_remove_self_forwards + _cur_evac_fail_restore_remsets; debug_line("Evacuation Failure", evac_fail_handling); trace_line("Recalculate Used", _cur_evac_fail_recalc_used); trace_line("Remove Self Forwards",_cur_evac_fail_remove_self_forwards); trace_line("Restore RemSet", _cur_evac_fail_restore_remsets); } debug_line("Choose CSet", (_recorded_young_cset_choice_time_ms + _recorded_non_young_cset_choice_time_ms)); debug_line("Preserve CM Refs", _recorded_preserve_cm_referents_time_ms); trace_phase(_gc_par_phases[PreserveCMReferents]); debug_line("Reference Processing", _cur_ref_proc_time_ms); debug_line("Reference Enqueuing", _cur_ref_enq_time_ms); debug_line("Redirty Cards", _recorded_redirty_logged_cards_time_ms); trace_phase(_gc_par_phases[RedirtyCards]); if (G1EagerReclaimHumongousObjects) { debug_line("Humongous Register", _cur_fast_reclaim_humongous_register_time_ms); trace_line_sz("Humongous Total", _cur_fast_reclaim_humongous_total); trace_line_sz("Humongous Candidate", _cur_fast_reclaim_humongous_candidates); debug_line("Humongous Reclaim", _cur_fast_reclaim_humongous_time_ms); trace_line_sz("Humongous Reclaimed", _cur_fast_reclaim_humongous_reclaimed); } if (_cur_verify_after_time_ms > 0.0) { debug_line("Verify After", _cur_verify_after_time_ms); } } G1GCParPhaseTimesTracker::G1GCParPhaseTimesTracker(G1GCPhaseTimes* phase_times, G1GCPhaseTimes::GCParPhases phase, uint worker_id) : _phase_times(phase_times), _phase(phase), _worker_id(worker_id) { if (_phase_times != NULL) { _start_time = os::elapsedTime(); } } G1GCParPhaseTimesTracker::~G1GCParPhaseTimesTracker() { if (_phase_times != NULL) { _phase_times->record_time_secs(_phase, _worker_id, os::elapsedTime() - _start_time); } }