832 lines
32 KiB
C++
832 lines
32 KiB
C++
/*
|
|
* Copyright 1998-2009 Sun Microsystems, Inc. All Rights Reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
|
* CA 95054 USA or visit www.sun.com if you need additional information or
|
|
* have any questions.
|
|
*
|
|
*/
|
|
|
|
#include "incls/_precompiled.incl"
|
|
#include "incls/_ifg.cpp.incl"
|
|
|
|
#define EXACT_PRESSURE 1
|
|
|
|
//=============================================================================
|
|
//------------------------------IFG--------------------------------------------
|
|
PhaseIFG::PhaseIFG( Arena *arena ) : Phase(Interference_Graph), _arena(arena) {
|
|
}
|
|
|
|
//------------------------------init-------------------------------------------
|
|
void PhaseIFG::init( uint maxlrg ) {
|
|
_maxlrg = maxlrg;
|
|
_yanked = new (_arena) VectorSet(_arena);
|
|
_is_square = false;
|
|
// Make uninitialized adjacency lists
|
|
_adjs = (IndexSet*)_arena->Amalloc(sizeof(IndexSet)*maxlrg);
|
|
// Also make empty live range structures
|
|
_lrgs = (LRG *)_arena->Amalloc( maxlrg * sizeof(LRG) );
|
|
memset(_lrgs,0,sizeof(LRG)*maxlrg);
|
|
// Init all to empty
|
|
for( uint i = 0; i < maxlrg; i++ ) {
|
|
_adjs[i].initialize(maxlrg);
|
|
_lrgs[i].Set_All();
|
|
}
|
|
}
|
|
|
|
//------------------------------add--------------------------------------------
|
|
// Add edge between vertices a & b. These are sorted (triangular matrix),
|
|
// then the smaller number is inserted in the larger numbered array.
|
|
int PhaseIFG::add_edge( uint a, uint b ) {
|
|
lrgs(a).invalid_degree();
|
|
lrgs(b).invalid_degree();
|
|
// Sort a and b, so that a is bigger
|
|
assert( !_is_square, "only on triangular" );
|
|
if( a < b ) { uint tmp = a; a = b; b = tmp; }
|
|
return _adjs[a].insert( b );
|
|
}
|
|
|
|
//------------------------------add_vector-------------------------------------
|
|
// Add an edge between 'a' and everything in the vector.
|
|
void PhaseIFG::add_vector( uint a, IndexSet *vec ) {
|
|
// IFG is triangular, so do the inserts where 'a' < 'b'.
|
|
assert( !_is_square, "only on triangular" );
|
|
IndexSet *adjs_a = &_adjs[a];
|
|
if( !vec->count() ) return;
|
|
|
|
IndexSetIterator elements(vec);
|
|
uint neighbor;
|
|
while ((neighbor = elements.next()) != 0) {
|
|
add_edge( a, neighbor );
|
|
}
|
|
}
|
|
|
|
//------------------------------test-------------------------------------------
|
|
// Is there an edge between a and b?
|
|
int PhaseIFG::test_edge( uint a, uint b ) const {
|
|
// Sort a and b, so that a is larger
|
|
assert( !_is_square, "only on triangular" );
|
|
if( a < b ) { uint tmp = a; a = b; b = tmp; }
|
|
return _adjs[a].member(b);
|
|
}
|
|
|
|
//------------------------------SquareUp---------------------------------------
|
|
// Convert triangular matrix to square matrix
|
|
void PhaseIFG::SquareUp() {
|
|
assert( !_is_square, "only on triangular" );
|
|
|
|
// Simple transpose
|
|
for( uint i = 0; i < _maxlrg; i++ ) {
|
|
IndexSetIterator elements(&_adjs[i]);
|
|
uint datum;
|
|
while ((datum = elements.next()) != 0) {
|
|
_adjs[datum].insert( i );
|
|
}
|
|
}
|
|
_is_square = true;
|
|
}
|
|
|
|
//------------------------------Compute_Effective_Degree-----------------------
|
|
// Compute effective degree in bulk
|
|
void PhaseIFG::Compute_Effective_Degree() {
|
|
assert( _is_square, "only on square" );
|
|
|
|
for( uint i = 0; i < _maxlrg; i++ )
|
|
lrgs(i).set_degree(effective_degree(i));
|
|
}
|
|
|
|
//------------------------------test_edge_sq-----------------------------------
|
|
int PhaseIFG::test_edge_sq( uint a, uint b ) const {
|
|
assert( _is_square, "only on square" );
|
|
// Swap, so that 'a' has the lesser count. Then binary search is on
|
|
// the smaller of a's list and b's list.
|
|
if( neighbor_cnt(a) > neighbor_cnt(b) ) { uint tmp = a; a = b; b = tmp; }
|
|
//return _adjs[a].unordered_member(b);
|
|
return _adjs[a].member(b);
|
|
}
|
|
|
|
//------------------------------Union------------------------------------------
|
|
// Union edges of B into A
|
|
void PhaseIFG::Union( uint a, uint b ) {
|
|
assert( _is_square, "only on square" );
|
|
IndexSet *A = &_adjs[a];
|
|
IndexSetIterator b_elements(&_adjs[b]);
|
|
uint datum;
|
|
while ((datum = b_elements.next()) != 0) {
|
|
if(A->insert(datum)) {
|
|
_adjs[datum].insert(a);
|
|
lrgs(a).invalid_degree();
|
|
lrgs(datum).invalid_degree();
|
|
}
|
|
}
|
|
}
|
|
|
|
//------------------------------remove_node------------------------------------
|
|
// Yank a Node and all connected edges from the IFG. Return a
|
|
// list of neighbors (edges) yanked.
|
|
IndexSet *PhaseIFG::remove_node( uint a ) {
|
|
assert( _is_square, "only on square" );
|
|
assert( !_yanked->test(a), "" );
|
|
_yanked->set(a);
|
|
|
|
// I remove the LRG from all neighbors.
|
|
IndexSetIterator elements(&_adjs[a]);
|
|
LRG &lrg_a = lrgs(a);
|
|
uint datum;
|
|
while ((datum = elements.next()) != 0) {
|
|
_adjs[datum].remove(a);
|
|
lrgs(datum).inc_degree( -lrg_a.compute_degree(lrgs(datum)) );
|
|
}
|
|
return neighbors(a);
|
|
}
|
|
|
|
//------------------------------re_insert--------------------------------------
|
|
// Re-insert a yanked Node.
|
|
void PhaseIFG::re_insert( uint a ) {
|
|
assert( _is_square, "only on square" );
|
|
assert( _yanked->test(a), "" );
|
|
(*_yanked) >>= a;
|
|
|
|
IndexSetIterator elements(&_adjs[a]);
|
|
uint datum;
|
|
while ((datum = elements.next()) != 0) {
|
|
_adjs[datum].insert(a);
|
|
lrgs(datum).invalid_degree();
|
|
}
|
|
}
|
|
|
|
//------------------------------compute_degree---------------------------------
|
|
// Compute the degree between 2 live ranges. If both live ranges are
|
|
// aligned-adjacent powers-of-2 then we use the MAX size. If either is
|
|
// mis-aligned (or for Fat-Projections, not-adjacent) then we have to
|
|
// MULTIPLY the sizes. Inspect Brigg's thesis on register pairs to see why
|
|
// this is so.
|
|
int LRG::compute_degree( LRG &l ) const {
|
|
int tmp;
|
|
int num_regs = _num_regs;
|
|
int nregs = l.num_regs();
|
|
tmp = (_fat_proj || l._fat_proj) // either is a fat-proj?
|
|
? (num_regs * nregs) // then use product
|
|
: MAX2(num_regs,nregs); // else use max
|
|
return tmp;
|
|
}
|
|
|
|
//------------------------------effective_degree-------------------------------
|
|
// Compute effective degree for this live range. If both live ranges are
|
|
// aligned-adjacent powers-of-2 then we use the MAX size. If either is
|
|
// mis-aligned (or for Fat-Projections, not-adjacent) then we have to
|
|
// MULTIPLY the sizes. Inspect Brigg's thesis on register pairs to see why
|
|
// this is so.
|
|
int PhaseIFG::effective_degree( uint lidx ) const {
|
|
int eff = 0;
|
|
int num_regs = lrgs(lidx).num_regs();
|
|
int fat_proj = lrgs(lidx)._fat_proj;
|
|
IndexSet *s = neighbors(lidx);
|
|
IndexSetIterator elements(s);
|
|
uint nidx;
|
|
while((nidx = elements.next()) != 0) {
|
|
LRG &lrgn = lrgs(nidx);
|
|
int nregs = lrgn.num_regs();
|
|
eff += (fat_proj || lrgn._fat_proj) // either is a fat-proj?
|
|
? (num_regs * nregs) // then use product
|
|
: MAX2(num_regs,nregs); // else use max
|
|
}
|
|
return eff;
|
|
}
|
|
|
|
|
|
#ifndef PRODUCT
|
|
//------------------------------dump-------------------------------------------
|
|
void PhaseIFG::dump() const {
|
|
tty->print_cr("-- Interference Graph --%s--",
|
|
_is_square ? "square" : "triangular" );
|
|
if( _is_square ) {
|
|
for( uint i = 0; i < _maxlrg; i++ ) {
|
|
tty->print( (*_yanked)[i] ? "XX " : " ");
|
|
tty->print("L%d: { ",i);
|
|
IndexSetIterator elements(&_adjs[i]);
|
|
uint datum;
|
|
while ((datum = elements.next()) != 0) {
|
|
tty->print("L%d ", datum);
|
|
}
|
|
tty->print_cr("}");
|
|
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Triangular
|
|
for( uint i = 0; i < _maxlrg; i++ ) {
|
|
uint j;
|
|
tty->print( (*_yanked)[i] ? "XX " : " ");
|
|
tty->print("L%d: { ",i);
|
|
for( j = _maxlrg; j > i; j-- )
|
|
if( test_edge(j - 1,i) ) {
|
|
tty->print("L%d ",j - 1);
|
|
}
|
|
tty->print("| ");
|
|
IndexSetIterator elements(&_adjs[i]);
|
|
uint datum;
|
|
while ((datum = elements.next()) != 0) {
|
|
tty->print("L%d ", datum);
|
|
}
|
|
tty->print("}\n");
|
|
}
|
|
tty->print("\n");
|
|
}
|
|
|
|
//------------------------------stats------------------------------------------
|
|
void PhaseIFG::stats() const {
|
|
ResourceMark rm;
|
|
int *h_cnt = NEW_RESOURCE_ARRAY(int,_maxlrg*2);
|
|
memset( h_cnt, 0, sizeof(int)*_maxlrg*2 );
|
|
uint i;
|
|
for( i = 0; i < _maxlrg; i++ ) {
|
|
h_cnt[neighbor_cnt(i)]++;
|
|
}
|
|
tty->print_cr("--Histogram of counts--");
|
|
for( i = 0; i < _maxlrg*2; i++ )
|
|
if( h_cnt[i] )
|
|
tty->print("%d/%d ",i,h_cnt[i]);
|
|
tty->print_cr("");
|
|
}
|
|
|
|
//------------------------------verify-----------------------------------------
|
|
void PhaseIFG::verify( const PhaseChaitin *pc ) const {
|
|
// IFG is square, sorted and no need for Find
|
|
for( uint i = 0; i < _maxlrg; i++ ) {
|
|
assert(!((*_yanked)[i]) || !neighbor_cnt(i), "Is removed completely" );
|
|
IndexSet *set = &_adjs[i];
|
|
IndexSetIterator elements(set);
|
|
uint idx;
|
|
uint last = 0;
|
|
while ((idx = elements.next()) != 0) {
|
|
assert( idx != i, "Must have empty diagonal");
|
|
assert( pc->Find_const(idx) == idx, "Must not need Find" );
|
|
assert( _adjs[idx].member(i), "IFG not square" );
|
|
assert( !(*_yanked)[idx], "No yanked neighbors" );
|
|
assert( last < idx, "not sorted increasing");
|
|
last = idx;
|
|
}
|
|
assert( !lrgs(i)._degree_valid ||
|
|
effective_degree(i) == lrgs(i).degree(), "degree is valid but wrong" );
|
|
}
|
|
}
|
|
#endif
|
|
|
|
//------------------------------interfere_with_live----------------------------
|
|
// Interfere this register with everything currently live. Use the RegMasks
|
|
// to trim the set of possible interferences. Return a count of register-only
|
|
// interferences as an estimate of register pressure.
|
|
void PhaseChaitin::interfere_with_live( uint r, IndexSet *liveout ) {
|
|
uint retval = 0;
|
|
// Interfere with everything live.
|
|
const RegMask &rm = lrgs(r).mask();
|
|
// Check for interference by checking overlap of regmasks.
|
|
// Only interfere if acceptable register masks overlap.
|
|
IndexSetIterator elements(liveout);
|
|
uint l;
|
|
while( (l = elements.next()) != 0 )
|
|
if( rm.overlap( lrgs(l).mask() ) )
|
|
_ifg->add_edge( r, l );
|
|
}
|
|
|
|
//------------------------------build_ifg_virtual------------------------------
|
|
// Actually build the interference graph. Uses virtual registers only, no
|
|
// physical register masks. This allows me to be very aggressive when
|
|
// coalescing copies. Some of this aggressiveness will have to be undone
|
|
// later, but I'd rather get all the copies I can now (since unremoved copies
|
|
// at this point can end up in bad places). Copies I re-insert later I have
|
|
// more opportunity to insert them in low-frequency locations.
|
|
void PhaseChaitin::build_ifg_virtual( ) {
|
|
|
|
// For all blocks (in any order) do...
|
|
for( uint i=0; i<_cfg._num_blocks; i++ ) {
|
|
Block *b = _cfg._blocks[i];
|
|
IndexSet *liveout = _live->live(b);
|
|
|
|
// The IFG is built by a single reverse pass over each basic block.
|
|
// Starting with the known live-out set, we remove things that get
|
|
// defined and add things that become live (essentially executing one
|
|
// pass of a standard LIVE analysis). Just before a Node defines a value
|
|
// (and removes it from the live-ness set) that value is certainly live.
|
|
// The defined value interferes with everything currently live. The
|
|
// value is then removed from the live-ness set and it's inputs are
|
|
// added to the live-ness set.
|
|
for( uint j = b->end_idx() + 1; j > 1; j-- ) {
|
|
Node *n = b->_nodes[j-1];
|
|
|
|
// Get value being defined
|
|
uint r = n2lidx(n);
|
|
|
|
// Some special values do not allocate
|
|
if( r ) {
|
|
|
|
// Remove from live-out set
|
|
liveout->remove(r);
|
|
|
|
// Copies do not define a new value and so do not interfere.
|
|
// Remove the copies source from the liveout set before interfering.
|
|
uint idx = n->is_Copy();
|
|
if( idx ) liveout->remove( n2lidx(n->in(idx)) );
|
|
|
|
// Interfere with everything live
|
|
interfere_with_live( r, liveout );
|
|
}
|
|
|
|
// Make all inputs live
|
|
if( !n->is_Phi() ) { // Phi function uses come from prior block
|
|
for( uint k = 1; k < n->req(); k++ )
|
|
liveout->insert( n2lidx(n->in(k)) );
|
|
}
|
|
|
|
// 2-address instructions always have the defined value live
|
|
// on entry to the instruction, even though it is being defined
|
|
// by the instruction. We pretend a virtual copy sits just prior
|
|
// to the instruction and kills the src-def'd register.
|
|
// In other words, for 2-address instructions the defined value
|
|
// interferes with all inputs.
|
|
uint idx;
|
|
if( n->is_Mach() && (idx = n->as_Mach()->two_adr()) ) {
|
|
const MachNode *mach = n->as_Mach();
|
|
// Sometimes my 2-address ADDs are commuted in a bad way.
|
|
// We generally want the USE-DEF register to refer to the
|
|
// loop-varying quantity, to avoid a copy.
|
|
uint op = mach->ideal_Opcode();
|
|
// Check that mach->num_opnds() == 3 to ensure instruction is
|
|
// not subsuming constants, effectively excludes addI_cin_imm
|
|
// Can NOT swap for instructions like addI_cin_imm since it
|
|
// is adding zero to yhi + carry and the second ideal-input
|
|
// points to the result of adding low-halves.
|
|
// Checking req() and num_opnds() does NOT distinguish addI_cout from addI_cout_imm
|
|
if( (op == Op_AddI && mach->req() == 3 && mach->num_opnds() == 3) &&
|
|
n->in(1)->bottom_type()->base() == Type::Int &&
|
|
// See if the ADD is involved in a tight data loop the wrong way
|
|
n->in(2)->is_Phi() &&
|
|
n->in(2)->in(2) == n ) {
|
|
Node *tmp = n->in(1);
|
|
n->set_req( 1, n->in(2) );
|
|
n->set_req( 2, tmp );
|
|
}
|
|
// Defined value interferes with all inputs
|
|
uint lidx = n2lidx(n->in(idx));
|
|
for( uint k = 1; k < n->req(); k++ ) {
|
|
uint kidx = n2lidx(n->in(k));
|
|
if( kidx != lidx )
|
|
_ifg->add_edge( r, kidx );
|
|
}
|
|
}
|
|
} // End of forall instructions in block
|
|
} // End of forall blocks
|
|
}
|
|
|
|
//------------------------------count_int_pressure-----------------------------
|
|
uint PhaseChaitin::count_int_pressure( IndexSet *liveout ) {
|
|
IndexSetIterator elements(liveout);
|
|
uint lidx;
|
|
uint cnt = 0;
|
|
while ((lidx = elements.next()) != 0) {
|
|
if( lrgs(lidx).mask().is_UP() &&
|
|
lrgs(lidx).mask_size() &&
|
|
!lrgs(lidx)._is_float &&
|
|
lrgs(lidx).mask().overlap(*Matcher::idealreg2regmask[Op_RegI]) )
|
|
cnt += lrgs(lidx).reg_pressure();
|
|
}
|
|
return cnt;
|
|
}
|
|
|
|
//------------------------------count_float_pressure---------------------------
|
|
uint PhaseChaitin::count_float_pressure( IndexSet *liveout ) {
|
|
IndexSetIterator elements(liveout);
|
|
uint lidx;
|
|
uint cnt = 0;
|
|
while ((lidx = elements.next()) != 0) {
|
|
if( lrgs(lidx).mask().is_UP() &&
|
|
lrgs(lidx).mask_size() &&
|
|
lrgs(lidx)._is_float )
|
|
cnt += lrgs(lidx).reg_pressure();
|
|
}
|
|
return cnt;
|
|
}
|
|
|
|
//------------------------------lower_pressure---------------------------------
|
|
// Adjust register pressure down by 1. Capture last hi-to-low transition,
|
|
static void lower_pressure( LRG *lrg, uint where, Block *b, uint *pressure, uint *hrp_index ) {
|
|
if( lrg->mask().is_UP() && lrg->mask_size() ) {
|
|
if( lrg->_is_float ) {
|
|
pressure[1] -= lrg->reg_pressure();
|
|
if( pressure[1] == (uint)FLOATPRESSURE ) {
|
|
hrp_index[1] = where;
|
|
#ifdef EXACT_PRESSURE
|
|
if( pressure[1] > b->_freg_pressure )
|
|
b->_freg_pressure = pressure[1]+1;
|
|
#else
|
|
b->_freg_pressure = (uint)FLOATPRESSURE+1;
|
|
#endif
|
|
}
|
|
} else if( lrg->mask().overlap(*Matcher::idealreg2regmask[Op_RegI]) ) {
|
|
pressure[0] -= lrg->reg_pressure();
|
|
if( pressure[0] == (uint)INTPRESSURE ) {
|
|
hrp_index[0] = where;
|
|
#ifdef EXACT_PRESSURE
|
|
if( pressure[0] > b->_reg_pressure )
|
|
b->_reg_pressure = pressure[0]+1;
|
|
#else
|
|
b->_reg_pressure = (uint)INTPRESSURE+1;
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//------------------------------build_ifg_physical-----------------------------
|
|
// Build the interference graph using physical registers when available.
|
|
// That is, if 2 live ranges are simultaneously alive but in their acceptable
|
|
// register sets do not overlap, then they do not interfere.
|
|
uint PhaseChaitin::build_ifg_physical( ResourceArea *a ) {
|
|
NOT_PRODUCT( Compile::TracePhase t3("buildIFG", &_t_buildIFGphysical, TimeCompiler); )
|
|
|
|
uint spill_reg = LRG::SPILL_REG;
|
|
uint must_spill = 0;
|
|
|
|
// For all blocks (in any order) do...
|
|
for( uint i = 0; i < _cfg._num_blocks; i++ ) {
|
|
Block *b = _cfg._blocks[i];
|
|
// Clone (rather than smash in place) the liveout info, so it is alive
|
|
// for the "collect_gc_info" phase later.
|
|
IndexSet liveout(_live->live(b));
|
|
uint last_inst = b->end_idx();
|
|
// Compute first nonphi node index
|
|
uint first_inst;
|
|
for( first_inst = 1; first_inst < last_inst; first_inst++ )
|
|
if( !b->_nodes[first_inst]->is_Phi() )
|
|
break;
|
|
|
|
// Spills could be inserted before CreateEx node which should be
|
|
// first instruction in block after Phis. Move CreateEx up.
|
|
for( uint insidx = first_inst; insidx < last_inst; insidx++ ) {
|
|
Node *ex = b->_nodes[insidx];
|
|
if( ex->is_SpillCopy() ) continue;
|
|
if( insidx > first_inst && ex->is_Mach() &&
|
|
ex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
|
|
// If the CreateEx isn't above all the MachSpillCopies
|
|
// then move it to the top.
|
|
b->_nodes.remove(insidx);
|
|
b->_nodes.insert(first_inst, ex);
|
|
}
|
|
// Stop once a CreateEx or any other node is found
|
|
break;
|
|
}
|
|
|
|
// Reset block's register pressure values for each ifg construction
|
|
uint pressure[2], hrp_index[2];
|
|
pressure[0] = pressure[1] = 0;
|
|
hrp_index[0] = hrp_index[1] = last_inst+1;
|
|
b->_reg_pressure = b->_freg_pressure = 0;
|
|
// Liveout things are presumed live for the whole block. We accumulate
|
|
// 'area' accordingly. If they get killed in the block, we'll subtract
|
|
// the unused part of the block from the area.
|
|
int inst_count = last_inst - first_inst;
|
|
double cost = (inst_count <= 0) ? 0.0 : b->_freq * double(inst_count);
|
|
assert(!(cost < 0.0), "negative spill cost" );
|
|
IndexSetIterator elements(&liveout);
|
|
uint lidx;
|
|
while ((lidx = elements.next()) != 0) {
|
|
LRG &lrg = lrgs(lidx);
|
|
lrg._area += cost;
|
|
// Compute initial register pressure
|
|
if( lrg.mask().is_UP() && lrg.mask_size() ) {
|
|
if( lrg._is_float ) { // Count float pressure
|
|
pressure[1] += lrg.reg_pressure();
|
|
#ifdef EXACT_PRESSURE
|
|
if( pressure[1] > b->_freg_pressure )
|
|
b->_freg_pressure = pressure[1];
|
|
#endif
|
|
// Count int pressure, but do not count the SP, flags
|
|
} else if( lrgs(lidx).mask().overlap(*Matcher::idealreg2regmask[Op_RegI]) ) {
|
|
pressure[0] += lrg.reg_pressure();
|
|
#ifdef EXACT_PRESSURE
|
|
if( pressure[0] > b->_reg_pressure )
|
|
b->_reg_pressure = pressure[0];
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
assert( pressure[0] == count_int_pressure (&liveout), "" );
|
|
assert( pressure[1] == count_float_pressure(&liveout), "" );
|
|
|
|
// The IFG is built by a single reverse pass over each basic block.
|
|
// Starting with the known live-out set, we remove things that get
|
|
// defined and add things that become live (essentially executing one
|
|
// pass of a standard LIVE analysis). Just before a Node defines a value
|
|
// (and removes it from the live-ness set) that value is certainly live.
|
|
// The defined value interferes with everything currently live. The
|
|
// value is then removed from the live-ness set and it's inputs are added
|
|
// to the live-ness set.
|
|
uint j;
|
|
for( j = last_inst + 1; j > 1; j-- ) {
|
|
Node *n = b->_nodes[j - 1];
|
|
|
|
// Get value being defined
|
|
uint r = n2lidx(n);
|
|
|
|
// Some special values do not allocate
|
|
if( r ) {
|
|
// A DEF normally costs block frequency; rematerialized values are
|
|
// removed from the DEF sight, so LOWER costs here.
|
|
lrgs(r)._cost += n->rematerialize() ? 0 : b->_freq;
|
|
|
|
// If it is not live, then this instruction is dead. Probably caused
|
|
// by spilling and rematerialization. Who cares why, yank this baby.
|
|
if( !liveout.member(r) && n->Opcode() != Op_SafePoint ) {
|
|
Node *def = n->in(0);
|
|
if( !n->is_Proj() ||
|
|
// Could also be a flags-projection of a dead ADD or such.
|
|
(n2lidx(def) && !liveout.member(n2lidx(def)) ) ) {
|
|
b->_nodes.remove(j - 1);
|
|
if( lrgs(r)._def == n ) lrgs(r)._def = 0;
|
|
n->disconnect_inputs(NULL);
|
|
_cfg._bbs.map(n->_idx,NULL);
|
|
n->replace_by(C->top());
|
|
// Since yanking a Node from block, high pressure moves up one
|
|
hrp_index[0]--;
|
|
hrp_index[1]--;
|
|
continue;
|
|
}
|
|
|
|
// Fat-projections kill many registers which cannot be used to
|
|
// hold live ranges.
|
|
if( lrgs(r)._fat_proj ) {
|
|
// Count the int-only registers
|
|
RegMask itmp = lrgs(r).mask();
|
|
itmp.AND(*Matcher::idealreg2regmask[Op_RegI]);
|
|
int iregs = itmp.Size();
|
|
#ifdef EXACT_PRESSURE
|
|
if( pressure[0]+iregs > b->_reg_pressure )
|
|
b->_reg_pressure = pressure[0]+iregs;
|
|
#endif
|
|
if( pressure[0] <= (uint)INTPRESSURE &&
|
|
pressure[0]+iregs > (uint)INTPRESSURE ) {
|
|
#ifndef EXACT_PRESSURE
|
|
b->_reg_pressure = (uint)INTPRESSURE+1;
|
|
#endif
|
|
hrp_index[0] = j-1;
|
|
}
|
|
// Count the float-only registers
|
|
RegMask ftmp = lrgs(r).mask();
|
|
ftmp.AND(*Matcher::idealreg2regmask[Op_RegD]);
|
|
int fregs = ftmp.Size();
|
|
#ifdef EXACT_PRESSURE
|
|
if( pressure[1]+fregs > b->_freg_pressure )
|
|
b->_freg_pressure = pressure[1]+fregs;
|
|
#endif
|
|
if( pressure[1] <= (uint)FLOATPRESSURE &&
|
|
pressure[1]+fregs > (uint)FLOATPRESSURE ) {
|
|
#ifndef EXACT_PRESSURE
|
|
b->_freg_pressure = (uint)FLOATPRESSURE+1;
|
|
#endif
|
|
hrp_index[1] = j-1;
|
|
}
|
|
}
|
|
|
|
} else { // Else it is live
|
|
// A DEF also ends 'area' partway through the block.
|
|
lrgs(r)._area -= cost;
|
|
assert(!(lrgs(r)._area < 0.0), "negative spill area" );
|
|
|
|
// Insure high score for immediate-use spill copies so they get a color
|
|
if( n->is_SpillCopy()
|
|
&& lrgs(r).is_singledef() // MultiDef live range can still split
|
|
&& n->outcnt() == 1 // and use must be in this block
|
|
&& _cfg._bbs[n->unique_out()->_idx] == b ) {
|
|
// All single-use MachSpillCopy(s) that immediately precede their
|
|
// use must color early. If a longer live range steals their
|
|
// color, the spill copy will split and may push another spill copy
|
|
// further away resulting in an infinite spill-split-retry cycle.
|
|
// Assigning a zero area results in a high score() and a good
|
|
// location in the simplify list.
|
|
//
|
|
|
|
Node *single_use = n->unique_out();
|
|
assert( b->find_node(single_use) >= j, "Use must be later in block");
|
|
// Use can be earlier in block if it is a Phi, but then I should be a MultiDef
|
|
|
|
// Find first non SpillCopy 'm' that follows the current instruction
|
|
// (j - 1) is index for current instruction 'n'
|
|
Node *m = n;
|
|
for( uint i = j; i <= last_inst && m->is_SpillCopy(); ++i ) { m = b->_nodes[i]; }
|
|
if( m == single_use ) {
|
|
lrgs(r)._area = 0.0;
|
|
}
|
|
}
|
|
|
|
// Remove from live-out set
|
|
if( liveout.remove(r) ) {
|
|
// Adjust register pressure.
|
|
// Capture last hi-to-lo pressure transition
|
|
lower_pressure( &lrgs(r), j-1, b, pressure, hrp_index );
|
|
assert( pressure[0] == count_int_pressure (&liveout), "" );
|
|
assert( pressure[1] == count_float_pressure(&liveout), "" );
|
|
}
|
|
|
|
// Copies do not define a new value and so do not interfere.
|
|
// Remove the copies source from the liveout set before interfering.
|
|
uint idx = n->is_Copy();
|
|
if( idx ) {
|
|
uint x = n2lidx(n->in(idx));
|
|
if( liveout.remove( x ) ) {
|
|
lrgs(x)._area -= cost;
|
|
// Adjust register pressure.
|
|
lower_pressure( &lrgs(x), j-1, b, pressure, hrp_index );
|
|
assert( pressure[0] == count_int_pressure (&liveout), "" );
|
|
assert( pressure[1] == count_float_pressure(&liveout), "" );
|
|
}
|
|
}
|
|
} // End of if live or not
|
|
|
|
// Interfere with everything live. If the defined value must
|
|
// go in a particular register, just remove that register from
|
|
// all conflicting parties and avoid the interference.
|
|
|
|
// Make exclusions for rematerializable defs. Since rematerializable
|
|
// DEFs are not bound but the live range is, some uses must be bound.
|
|
// If we spill live range 'r', it can rematerialize at each use site
|
|
// according to its bindings.
|
|
const RegMask &rmask = lrgs(r).mask();
|
|
if( lrgs(r).is_bound() && !(n->rematerialize()) && rmask.is_NotEmpty() ) {
|
|
// Smear odd bits; leave only aligned pairs of bits.
|
|
RegMask r2mask = rmask;
|
|
r2mask.SmearToPairs();
|
|
// Check for common case
|
|
int r_size = lrgs(r).num_regs();
|
|
OptoReg::Name r_reg = (r_size == 1) ? rmask.find_first_elem() : OptoReg::Physical;
|
|
|
|
IndexSetIterator elements(&liveout);
|
|
uint l;
|
|
while ((l = elements.next()) != 0) {
|
|
LRG &lrg = lrgs(l);
|
|
// If 'l' must spill already, do not further hack his bits.
|
|
// He'll get some interferences and be forced to spill later.
|
|
if( lrg._must_spill ) continue;
|
|
// Remove bound register(s) from 'l's choices
|
|
RegMask old = lrg.mask();
|
|
uint old_size = lrg.mask_size();
|
|
// Remove the bits from LRG 'r' from LRG 'l' so 'l' no
|
|
// longer interferes with 'r'. If 'l' requires aligned
|
|
// adjacent pairs, subtract out bit pairs.
|
|
if( lrg.num_regs() == 2 && !lrg._fat_proj ) {
|
|
lrg.SUBTRACT( r2mask );
|
|
lrg.compute_set_mask_size();
|
|
} else if( r_size != 1 ) {
|
|
lrg.SUBTRACT( rmask );
|
|
lrg.compute_set_mask_size();
|
|
} else { // Common case: size 1 bound removal
|
|
if( lrg.mask().Member(r_reg) ) {
|
|
lrg.Remove(r_reg);
|
|
lrg.set_mask_size(lrg.mask().is_AllStack() ? 65535:old_size-1);
|
|
}
|
|
}
|
|
// If 'l' goes completely dry, it must spill.
|
|
if( lrg.not_free() ) {
|
|
// Give 'l' some kind of reasonable mask, so he picks up
|
|
// interferences (and will spill later).
|
|
lrg.set_mask( old );
|
|
lrg.set_mask_size(old_size);
|
|
must_spill++;
|
|
lrg._must_spill = 1;
|
|
lrg.set_reg(OptoReg::Name(LRG::SPILL_REG));
|
|
}
|
|
}
|
|
} // End of if bound
|
|
|
|
// Now interference with everything that is live and has
|
|
// compatible register sets.
|
|
interfere_with_live(r,&liveout);
|
|
|
|
} // End of if normal register-allocated value
|
|
|
|
// Area remaining in the block
|
|
inst_count--;
|
|
cost = (inst_count <= 0) ? 0.0 : b->_freq * double(inst_count);
|
|
|
|
// Make all inputs live
|
|
if( !n->is_Phi() ) { // Phi function uses come from prior block
|
|
JVMState* jvms = n->jvms();
|
|
uint debug_start = jvms ? jvms->debug_start() : 999999;
|
|
// Start loop at 1 (skip control edge) for most Nodes.
|
|
// SCMemProj's might be the sole use of a StoreLConditional.
|
|
// While StoreLConditionals set memory (the SCMemProj use)
|
|
// they also def flags; if that flag def is unused the
|
|
// allocator sees a flag-setting instruction with no use of
|
|
// the flags and assumes it's dead. This keeps the (useless)
|
|
// flag-setting behavior alive while also keeping the (useful)
|
|
// memory update effect.
|
|
for( uint k = ((n->Opcode() == Op_SCMemProj) ? 0:1); k < n->req(); k++ ) {
|
|
Node *def = n->in(k);
|
|
uint x = n2lidx(def);
|
|
if( !x ) continue;
|
|
LRG &lrg = lrgs(x);
|
|
// No use-side cost for spilling debug info
|
|
if( k < debug_start )
|
|
// A USE costs twice block frequency (once for the Load, once
|
|
// for a Load-delay). Rematerialized uses only cost once.
|
|
lrg._cost += (def->rematerialize() ? b->_freq : (b->_freq + b->_freq));
|
|
// It is live now
|
|
if( liveout.insert( x ) ) {
|
|
// Newly live things assumed live from here to top of block
|
|
lrg._area += cost;
|
|
// Adjust register pressure
|
|
if( lrg.mask().is_UP() && lrg.mask_size() ) {
|
|
if( lrg._is_float ) {
|
|
pressure[1] += lrg.reg_pressure();
|
|
#ifdef EXACT_PRESSURE
|
|
if( pressure[1] > b->_freg_pressure )
|
|
b->_freg_pressure = pressure[1];
|
|
#endif
|
|
} else if( lrg.mask().overlap(*Matcher::idealreg2regmask[Op_RegI]) ) {
|
|
pressure[0] += lrg.reg_pressure();
|
|
#ifdef EXACT_PRESSURE
|
|
if( pressure[0] > b->_reg_pressure )
|
|
b->_reg_pressure = pressure[0];
|
|
#endif
|
|
}
|
|
}
|
|
assert( pressure[0] == count_int_pressure (&liveout), "" );
|
|
assert( pressure[1] == count_float_pressure(&liveout), "" );
|
|
}
|
|
assert(!(lrg._area < 0.0), "negative spill area" );
|
|
}
|
|
}
|
|
} // End of reverse pass over all instructions in block
|
|
|
|
// If we run off the top of the block with high pressure and
|
|
// never see a hi-to-low pressure transition, just record that
|
|
// the whole block is high pressure.
|
|
if( pressure[0] > (uint)INTPRESSURE ) {
|
|
hrp_index[0] = 0;
|
|
#ifdef EXACT_PRESSURE
|
|
if( pressure[0] > b->_reg_pressure )
|
|
b->_reg_pressure = pressure[0];
|
|
#else
|
|
b->_reg_pressure = (uint)INTPRESSURE+1;
|
|
#endif
|
|
}
|
|
if( pressure[1] > (uint)FLOATPRESSURE ) {
|
|
hrp_index[1] = 0;
|
|
#ifdef EXACT_PRESSURE
|
|
if( pressure[1] > b->_freg_pressure )
|
|
b->_freg_pressure = pressure[1];
|
|
#else
|
|
b->_freg_pressure = (uint)FLOATPRESSURE+1;
|
|
#endif
|
|
}
|
|
|
|
// Compute high pressure indice; avoid landing in the middle of projnodes
|
|
j = hrp_index[0];
|
|
if( j < b->_nodes.size() && j < b->end_idx()+1 ) {
|
|
Node *cur = b->_nodes[j];
|
|
while( cur->is_Proj() || (cur->is_MachNullCheck()) || cur->is_Catch() ) {
|
|
j--;
|
|
cur = b->_nodes[j];
|
|
}
|
|
}
|
|
b->_ihrp_index = j;
|
|
j = hrp_index[1];
|
|
if( j < b->_nodes.size() && j < b->end_idx()+1 ) {
|
|
Node *cur = b->_nodes[j];
|
|
while( cur->is_Proj() || (cur->is_MachNullCheck()) || cur->is_Catch() ) {
|
|
j--;
|
|
cur = b->_nodes[j];
|
|
}
|
|
}
|
|
b->_fhrp_index = j;
|
|
|
|
#ifndef PRODUCT
|
|
// Gather Register Pressure Statistics
|
|
if( PrintOptoStatistics ) {
|
|
if( b->_reg_pressure > (uint)INTPRESSURE || b->_freg_pressure > (uint)FLOATPRESSURE )
|
|
_high_pressure++;
|
|
else
|
|
_low_pressure++;
|
|
}
|
|
#endif
|
|
} // End of for all blocks
|
|
|
|
return must_spill;
|
|
}
|