jdk-24/src/hotspot/share/code/codeHeapState.cpp
Stefan Karlsson e4b27a48a0 8183574: Unify the is_power_of_2 functions
Reviewed-by: kbarrett, redestad
2020-02-17 10:03:17 +01:00

2531 lines
110 KiB
C++

/*
* Copyright (c) 2018, 2019, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2018, 2019 SAP SE. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "code/codeHeapState.hpp"
#include "compiler/compileBroker.hpp"
#include "runtime/sweeper.hpp"
#include "utilities/powerOfTwo.hpp"
// -------------------------
// | General Description |
// -------------------------
// The CodeHeap state analytics are divided in two parts.
// The first part examines the entire CodeHeap and aggregates all
// information that is believed useful/important.
//
// Aggregation condenses the information of a piece of the CodeHeap
// (4096 bytes by default) into an analysis granule. These granules
// contain enough detail to gain initial insight while keeping the
// internal structure sizes in check.
//
// The second part, which consists of several, independent steps,
// prints the previously collected information with emphasis on
// various aspects.
//
// The CodeHeap is a living thing. Therefore, protection against concurrent
// modification (by acquiring the CodeCache_lock) is necessary. It has
// to be provided by the caller of the analysis functions.
// If the CodeCache_lock is not held, the analysis functions may print
// less detailed information or may just do nothing. It is by intention
// that an unprotected invocation is not abnormally terminated.
//
// Data collection and printing is done on an "on request" basis.
// While no request is being processed, there is no impact on performance.
// The CodeHeap state analytics do have some memory footprint.
// The "aggregate" step allocates some data structures to hold the aggregated
// information for later output. These data structures live until they are
// explicitly discarded (function "discard") or until the VM terminates.
// There is one exception: the function "all" does not leave any data
// structures allocated.
//
// Requests for real-time, on-the-fly analysis can be issued via
// jcmd <pid> Compiler.CodeHeap_Analytics [<function>] [<granularity>]
//
// If you are (only) interested in how the CodeHeap looks like after running
// a sample workload, you can use the command line option
// -XX:+PrintCodeHeapAnalytics
// It will cause a full analysis to be written to tty. In addition, a full
// analysis will be written the first time a "CodeCache full" condition is
// detected.
//
// The command line option produces output identical to the jcmd function
// jcmd <pid> Compiler.CodeHeap_Analytics all 4096
// ---------------------------------------------------------------------------------
// With this declaration macro, it is possible to switch between
// - direct output into an argument-passed outputStream and
// - buffered output into a bufferedStream with subsequent flush
// of the filled buffer to the outputStream.
#define USE_BUFFEREDSTREAM
// There are instances when composing an output line or a small set of
// output lines out of many tty->print() calls creates significant overhead.
// Writing to a bufferedStream buffer first has a significant advantage:
// It uses noticeably less cpu cycles and reduces (when writing to a
// network file) the required bandwidth by at least a factor of ten. Observed on MacOS.
// That clearly makes up for the increased code complexity.
//
// Conversion of existing code is easy and straightforward, if the code already
// uses a parameterized output destination, e.g. "outputStream st".
// - rename the formal parameter to any other name, e.g. out_st.
// - at a suitable place in your code, insert
// BUFFEREDSTEAM_DECL(buf_st, out_st)
// This will provide all the declarations necessary. After that, all
// buf_st->print() (and the like) calls will be directed to a bufferedStream object.
// Once a block of output (a line or a small set of lines) is composed, insert
// BUFFEREDSTREAM_FLUSH(termstring)
// to flush the bufferedStream to the final destination out_st. termstring is just
// an arbitrary string (e.g. "\n") which is appended to the bufferedStream before
// being written to out_st. Be aware that the last character written MUST be a '\n'.
// Otherwise, buf_st->position() does not correspond to out_st->position() any longer.
// BUFFEREDSTREAM_FLUSH_LOCKED(termstring)
// does the same thing, protected by the ttyLocker lock.
// BUFFEREDSTREAM_FLUSH_IF(termstring, remSize)
// does a flush only if the remaining buffer space is less than remSize.
//
// To activate, #define USE_BUFFERED_STREAM before including this header.
// If not activated, output will directly go to the originally used outputStream
// with no additional overhead.
//
#if defined(USE_BUFFEREDSTREAM)
// All necessary declarations to print via a bufferedStream
// This macro must be placed before any other BUFFEREDSTREAM*
// macro in the function.
#define BUFFEREDSTREAM_DECL_SIZE(_anyst, _outst, _capa) \
ResourceMark _rm; \
/* _anyst name of the stream as used in the code */ \
/* _outst stream where final output will go to */ \
/* _capa allocated capacity of stream buffer */ \
size_t _nflush = 0; \
size_t _nforcedflush = 0; \
size_t _nsavedflush = 0; \
size_t _nlockedflush = 0; \
size_t _nflush_bytes = 0; \
size_t _capacity = _capa; \
bufferedStream _sstobj(_capa); \
bufferedStream* _sstbuf = &_sstobj; \
outputStream* _outbuf = _outst; \
bufferedStream* _anyst = &_sstobj; /* any stream. Use this to just print - no buffer flush. */
// Same as above, but with fixed buffer size.
#define BUFFEREDSTREAM_DECL(_anyst, _outst) \
BUFFEREDSTREAM_DECL_SIZE(_anyst, _outst, 4*K);
// Flush the buffer contents unconditionally.
// No action if the buffer is empty.
#define BUFFEREDSTREAM_FLUSH(_termString) \
if (((_termString) != NULL) && (strlen(_termString) > 0)){\
_sstbuf->print("%s", _termString); \
} \
if (_sstbuf != _outbuf) { \
if (_sstbuf->size() != 0) { \
_nforcedflush++; _nflush_bytes += _sstbuf->size(); \
_outbuf->print("%s", _sstbuf->as_string()); \
_sstbuf->reset(); \
} \
}
// Flush the buffer contents if the remaining capacity is
// less than the given threshold.
#define BUFFEREDSTREAM_FLUSH_IF(_termString, _remSize) \
if (((_termString) != NULL) && (strlen(_termString) > 0)){\
_sstbuf->print("%s", _termString); \
} \
if (_sstbuf != _outbuf) { \
if ((_capacity - _sstbuf->size()) < (size_t)(_remSize)){\
_nflush++; _nforcedflush--; \
BUFFEREDSTREAM_FLUSH("") \
} else { \
_nsavedflush++; \
} \
}
// Flush the buffer contents if the remaining capacity is less
// than the calculated threshold (256 bytes + capacity/16)
// That should suffice for all reasonably sized output lines.
#define BUFFEREDSTREAM_FLUSH_AUTO(_termString) \
BUFFEREDSTREAM_FLUSH_IF(_termString, 256+(_capacity>>4))
#define BUFFEREDSTREAM_FLUSH_LOCKED(_termString) \
{ ttyLocker ttyl;/* keep this output block together */ \
_nlockedflush++; \
BUFFEREDSTREAM_FLUSH(_termString) \
}
// #define BUFFEREDSTREAM_FLUSH_STAT() \
// if (_sstbuf != _outbuf) { \
// _outbuf->print_cr("%ld flushes (buffer full), %ld forced, %ld locked, %ld bytes total, %ld flushes saved", _nflush, _nforcedflush, _nlockedflush, _nflush_bytes, _nsavedflush); \
// }
#define BUFFEREDSTREAM_FLUSH_STAT()
#else
#define BUFFEREDSTREAM_DECL_SIZE(_anyst, _outst, _capa) \
size_t _capacity = _capa; \
outputStream* _outbuf = _outst; \
outputStream* _anyst = _outst; /* any stream. Use this to just print - no buffer flush. */
#define BUFFEREDSTREAM_DECL(_anyst, _outst) \
BUFFEREDSTREAM_DECL_SIZE(_anyst, _outst, 4*K)
#define BUFFEREDSTREAM_FLUSH(_termString) \
if (((_termString) != NULL) && (strlen(_termString) > 0)){\
_outbuf->print("%s", _termString); \
}
#define BUFFEREDSTREAM_FLUSH_IF(_termString, _remSize) \
BUFFEREDSTREAM_FLUSH(_termString)
#define BUFFEREDSTREAM_FLUSH_AUTO(_termString) \
BUFFEREDSTREAM_FLUSH(_termString)
#define BUFFEREDSTREAM_FLUSH_LOCKED(_termString) \
BUFFEREDSTREAM_FLUSH(_termString)
#define BUFFEREDSTREAM_FLUSH_STAT()
#endif
#define HEX32_FORMAT "0x%x" // just a helper format string used below multiple times
const char blobTypeChar[] = {' ', 'C', 'N', 'I', 'X', 'Z', 'U', 'R', '?', 'D', 'T', 'E', 'S', 'A', 'M', 'B', 'L' };
const char* blobTypeName[] = {"noType"
, "nMethod (under construction)"
, "nMethod (active)"
, "nMethod (inactive)"
, "nMethod (deopt)"
, "nMethod (zombie)"
, "nMethod (unloaded)"
, "runtime stub"
, "ricochet stub"
, "deopt stub"
, "uncommon trap stub"
, "exception stub"
, "safepoint stub"
, "adapter blob"
, "MH adapter blob"
, "buffer blob"
, "lastType"
};
const char* compTypeName[] = { "none", "c1", "c2", "jvmci" };
// Be prepared for ten different CodeHeap segments. Should be enough for a few years.
const unsigned int nSizeDistElements = 31; // logarithmic range growth, max size: 2**32
const unsigned int maxTopSizeBlocks = 50;
const unsigned int tsbStopper = 2 * maxTopSizeBlocks;
const unsigned int maxHeaps = 10;
static unsigned int nHeaps = 0;
static struct CodeHeapStat CodeHeapStatArray[maxHeaps];
// static struct StatElement *StatArray = NULL;
static StatElement* StatArray = NULL;
static int log2_seg_size = 0;
static size_t seg_size = 0;
static size_t alloc_granules = 0;
static size_t granule_size = 0;
static bool segment_granules = false;
static unsigned int nBlocks_t1 = 0; // counting "in_use" nmethods only.
static unsigned int nBlocks_t2 = 0; // counting "in_use" nmethods only.
static unsigned int nBlocks_alive = 0; // counting "not_used" and "not_entrant" nmethods only.
static unsigned int nBlocks_dead = 0; // counting "zombie" and "unloaded" methods only.
static unsigned int nBlocks_inconstr = 0; // counting "inconstruction" nmethods only. This is a transient state.
static unsigned int nBlocks_unloaded = 0; // counting "unloaded" nmethods only. This is a transient state.
static unsigned int nBlocks_stub = 0;
static struct FreeBlk* FreeArray = NULL;
static unsigned int alloc_freeBlocks = 0;
static struct TopSizeBlk* TopSizeArray = NULL;
static unsigned int alloc_topSizeBlocks = 0;
static unsigned int used_topSizeBlocks = 0;
static struct SizeDistributionElement* SizeDistributionArray = NULL;
// nMethod temperature (hotness) indicators.
static int avgTemp = 0;
static int maxTemp = 0;
static int minTemp = 0;
static unsigned int latest_compilation_id = 0;
static volatile bool initialization_complete = false;
const char* CodeHeapState::get_heapName(CodeHeap* heap) {
if (SegmentedCodeCache) {
return heap->name();
} else {
return "CodeHeap";
}
}
// returns the index for the heap being processed.
unsigned int CodeHeapState::findHeapIndex(outputStream* out, const char* heapName) {
if (heapName == NULL) {
return maxHeaps;
}
if (SegmentedCodeCache) {
// Search for a pre-existing entry. If found, return that index.
for (unsigned int i = 0; i < nHeaps; i++) {
if (CodeHeapStatArray[i].heapName != NULL && strcmp(heapName, CodeHeapStatArray[i].heapName) == 0) {
return i;
}
}
// check if there are more code heap segments than we can handle.
if (nHeaps == maxHeaps) {
out->print_cr("Too many heap segments for current limit(%d).", maxHeaps);
return maxHeaps;
}
// allocate new slot in StatArray.
CodeHeapStatArray[nHeaps].heapName = heapName;
return nHeaps++;
} else {
nHeaps = 1;
CodeHeapStatArray[0].heapName = heapName;
return 0; // This is the default index if CodeCache is not segmented.
}
}
void CodeHeapState::get_HeapStatGlobals(outputStream* out, const char* heapName) {
unsigned int ix = findHeapIndex(out, heapName);
if (ix < maxHeaps) {
StatArray = CodeHeapStatArray[ix].StatArray;
seg_size = CodeHeapStatArray[ix].segment_size;
log2_seg_size = seg_size == 0 ? 0 : exact_log2(seg_size);
alloc_granules = CodeHeapStatArray[ix].alloc_granules;
granule_size = CodeHeapStatArray[ix].granule_size;
segment_granules = CodeHeapStatArray[ix].segment_granules;
nBlocks_t1 = CodeHeapStatArray[ix].nBlocks_t1;
nBlocks_t2 = CodeHeapStatArray[ix].nBlocks_t2;
nBlocks_alive = CodeHeapStatArray[ix].nBlocks_alive;
nBlocks_dead = CodeHeapStatArray[ix].nBlocks_dead;
nBlocks_inconstr = CodeHeapStatArray[ix].nBlocks_inconstr;
nBlocks_unloaded = CodeHeapStatArray[ix].nBlocks_unloaded;
nBlocks_stub = CodeHeapStatArray[ix].nBlocks_stub;
FreeArray = CodeHeapStatArray[ix].FreeArray;
alloc_freeBlocks = CodeHeapStatArray[ix].alloc_freeBlocks;
TopSizeArray = CodeHeapStatArray[ix].TopSizeArray;
alloc_topSizeBlocks = CodeHeapStatArray[ix].alloc_topSizeBlocks;
used_topSizeBlocks = CodeHeapStatArray[ix].used_topSizeBlocks;
SizeDistributionArray = CodeHeapStatArray[ix].SizeDistributionArray;
avgTemp = CodeHeapStatArray[ix].avgTemp;
maxTemp = CodeHeapStatArray[ix].maxTemp;
minTemp = CodeHeapStatArray[ix].minTemp;
} else {
StatArray = NULL;
seg_size = 0;
log2_seg_size = 0;
alloc_granules = 0;
granule_size = 0;
segment_granules = false;
nBlocks_t1 = 0;
nBlocks_t2 = 0;
nBlocks_alive = 0;
nBlocks_dead = 0;
nBlocks_inconstr = 0;
nBlocks_unloaded = 0;
nBlocks_stub = 0;
FreeArray = NULL;
alloc_freeBlocks = 0;
TopSizeArray = NULL;
alloc_topSizeBlocks = 0;
used_topSizeBlocks = 0;
SizeDistributionArray = NULL;
avgTemp = 0;
maxTemp = 0;
minTemp = 0;
}
}
void CodeHeapState::set_HeapStatGlobals(outputStream* out, const char* heapName) {
unsigned int ix = findHeapIndex(out, heapName);
if (ix < maxHeaps) {
CodeHeapStatArray[ix].StatArray = StatArray;
CodeHeapStatArray[ix].segment_size = seg_size;
CodeHeapStatArray[ix].alloc_granules = alloc_granules;
CodeHeapStatArray[ix].granule_size = granule_size;
CodeHeapStatArray[ix].segment_granules = segment_granules;
CodeHeapStatArray[ix].nBlocks_t1 = nBlocks_t1;
CodeHeapStatArray[ix].nBlocks_t2 = nBlocks_t2;
CodeHeapStatArray[ix].nBlocks_alive = nBlocks_alive;
CodeHeapStatArray[ix].nBlocks_dead = nBlocks_dead;
CodeHeapStatArray[ix].nBlocks_inconstr = nBlocks_inconstr;
CodeHeapStatArray[ix].nBlocks_unloaded = nBlocks_unloaded;
CodeHeapStatArray[ix].nBlocks_stub = nBlocks_stub;
CodeHeapStatArray[ix].FreeArray = FreeArray;
CodeHeapStatArray[ix].alloc_freeBlocks = alloc_freeBlocks;
CodeHeapStatArray[ix].TopSizeArray = TopSizeArray;
CodeHeapStatArray[ix].alloc_topSizeBlocks = alloc_topSizeBlocks;
CodeHeapStatArray[ix].used_topSizeBlocks = used_topSizeBlocks;
CodeHeapStatArray[ix].SizeDistributionArray = SizeDistributionArray;
CodeHeapStatArray[ix].avgTemp = avgTemp;
CodeHeapStatArray[ix].maxTemp = maxTemp;
CodeHeapStatArray[ix].minTemp = minTemp;
}
}
//---< get a new statistics array >---
void CodeHeapState::prepare_StatArray(outputStream* out, size_t nElem, size_t granularity, const char* heapName) {
if (StatArray == NULL) {
StatArray = new StatElement[nElem];
//---< reset some counts >---
alloc_granules = nElem;
granule_size = granularity;
}
if (StatArray == NULL) {
//---< just do nothing if allocation failed >---
out->print_cr("Statistics could not be collected for %s, probably out of memory.", heapName);
out->print_cr("Current granularity is " SIZE_FORMAT " bytes. Try a coarser granularity.", granularity);
alloc_granules = 0;
granule_size = 0;
} else {
//---< initialize statistics array >---
memset((void*)StatArray, 0, nElem*sizeof(StatElement));
}
}
//---< get a new free block array >---
void CodeHeapState::prepare_FreeArray(outputStream* out, unsigned int nElem, const char* heapName) {
if (FreeArray == NULL) {
FreeArray = new FreeBlk[nElem];
//---< reset some counts >---
alloc_freeBlocks = nElem;
}
if (FreeArray == NULL) {
//---< just do nothing if allocation failed >---
out->print_cr("Free space analysis cannot be done for %s, probably out of memory.", heapName);
alloc_freeBlocks = 0;
} else {
//---< initialize free block array >---
memset((void*)FreeArray, 0, alloc_freeBlocks*sizeof(FreeBlk));
}
}
//---< get a new TopSizeArray >---
void CodeHeapState::prepare_TopSizeArray(outputStream* out, unsigned int nElem, const char* heapName) {
if (TopSizeArray == NULL) {
TopSizeArray = new TopSizeBlk[nElem];
//---< reset some counts >---
alloc_topSizeBlocks = nElem;
used_topSizeBlocks = 0;
}
if (TopSizeArray == NULL) {
//---< just do nothing if allocation failed >---
out->print_cr("Top-%d list of largest CodeHeap blocks can not be collected for %s, probably out of memory.", nElem, heapName);
alloc_topSizeBlocks = 0;
} else {
//---< initialize TopSizeArray >---
memset((void*)TopSizeArray, 0, nElem*sizeof(TopSizeBlk));
used_topSizeBlocks = 0;
}
}
//---< get a new SizeDistributionArray >---
void CodeHeapState::prepare_SizeDistArray(outputStream* out, unsigned int nElem, const char* heapName) {
if (SizeDistributionArray == NULL) {
SizeDistributionArray = new SizeDistributionElement[nElem];
}
if (SizeDistributionArray == NULL) {
//---< just do nothing if allocation failed >---
out->print_cr("Size distribution can not be collected for %s, probably out of memory.", heapName);
} else {
//---< initialize SizeDistArray >---
memset((void*)SizeDistributionArray, 0, nElem*sizeof(SizeDistributionElement));
// Logarithmic range growth. First range starts at _segment_size.
SizeDistributionArray[log2_seg_size-1].rangeEnd = 1U;
for (unsigned int i = log2_seg_size; i < nElem; i++) {
SizeDistributionArray[i].rangeStart = 1U << (i - log2_seg_size);
SizeDistributionArray[i].rangeEnd = 1U << ((i+1) - log2_seg_size);
}
}
}
//---< get a new SizeDistributionArray >---
void CodeHeapState::update_SizeDistArray(outputStream* out, unsigned int len) {
if (SizeDistributionArray != NULL) {
for (unsigned int i = log2_seg_size-1; i < nSizeDistElements; i++) {
if ((SizeDistributionArray[i].rangeStart <= len) && (len < SizeDistributionArray[i].rangeEnd)) {
SizeDistributionArray[i].lenSum += len;
SizeDistributionArray[i].count++;
break;
}
}
}
}
void CodeHeapState::discard_StatArray(outputStream* out) {
if (StatArray != NULL) {
delete StatArray;
StatArray = NULL;
alloc_granules = 0;
granule_size = 0;
}
}
void CodeHeapState::discard_FreeArray(outputStream* out) {
if (FreeArray != NULL) {
delete[] FreeArray;
FreeArray = NULL;
alloc_freeBlocks = 0;
}
}
void CodeHeapState::discard_TopSizeArray(outputStream* out) {
if (TopSizeArray != NULL) {
delete[] TopSizeArray;
TopSizeArray = NULL;
alloc_topSizeBlocks = 0;
used_topSizeBlocks = 0;
}
}
void CodeHeapState::discard_SizeDistArray(outputStream* out) {
if (SizeDistributionArray != NULL) {
delete[] SizeDistributionArray;
SizeDistributionArray = NULL;
}
}
// Discard all allocated internal data structures.
// This should be done after an analysis session is completed.
void CodeHeapState::discard(outputStream* out, CodeHeap* heap) {
if (!initialization_complete) {
return;
}
if (nHeaps > 0) {
for (unsigned int ix = 0; ix < nHeaps; ix++) {
get_HeapStatGlobals(out, CodeHeapStatArray[ix].heapName);
discard_StatArray(out);
discard_FreeArray(out);
discard_TopSizeArray(out);
discard_SizeDistArray(out);
set_HeapStatGlobals(out, CodeHeapStatArray[ix].heapName);
CodeHeapStatArray[ix].heapName = NULL;
}
nHeaps = 0;
}
}
void CodeHeapState::aggregate(outputStream* out, CodeHeap* heap, size_t granularity) {
unsigned int nBlocks_free = 0;
unsigned int nBlocks_used = 0;
unsigned int nBlocks_zomb = 0;
unsigned int nBlocks_disconn = 0;
unsigned int nBlocks_notentr = 0;
//---< max & min of TopSizeArray >---
// it is sufficient to have these sizes as 32bit unsigned ints.
// The CodeHeap is limited in size to 4GB. Furthermore, the sizes
// are stored in _segment_size units, scaling them down by a factor of 64 (at least).
unsigned int currMax = 0;
unsigned int currMin = 0;
unsigned int currMin_ix = 0;
unsigned long total_iterations = 0;
bool done = false;
const int min_granules = 256;
const int max_granules = 512*K; // limits analyzable CodeHeap (with segment_granules) to 32M..128M
// results in StatArray size of 24M (= max_granules * 48 Bytes per element)
// For a 1GB CodeHeap, the granule size must be at least 2kB to not violate the max_granles limit.
const char* heapName = get_heapName(heap);
BUFFEREDSTREAM_DECL(ast, out)
if (!initialization_complete) {
memset(CodeHeapStatArray, 0, sizeof(CodeHeapStatArray));
initialization_complete = true;
printBox(ast, '=', "C O D E H E A P A N A L Y S I S (general remarks)", NULL);
ast->print_cr(" The code heap analysis function provides deep insights into\n"
" the inner workings and the internal state of the Java VM's\n"
" code cache - the place where all the JVM generated machine\n"
" code is stored.\n"
" \n"
" This function is designed and provided for support engineers\n"
" to help them understand and solve issues in customer systems.\n"
" It is not intended for use and interpretation by other persons.\n"
" \n");
BUFFEREDSTREAM_FLUSH("")
}
get_HeapStatGlobals(out, heapName);
// Since we are (and must be) analyzing the CodeHeap contents under the CodeCache_lock,
// all heap information is "constant" and can be safely extracted/calculated before we
// enter the while() loop. Actually, the loop will only be iterated once.
char* low_bound = heap->low_boundary();
size_t size = heap->capacity();
size_t res_size = heap->max_capacity();
seg_size = heap->segment_size();
log2_seg_size = seg_size == 0 ? 0 : exact_log2(seg_size); // This is a global static value.
if (seg_size == 0) {
printBox(ast, '-', "Heap not fully initialized yet, segment size is zero for segment ", heapName);
BUFFEREDSTREAM_FLUSH("")
return;
}
if (!CodeCache_lock->owned_by_self()) {
printBox(ast, '-', "aggregate function called without holding the CodeCache_lock for ", heapName);
BUFFEREDSTREAM_FLUSH("")
return;
}
// Calculate granularity of analysis (and output).
// The CodeHeap is managed (allocated) in segments (units) of CodeCacheSegmentSize.
// The CodeHeap can become fairly large, in particular in productive real-life systems.
//
// It is often neither feasible nor desirable to aggregate the data with the highest possible
// level of detail, i.e. inspecting and printing each segment on its own.
//
// The granularity parameter allows to specify the level of detail available in the analysis.
// It must be a positive multiple of the segment size and should be selected such that enough
// detail is provided while, at the same time, the printed output does not explode.
//
// By manipulating the granularity value, we enforce that at least min_granules units
// of analysis are available. We also enforce an upper limit of max_granules units to
// keep the amount of allocated storage in check.
//
// Finally, we adjust the granularity such that each granule covers at most 64k-1 segments.
// This is necessary to prevent an unsigned short overflow while accumulating space information.
//
assert(granularity > 0, "granularity should be positive.");
if (granularity > size) {
granularity = size;
}
if (size/granularity < min_granules) {
granularity = size/min_granules; // at least min_granules granules
}
granularity = granularity & (~(seg_size - 1)); // must be multiple of seg_size
if (granularity < seg_size) {
granularity = seg_size; // must be at least seg_size
}
if (size/granularity > max_granules) {
granularity = size/max_granules; // at most max_granules granules
}
granularity = granularity & (~(seg_size - 1)); // must be multiple of seg_size
if (granularity>>log2_seg_size >= (1L<<sizeof(unsigned short)*8)) {
granularity = ((1L<<(sizeof(unsigned short)*8))-1)<<log2_seg_size; // Limit: (64k-1) * seg_size
}
segment_granules = granularity == seg_size;
size_t granules = (size + (granularity-1))/granularity;
printBox(ast, '=', "C O D E H E A P A N A L Y S I S (used blocks) for segment ", heapName);
ast->print_cr(" The aggregate step takes an aggregated snapshot of the CodeHeap.\n"
" Subsequent print functions create their output based on this snapshot.\n"
" The CodeHeap is a living thing, and every effort has been made for the\n"
" collected data to be consistent. Only the method names and signatures\n"
" are retrieved at print time. That may lead to rare cases where the\n"
" name of a method is no longer available, e.g. because it was unloaded.\n");
ast->print_cr(" CodeHeap committed size " SIZE_FORMAT "K (" SIZE_FORMAT "M), reserved size " SIZE_FORMAT "K (" SIZE_FORMAT "M), %d%% occupied.",
size/(size_t)K, size/(size_t)M, res_size/(size_t)K, res_size/(size_t)M, (unsigned int)(100.0*size/res_size));
ast->print_cr(" CodeHeap allocation segment size is " SIZE_FORMAT " bytes. This is the smallest possible granularity.", seg_size);
ast->print_cr(" CodeHeap (committed part) is mapped to " SIZE_FORMAT " granules of size " SIZE_FORMAT " bytes.", granules, granularity);
ast->print_cr(" Each granule takes " SIZE_FORMAT " bytes of C heap, that is " SIZE_FORMAT "K in total for statistics data.", sizeof(StatElement), (sizeof(StatElement)*granules)/(size_t)K);
ast->print_cr(" The number of granules is limited to %dk, requiring a granules size of at least %d bytes for a 1GB heap.", (unsigned int)(max_granules/K), (unsigned int)(G/max_granules));
BUFFEREDSTREAM_FLUSH("\n")
while (!done) {
//---< reset counters with every aggregation >---
nBlocks_t1 = 0;
nBlocks_t2 = 0;
nBlocks_alive = 0;
nBlocks_dead = 0;
nBlocks_inconstr = 0;
nBlocks_unloaded = 0;
nBlocks_stub = 0;
nBlocks_free = 0;
nBlocks_used = 0;
nBlocks_zomb = 0;
nBlocks_disconn = 0;
nBlocks_notentr = 0;
//---< discard old arrays if size does not match >---
if (granules != alloc_granules) {
discard_StatArray(out);
discard_TopSizeArray(out);
}
//---< allocate arrays if they don't yet exist, initialize >---
prepare_StatArray(out, granules, granularity, heapName);
if (StatArray == NULL) {
set_HeapStatGlobals(out, heapName);
return;
}
prepare_TopSizeArray(out, maxTopSizeBlocks, heapName);
prepare_SizeDistArray(out, nSizeDistElements, heapName);
latest_compilation_id = CompileBroker::get_compilation_id();
unsigned int highest_compilation_id = 0;
size_t usedSpace = 0;
size_t t1Space = 0;
size_t t2Space = 0;
size_t aliveSpace = 0;
size_t disconnSpace = 0;
size_t notentrSpace = 0;
size_t deadSpace = 0;
size_t inconstrSpace = 0;
size_t unloadedSpace = 0;
size_t stubSpace = 0;
size_t freeSpace = 0;
size_t maxFreeSize = 0;
HeapBlock* maxFreeBlock = NULL;
bool insane = false;
int64_t hotnessAccumulator = 0;
unsigned int n_methods = 0;
avgTemp = 0;
minTemp = (int)(res_size > M ? (res_size/M)*2 : 1);
maxTemp = -minTemp;
for (HeapBlock *h = heap->first_block(); h != NULL && !insane; h = heap->next_block(h)) {
unsigned int hb_len = (unsigned int)h->length(); // despite being size_t, length can never overflow an unsigned int.
size_t hb_bytelen = ((size_t)hb_len)<<log2_seg_size;
unsigned int ix_beg = (unsigned int)(((char*)h-low_bound)/granule_size);
unsigned int ix_end = (unsigned int)(((char*)h-low_bound+(hb_bytelen-1))/granule_size);
unsigned int compile_id = 0;
CompLevel comp_lvl = CompLevel_none;
compType cType = noComp;
blobType cbType = noType;
//---< some sanity checks >---
// Do not assert here, just check, print error message and return.
// This is a diagnostic function. It is not supposed to tear down the VM.
if ((char*)h < low_bound) {
insane = true; ast->print_cr("Sanity check: HeapBlock @%p below low bound (%p)", (char*)h, low_bound);
}
if ((char*)h > (low_bound + res_size)) {
insane = true; ast->print_cr("Sanity check: HeapBlock @%p outside reserved range (%p)", (char*)h, low_bound + res_size);
}
if ((char*)h > (low_bound + size)) {
insane = true; ast->print_cr("Sanity check: HeapBlock @%p outside used range (%p)", (char*)h, low_bound + size);
}
if (ix_end >= granules) {
insane = true; ast->print_cr("Sanity check: end index (%d) out of bounds (" SIZE_FORMAT ")", ix_end, granules);
}
if (size != heap->capacity()) {
insane = true; ast->print_cr("Sanity check: code heap capacity has changed (" SIZE_FORMAT "K to " SIZE_FORMAT "K)", size/(size_t)K, heap->capacity()/(size_t)K);
}
if (ix_beg > ix_end) {
insane = true; ast->print_cr("Sanity check: end index (%d) lower than begin index (%d)", ix_end, ix_beg);
}
if (insane) {
BUFFEREDSTREAM_FLUSH("")
continue;
}
if (h->free()) {
nBlocks_free++;
freeSpace += hb_bytelen;
if (hb_bytelen > maxFreeSize) {
maxFreeSize = hb_bytelen;
maxFreeBlock = h;
}
} else {
update_SizeDistArray(out, hb_len);
nBlocks_used++;
usedSpace += hb_bytelen;
CodeBlob* cb = (CodeBlob*)heap->find_start(h);
if (cb != NULL) {
cbType = get_cbType(cb);
if (cb->is_nmethod()) {
compile_id = ((nmethod*)cb)->compile_id();
comp_lvl = (CompLevel)((nmethod*)cb)->comp_level();
if (((nmethod*)cb)->is_compiled_by_c1()) {
cType = c1;
}
if (((nmethod*)cb)->is_compiled_by_c2()) {
cType = c2;
}
if (((nmethod*)cb)->is_compiled_by_jvmci()) {
cType = jvmci;
}
switch (cbType) {
case nMethod_inuse: { // only for executable methods!!!
// space for these cbs is accounted for later.
int temperature = ((nmethod*)cb)->hotness_counter();
hotnessAccumulator += temperature;
n_methods++;
maxTemp = (temperature > maxTemp) ? temperature : maxTemp;
minTemp = (temperature < minTemp) ? temperature : minTemp;
break;
}
case nMethod_notused:
nBlocks_alive++;
nBlocks_disconn++;
aliveSpace += hb_bytelen;
disconnSpace += hb_bytelen;
break;
case nMethod_notentrant: // equivalent to nMethod_alive
nBlocks_alive++;
nBlocks_notentr++;
aliveSpace += hb_bytelen;
notentrSpace += hb_bytelen;
break;
case nMethod_unloaded:
nBlocks_unloaded++;
unloadedSpace += hb_bytelen;
break;
case nMethod_dead:
nBlocks_dead++;
deadSpace += hb_bytelen;
break;
case nMethod_inconstruction:
nBlocks_inconstr++;
inconstrSpace += hb_bytelen;
break;
default:
break;
}
}
//------------------------------------------
//---< register block in TopSizeArray >---
//------------------------------------------
if (alloc_topSizeBlocks > 0) {
if (used_topSizeBlocks == 0) {
TopSizeArray[0].start = h;
TopSizeArray[0].len = hb_len;
TopSizeArray[0].index = tsbStopper;
TopSizeArray[0].compiler = cType;
TopSizeArray[0].level = comp_lvl;
TopSizeArray[0].type = cbType;
currMax = hb_len;
currMin = hb_len;
currMin_ix = 0;
used_topSizeBlocks++;
// This check roughly cuts 5000 iterations (JVM98, mixed, dbg, termination stats):
} else if ((used_topSizeBlocks < alloc_topSizeBlocks) && (hb_len < currMin)) {
//---< all blocks in list are larger, but there is room left in array >---
TopSizeArray[currMin_ix].index = used_topSizeBlocks;
TopSizeArray[used_topSizeBlocks].start = h;
TopSizeArray[used_topSizeBlocks].len = hb_len;
TopSizeArray[used_topSizeBlocks].index = tsbStopper;
TopSizeArray[used_topSizeBlocks].compiler = cType;
TopSizeArray[used_topSizeBlocks].level = comp_lvl;
TopSizeArray[used_topSizeBlocks].type = cbType;
currMin = hb_len;
currMin_ix = used_topSizeBlocks;
used_topSizeBlocks++;
} else {
// This check cuts total_iterations by a factor of 6 (JVM98, mixed, dbg, termination stats):
// We don't need to search the list if we know beforehand that the current block size is
// smaller than the currently recorded minimum and there is no free entry left in the list.
if (!((used_topSizeBlocks == alloc_topSizeBlocks) && (hb_len <= currMin))) {
if (currMax < hb_len) {
currMax = hb_len;
}
unsigned int i;
unsigned int prev_i = tsbStopper;
unsigned int limit_i = 0;
for (i = 0; i != tsbStopper; i = TopSizeArray[i].index) {
if (limit_i++ >= alloc_topSizeBlocks) {
insane = true; break; // emergency exit
}
if (i >= used_topSizeBlocks) {
insane = true; break; // emergency exit
}
total_iterations++;
if (TopSizeArray[i].len < hb_len) {
//---< We want to insert here, element <i> is smaller than the current one >---
if (used_topSizeBlocks < alloc_topSizeBlocks) { // still room for a new entry to insert
// old entry gets moved to the next free element of the array.
// That's necessary to keep the entry for the largest block at index 0.
// This move might cause the current minimum to be moved to another place
if (i == currMin_ix) {
assert(TopSizeArray[i].len == currMin, "sort error");
currMin_ix = used_topSizeBlocks;
}
memcpy((void*)&TopSizeArray[used_topSizeBlocks], (void*)&TopSizeArray[i], sizeof(TopSizeBlk));
TopSizeArray[i].start = h;
TopSizeArray[i].len = hb_len;
TopSizeArray[i].index = used_topSizeBlocks;
TopSizeArray[i].compiler = cType;
TopSizeArray[i].level = comp_lvl;
TopSizeArray[i].type = cbType;
used_topSizeBlocks++;
} else { // no room for new entries, current block replaces entry for smallest block
//---< Find last entry (entry for smallest remembered block) >---
unsigned int j = i;
unsigned int prev_j = tsbStopper;
unsigned int limit_j = 0;
while (TopSizeArray[j].index != tsbStopper) {
if (limit_j++ >= alloc_topSizeBlocks) {
insane = true; break; // emergency exit
}
if (j >= used_topSizeBlocks) {
insane = true; break; // emergency exit
}
total_iterations++;
prev_j = j;
j = TopSizeArray[j].index;
}
if (!insane) {
if (prev_j == tsbStopper) {
//---< Above while loop did not iterate, we already are the min entry >---
//---< We have to just replace the smallest entry >---
currMin = hb_len;
currMin_ix = j;
TopSizeArray[j].start = h;
TopSizeArray[j].len = hb_len;
TopSizeArray[j].index = tsbStopper; // already set!!
TopSizeArray[j].compiler = cType;
TopSizeArray[j].level = comp_lvl;
TopSizeArray[j].type = cbType;
} else {
//---< second-smallest entry is now smallest >---
TopSizeArray[prev_j].index = tsbStopper;
currMin = TopSizeArray[prev_j].len;
currMin_ix = prev_j;
//---< smallest entry gets overwritten >---
memcpy((void*)&TopSizeArray[j], (void*)&TopSizeArray[i], sizeof(TopSizeBlk));
TopSizeArray[i].start = h;
TopSizeArray[i].len = hb_len;
TopSizeArray[i].index = j;
TopSizeArray[i].compiler = cType;
TopSizeArray[i].level = comp_lvl;
TopSizeArray[i].type = cbType;
}
} // insane
}
break;
}
prev_i = i;
}
if (insane) {
// Note: regular analysis could probably continue by resetting "insane" flag.
out->print_cr("Possible loop in TopSizeBlocks list detected. Analysis aborted.");
discard_TopSizeArray(out);
}
}
}
}
//----------------------------------------------
//---< END register block in TopSizeArray >---
//----------------------------------------------
} else {
nBlocks_zomb++;
}
if (ix_beg == ix_end) {
StatArray[ix_beg].type = cbType;
switch (cbType) {
case nMethod_inuse:
highest_compilation_id = (highest_compilation_id >= compile_id) ? highest_compilation_id : compile_id;
if (comp_lvl < CompLevel_full_optimization) {
nBlocks_t1++;
t1Space += hb_bytelen;
StatArray[ix_beg].t1_count++;
StatArray[ix_beg].t1_space += (unsigned short)hb_len;
StatArray[ix_beg].t1_age = StatArray[ix_beg].t1_age < compile_id ? compile_id : StatArray[ix_beg].t1_age;
} else {
nBlocks_t2++;
t2Space += hb_bytelen;
StatArray[ix_beg].t2_count++;
StatArray[ix_beg].t2_space += (unsigned short)hb_len;
StatArray[ix_beg].t2_age = StatArray[ix_beg].t2_age < compile_id ? compile_id : StatArray[ix_beg].t2_age;
}
StatArray[ix_beg].level = comp_lvl;
StatArray[ix_beg].compiler = cType;
break;
case nMethod_inconstruction: // let's count "in construction" nmethods here.
case nMethod_alive:
StatArray[ix_beg].tx_count++;
StatArray[ix_beg].tx_space += (unsigned short)hb_len;
StatArray[ix_beg].tx_age = StatArray[ix_beg].tx_age < compile_id ? compile_id : StatArray[ix_beg].tx_age;
StatArray[ix_beg].level = comp_lvl;
StatArray[ix_beg].compiler = cType;
break;
case nMethod_dead:
case nMethod_unloaded:
StatArray[ix_beg].dead_count++;
StatArray[ix_beg].dead_space += (unsigned short)hb_len;
break;
default:
// must be a stub, if it's not a dead or alive nMethod
nBlocks_stub++;
stubSpace += hb_bytelen;
StatArray[ix_beg].stub_count++;
StatArray[ix_beg].stub_space += (unsigned short)hb_len;
break;
}
} else {
unsigned int beg_space = (unsigned int)(granule_size - ((char*)h - low_bound - ix_beg*granule_size));
unsigned int end_space = (unsigned int)(hb_bytelen - beg_space - (ix_end-ix_beg-1)*granule_size);
beg_space = beg_space>>log2_seg_size; // store in units of _segment_size
end_space = end_space>>log2_seg_size; // store in units of _segment_size
StatArray[ix_beg].type = cbType;
StatArray[ix_end].type = cbType;
switch (cbType) {
case nMethod_inuse:
highest_compilation_id = (highest_compilation_id >= compile_id) ? highest_compilation_id : compile_id;
if (comp_lvl < CompLevel_full_optimization) {
nBlocks_t1++;
t1Space += hb_bytelen;
StatArray[ix_beg].t1_count++;
StatArray[ix_beg].t1_space += (unsigned short)beg_space;
StatArray[ix_beg].t1_age = StatArray[ix_beg].t1_age < compile_id ? compile_id : StatArray[ix_beg].t1_age;
StatArray[ix_end].t1_count++;
StatArray[ix_end].t1_space += (unsigned short)end_space;
StatArray[ix_end].t1_age = StatArray[ix_end].t1_age < compile_id ? compile_id : StatArray[ix_end].t1_age;
} else {
nBlocks_t2++;
t2Space += hb_bytelen;
StatArray[ix_beg].t2_count++;
StatArray[ix_beg].t2_space += (unsigned short)beg_space;
StatArray[ix_beg].t2_age = StatArray[ix_beg].t2_age < compile_id ? compile_id : StatArray[ix_beg].t2_age;
StatArray[ix_end].t2_count++;
StatArray[ix_end].t2_space += (unsigned short)end_space;
StatArray[ix_end].t2_age = StatArray[ix_end].t2_age < compile_id ? compile_id : StatArray[ix_end].t2_age;
}
StatArray[ix_beg].level = comp_lvl;
StatArray[ix_beg].compiler = cType;
StatArray[ix_end].level = comp_lvl;
StatArray[ix_end].compiler = cType;
break;
case nMethod_inconstruction: // let's count "in construction" nmethods here.
case nMethod_alive:
StatArray[ix_beg].tx_count++;
StatArray[ix_beg].tx_space += (unsigned short)beg_space;
StatArray[ix_beg].tx_age = StatArray[ix_beg].tx_age < compile_id ? compile_id : StatArray[ix_beg].tx_age;
StatArray[ix_end].tx_count++;
StatArray[ix_end].tx_space += (unsigned short)end_space;
StatArray[ix_end].tx_age = StatArray[ix_end].tx_age < compile_id ? compile_id : StatArray[ix_end].tx_age;
StatArray[ix_beg].level = comp_lvl;
StatArray[ix_beg].compiler = cType;
StatArray[ix_end].level = comp_lvl;
StatArray[ix_end].compiler = cType;
break;
case nMethod_dead:
case nMethod_unloaded:
StatArray[ix_beg].dead_count++;
StatArray[ix_beg].dead_space += (unsigned short)beg_space;
StatArray[ix_end].dead_count++;
StatArray[ix_end].dead_space += (unsigned short)end_space;
break;
default:
// must be a stub, if it's not a dead or alive nMethod
nBlocks_stub++;
stubSpace += hb_bytelen;
StatArray[ix_beg].stub_count++;
StatArray[ix_beg].stub_space += (unsigned short)beg_space;
StatArray[ix_end].stub_count++;
StatArray[ix_end].stub_space += (unsigned short)end_space;
break;
}
for (unsigned int ix = ix_beg+1; ix < ix_end; ix++) {
StatArray[ix].type = cbType;
switch (cbType) {
case nMethod_inuse:
if (comp_lvl < CompLevel_full_optimization) {
StatArray[ix].t1_count++;
StatArray[ix].t1_space += (unsigned short)(granule_size>>log2_seg_size);
StatArray[ix].t1_age = StatArray[ix].t1_age < compile_id ? compile_id : StatArray[ix].t1_age;
} else {
StatArray[ix].t2_count++;
StatArray[ix].t2_space += (unsigned short)(granule_size>>log2_seg_size);
StatArray[ix].t2_age = StatArray[ix].t2_age < compile_id ? compile_id : StatArray[ix].t2_age;
}
StatArray[ix].level = comp_lvl;
StatArray[ix].compiler = cType;
break;
case nMethod_inconstruction: // let's count "in construction" nmethods here.
case nMethod_alive:
StatArray[ix].tx_count++;
StatArray[ix].tx_space += (unsigned short)(granule_size>>log2_seg_size);
StatArray[ix].tx_age = StatArray[ix].tx_age < compile_id ? compile_id : StatArray[ix].tx_age;
StatArray[ix].level = comp_lvl;
StatArray[ix].compiler = cType;
break;
case nMethod_dead:
case nMethod_unloaded:
StatArray[ix].dead_count++;
StatArray[ix].dead_space += (unsigned short)(granule_size>>log2_seg_size);
break;
default:
// must be a stub, if it's not a dead or alive nMethod
StatArray[ix].stub_count++;
StatArray[ix].stub_space += (unsigned short)(granule_size>>log2_seg_size);
break;
}
}
}
}
}
done = true;
if (!insane) {
// There is a risk for this block (because it contains many print statements) to get
// interspersed with print data from other threads. We take this risk intentionally.
// Getting stalled waiting for tty_lock while holding the CodeCache_lock is not desirable.
printBox(ast, '-', "Global CodeHeap statistics for segment ", heapName);
ast->print_cr("freeSpace = " SIZE_FORMAT_W(8) "k, nBlocks_free = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", freeSpace/(size_t)K, nBlocks_free, (100.0*freeSpace)/size, (100.0*freeSpace)/res_size);
ast->print_cr("usedSpace = " SIZE_FORMAT_W(8) "k, nBlocks_used = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", usedSpace/(size_t)K, nBlocks_used, (100.0*usedSpace)/size, (100.0*usedSpace)/res_size);
ast->print_cr(" Tier1 Space = " SIZE_FORMAT_W(8) "k, nBlocks_t1 = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", t1Space/(size_t)K, nBlocks_t1, (100.0*t1Space)/size, (100.0*t1Space)/res_size);
ast->print_cr(" Tier2 Space = " SIZE_FORMAT_W(8) "k, nBlocks_t2 = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", t2Space/(size_t)K, nBlocks_t2, (100.0*t2Space)/size, (100.0*t2Space)/res_size);
ast->print_cr(" Alive Space = " SIZE_FORMAT_W(8) "k, nBlocks_alive = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", aliveSpace/(size_t)K, nBlocks_alive, (100.0*aliveSpace)/size, (100.0*aliveSpace)/res_size);
ast->print_cr(" disconnected = " SIZE_FORMAT_W(8) "k, nBlocks_disconn = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", disconnSpace/(size_t)K, nBlocks_disconn, (100.0*disconnSpace)/size, (100.0*disconnSpace)/res_size);
ast->print_cr(" not entrant = " SIZE_FORMAT_W(8) "k, nBlocks_notentr = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", notentrSpace/(size_t)K, nBlocks_notentr, (100.0*notentrSpace)/size, (100.0*notentrSpace)/res_size);
ast->print_cr(" inconstrSpace = " SIZE_FORMAT_W(8) "k, nBlocks_inconstr = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", inconstrSpace/(size_t)K, nBlocks_inconstr, (100.0*inconstrSpace)/size, (100.0*inconstrSpace)/res_size);
ast->print_cr(" unloadedSpace = " SIZE_FORMAT_W(8) "k, nBlocks_unloaded = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", unloadedSpace/(size_t)K, nBlocks_unloaded, (100.0*unloadedSpace)/size, (100.0*unloadedSpace)/res_size);
ast->print_cr(" deadSpace = " SIZE_FORMAT_W(8) "k, nBlocks_dead = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", deadSpace/(size_t)K, nBlocks_dead, (100.0*deadSpace)/size, (100.0*deadSpace)/res_size);
ast->print_cr(" stubSpace = " SIZE_FORMAT_W(8) "k, nBlocks_stub = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", stubSpace/(size_t)K, nBlocks_stub, (100.0*stubSpace)/size, (100.0*stubSpace)/res_size);
ast->print_cr("ZombieBlocks = %8d. These are HeapBlocks which could not be identified as CodeBlobs.", nBlocks_zomb);
ast->cr();
ast->print_cr("Segment start = " INTPTR_FORMAT ", used space = " SIZE_FORMAT_W(8)"k", p2i(low_bound), size/K);
ast->print_cr("Segment end (used) = " INTPTR_FORMAT ", remaining space = " SIZE_FORMAT_W(8)"k", p2i(low_bound) + size, (res_size - size)/K);
ast->print_cr("Segment end (reserved) = " INTPTR_FORMAT ", reserved space = " SIZE_FORMAT_W(8)"k", p2i(low_bound) + res_size, res_size/K);
ast->cr();
ast->print_cr("latest allocated compilation id = %d", latest_compilation_id);
ast->print_cr("highest observed compilation id = %d", highest_compilation_id);
ast->print_cr("Building TopSizeList iterations = %ld", total_iterations);
ast->cr();
int reset_val = NMethodSweeper::hotness_counter_reset_val();
double reverse_free_ratio = (res_size > size) ? (double)res_size/(double)(res_size-size) : (double)res_size;
printBox(ast, '-', "Method hotness information at time of this analysis", NULL);
ast->print_cr("Highest possible method temperature: %12d", reset_val);
ast->print_cr("Threshold for method to be considered 'cold': %12.3f", -reset_val + reverse_free_ratio * NmethodSweepActivity);
if (n_methods > 0) {
avgTemp = hotnessAccumulator/n_methods;
ast->print_cr("min. hotness = %6d", minTemp);
ast->print_cr("avg. hotness = %6d", avgTemp);
ast->print_cr("max. hotness = %6d", maxTemp);
} else {
avgTemp = 0;
ast->print_cr("No hotness data available");
}
BUFFEREDSTREAM_FLUSH("\n")
// This loop is intentionally printing directly to "out".
// It should not print anything, anyway.
out->print("Verifying collected data...");
size_t granule_segs = granule_size>>log2_seg_size;
for (unsigned int ix = 0; ix < granules; ix++) {
if (StatArray[ix].t1_count > granule_segs) {
out->print_cr("t1_count[%d] = %d", ix, StatArray[ix].t1_count);
}
if (StatArray[ix].t2_count > granule_segs) {
out->print_cr("t2_count[%d] = %d", ix, StatArray[ix].t2_count);
}
if (StatArray[ix].tx_count > granule_segs) {
out->print_cr("tx_count[%d] = %d", ix, StatArray[ix].tx_count);
}
if (StatArray[ix].stub_count > granule_segs) {
out->print_cr("stub_count[%d] = %d", ix, StatArray[ix].stub_count);
}
if (StatArray[ix].dead_count > granule_segs) {
out->print_cr("dead_count[%d] = %d", ix, StatArray[ix].dead_count);
}
if (StatArray[ix].t1_space > granule_segs) {
out->print_cr("t1_space[%d] = %d", ix, StatArray[ix].t1_space);
}
if (StatArray[ix].t2_space > granule_segs) {
out->print_cr("t2_space[%d] = %d", ix, StatArray[ix].t2_space);
}
if (StatArray[ix].tx_space > granule_segs) {
out->print_cr("tx_space[%d] = %d", ix, StatArray[ix].tx_space);
}
if (StatArray[ix].stub_space > granule_segs) {
out->print_cr("stub_space[%d] = %d", ix, StatArray[ix].stub_space);
}
if (StatArray[ix].dead_space > granule_segs) {
out->print_cr("dead_space[%d] = %d", ix, StatArray[ix].dead_space);
}
// this cast is awful! I need it because NT/Intel reports a signed/unsigned mismatch.
if ((size_t)(StatArray[ix].t1_count+StatArray[ix].t2_count+StatArray[ix].tx_count+StatArray[ix].stub_count+StatArray[ix].dead_count) > granule_segs) {
out->print_cr("t1_count[%d] = %d, t2_count[%d] = %d, tx_count[%d] = %d, stub_count[%d] = %d", ix, StatArray[ix].t1_count, ix, StatArray[ix].t2_count, ix, StatArray[ix].tx_count, ix, StatArray[ix].stub_count);
}
if ((size_t)(StatArray[ix].t1_space+StatArray[ix].t2_space+StatArray[ix].tx_space+StatArray[ix].stub_space+StatArray[ix].dead_space) > granule_segs) {
out->print_cr("t1_space[%d] = %d, t2_space[%d] = %d, tx_space[%d] = %d, stub_space[%d] = %d", ix, StatArray[ix].t1_space, ix, StatArray[ix].t2_space, ix, StatArray[ix].tx_space, ix, StatArray[ix].stub_space);
}
}
// This loop is intentionally printing directly to "out".
// It should not print anything, anyway.
if (used_topSizeBlocks > 0) {
unsigned int j = 0;
if (TopSizeArray[0].len != currMax) {
out->print_cr("currMax(%d) differs from TopSizeArray[0].len(%d)", currMax, TopSizeArray[0].len);
}
for (unsigned int i = 0; (TopSizeArray[i].index != tsbStopper) && (j++ < alloc_topSizeBlocks); i = TopSizeArray[i].index) {
if (TopSizeArray[i].len < TopSizeArray[TopSizeArray[i].index].len) {
out->print_cr("sort error at index %d: %d !>= %d", i, TopSizeArray[i].len, TopSizeArray[TopSizeArray[i].index].len);
}
}
if (j >= alloc_topSizeBlocks) {
out->print_cr("Possible loop in TopSizeArray chaining!\n allocBlocks = %d, usedBlocks = %d", alloc_topSizeBlocks, used_topSizeBlocks);
for (unsigned int i = 0; i < alloc_topSizeBlocks; i++) {
out->print_cr(" TopSizeArray[%d].index = %d, len = %d", i, TopSizeArray[i].index, TopSizeArray[i].len);
}
}
}
out->print_cr("...done\n\n");
} else {
// insane heap state detected. Analysis data incomplete. Just throw it away.
discard_StatArray(out);
discard_TopSizeArray(out);
}
}
done = false;
while (!done && (nBlocks_free > 0)) {
printBox(ast, '=', "C O D E H E A P A N A L Y S I S (free blocks) for segment ", heapName);
ast->print_cr(" The aggregate step collects information about all free blocks in CodeHeap.\n"
" Subsequent print functions create their output based on this snapshot.\n");
ast->print_cr(" Free space in %s is distributed over %d free blocks.", heapName, nBlocks_free);
ast->print_cr(" Each free block takes " SIZE_FORMAT " bytes of C heap for statistics data, that is " SIZE_FORMAT "K in total.", sizeof(FreeBlk), (sizeof(FreeBlk)*nBlocks_free)/K);
BUFFEREDSTREAM_FLUSH("\n")
//----------------------------------------
//-- Prepare the FreeArray of FreeBlks --
//----------------------------------------
//---< discard old array if size does not match >---
if (nBlocks_free != alloc_freeBlocks) {
discard_FreeArray(out);
}
prepare_FreeArray(out, nBlocks_free, heapName);
if (FreeArray == NULL) {
done = true;
continue;
}
//----------------------------------------
//-- Collect all FreeBlks in FreeArray --
//----------------------------------------
unsigned int ix = 0;
FreeBlock* cur = heap->freelist();
while (cur != NULL) {
if (ix < alloc_freeBlocks) { // don't index out of bounds if _freelist has more blocks than anticipated
FreeArray[ix].start = cur;
FreeArray[ix].len = (unsigned int)(cur->length()<<log2_seg_size);
FreeArray[ix].index = ix;
}
cur = cur->link();
ix++;
}
if (ix != alloc_freeBlocks) {
ast->print_cr("Free block count mismatch. Expected %d free blocks, but found %d.", alloc_freeBlocks, ix);
ast->print_cr("I will update the counter and retry data collection");
BUFFEREDSTREAM_FLUSH("\n")
nBlocks_free = ix;
continue;
}
done = true;
}
if (!done || (nBlocks_free == 0)) {
if (nBlocks_free == 0) {
printBox(ast, '-', "no free blocks found in ", heapName);
} else if (!done) {
ast->print_cr("Free block count mismatch could not be resolved.");
ast->print_cr("Try to run \"aggregate\" function to update counters");
}
BUFFEREDSTREAM_FLUSH("")
//---< discard old array and update global values >---
discard_FreeArray(out);
set_HeapStatGlobals(out, heapName);
return;
}
//---< calculate and fill remaining fields >---
if (FreeArray != NULL) {
// This loop is intentionally printing directly to "out".
// It should not print anything, anyway.
for (unsigned int ix = 0; ix < alloc_freeBlocks-1; ix++) {
size_t lenSum = 0;
FreeArray[ix].gap = (unsigned int)((address)FreeArray[ix+1].start - ((address)FreeArray[ix].start + FreeArray[ix].len));
for (HeapBlock *h = heap->next_block(FreeArray[ix].start); (h != NULL) && (h != FreeArray[ix+1].start); h = heap->next_block(h)) {
CodeBlob *cb = (CodeBlob*)(heap->find_start(h));
if ((cb != NULL) && !cb->is_nmethod()) {
FreeArray[ix].stubs_in_gap = true;
}
FreeArray[ix].n_gapBlocks++;
lenSum += h->length()<<log2_seg_size;
if (((address)h < ((address)FreeArray[ix].start+FreeArray[ix].len)) || (h >= FreeArray[ix+1].start)) {
out->print_cr("unsorted occupied CodeHeap block found @ %p, gap interval [%p, %p)", h, (address)FreeArray[ix].start+FreeArray[ix].len, FreeArray[ix+1].start);
}
}
if (lenSum != FreeArray[ix].gap) {
out->print_cr("Length mismatch for gap between FreeBlk[%d] and FreeBlk[%d]. Calculated: %d, accumulated: %d.", ix, ix+1, FreeArray[ix].gap, (unsigned int)lenSum);
}
}
}
set_HeapStatGlobals(out, heapName);
printBox(ast, '=', "C O D E H E A P A N A L Y S I S C O M P L E T E for segment ", heapName);
BUFFEREDSTREAM_FLUSH("\n")
}
void CodeHeapState::print_usedSpace(outputStream* out, CodeHeap* heap) {
if (!initialization_complete) {
return;
}
const char* heapName = get_heapName(heap);
get_HeapStatGlobals(out, heapName);
if ((StatArray == NULL) || (TopSizeArray == NULL) || (used_topSizeBlocks == 0)) {
return;
}
BUFFEREDSTREAM_DECL(ast, out)
{
printBox(ast, '=', "U S E D S P A C E S T A T I S T I C S for ", heapName);
ast->print_cr("Note: The Top%d list of the largest used blocks associates method names\n"
" and other identifying information with the block size data.\n"
"\n"
" Method names are dynamically retrieved from the code cache at print time.\n"
" Due to the living nature of the code cache and because the CodeCache_lock\n"
" is not continuously held, the displayed name might be wrong or no name\n"
" might be found at all. The likelihood for that to happen increases\n"
" over time passed between analysis and print step.\n", used_topSizeBlocks);
BUFFEREDSTREAM_FLUSH_LOCKED("\n")
}
//----------------------------
//-- Print Top Used Blocks --
//----------------------------
{
char* low_bound = heap->low_boundary();
bool have_CodeCache_lock = CodeCache_lock->owned_by_self();
printBox(ast, '-', "Largest Used Blocks in ", heapName);
print_blobType_legend(ast);
ast->fill_to(51);
ast->print("%4s", "blob");
ast->fill_to(56);
ast->print("%9s", "compiler");
ast->fill_to(66);
ast->print_cr("%6s", "method");
ast->print_cr("%18s %13s %17s %4s %9s %5s %s", "Addr(module) ", "offset", "size", "type", " type lvl", " temp", "Name");
BUFFEREDSTREAM_FLUSH_LOCKED("")
//---< print Top Ten Used Blocks >---
if (used_topSizeBlocks > 0) {
unsigned int printed_topSizeBlocks = 0;
for (unsigned int i = 0; i != tsbStopper; i = TopSizeArray[i].index) {
printed_topSizeBlocks++;
nmethod* nm = NULL;
const char* blob_name = "unnamed blob or blob name unavailable";
// heap->find_start() is safe. Only works on _segmap.
// Returns NULL or void*. Returned CodeBlob may be uninitialized.
HeapBlock* heapBlock = TopSizeArray[i].start;
CodeBlob* this_blob = (CodeBlob*)(heap->find_start(heapBlock));
bool blob_is_safe = blob_access_is_safe(this_blob, NULL);
if (blob_is_safe) {
//---< access these fields only if we own the CodeCache_lock >---
if (have_CodeCache_lock) {
blob_name = this_blob->name();
nm = this_blob->as_nmethod_or_null();
}
//---< blob address >---
ast->print(INTPTR_FORMAT, p2i(this_blob));
ast->fill_to(19);
//---< blob offset from CodeHeap begin >---
ast->print("(+" PTR32_FORMAT ")", (unsigned int)((char*)this_blob-low_bound));
ast->fill_to(33);
} else {
//---< block address >---
ast->print(INTPTR_FORMAT, p2i(TopSizeArray[i].start));
ast->fill_to(19);
//---< block offset from CodeHeap begin >---
ast->print("(+" PTR32_FORMAT ")", (unsigned int)((char*)TopSizeArray[i].start-low_bound));
ast->fill_to(33);
}
//---< print size, name, and signature (for nMethods) >---
// access nmethod and Method fields only if we own the CodeCache_lock.
// This fact is implicitly transported via nm != NULL.
if (CompiledMethod::nmethod_access_is_safe(nm)) {
ResourceMark rm;
Method* method = nm->method();
if (nm->is_in_use()) {
blob_name = method->name_and_sig_as_C_string();
}
if (nm->is_not_entrant()) {
blob_name = method->name_and_sig_as_C_string();
}
//---< nMethod size in hex >---
unsigned int total_size = nm->total_size();
ast->print(PTR32_FORMAT, total_size);
ast->print("(" SIZE_FORMAT_W(4) "K)", total_size/K);
ast->fill_to(51);
ast->print(" %c", blobTypeChar[TopSizeArray[i].type]);
//---< compiler information >---
ast->fill_to(56);
ast->print("%5s %3d", compTypeName[TopSizeArray[i].compiler], TopSizeArray[i].level);
//---< method temperature >---
ast->fill_to(67);
ast->print("%5d", nm->hotness_counter());
//---< name and signature >---
ast->fill_to(67+6);
if (nm->is_not_installed()) {
ast->print(" not (yet) installed method ");
}
if (nm->is_zombie()) {
ast->print(" zombie method ");
}
ast->print("%s", blob_name);
} else {
//---< block size in hex >---
ast->print(PTR32_FORMAT, (unsigned int)(TopSizeArray[i].len<<log2_seg_size));
ast->print("(" SIZE_FORMAT_W(4) "K)", (TopSizeArray[i].len<<log2_seg_size)/K);
//---< no compiler information >---
ast->fill_to(56);
//---< name and signature >---
ast->fill_to(67+6);
ast->print("%s", blob_name);
}
ast->cr();
BUFFEREDSTREAM_FLUSH_AUTO("")
}
if (used_topSizeBlocks != printed_topSizeBlocks) {
ast->print_cr("used blocks: %d, printed blocks: %d", used_topSizeBlocks, printed_topSizeBlocks);
for (unsigned int i = 0; i < alloc_topSizeBlocks; i++) {
ast->print_cr(" TopSizeArray[%d].index = %d, len = %d", i, TopSizeArray[i].index, TopSizeArray[i].len);
BUFFEREDSTREAM_FLUSH_AUTO("")
}
}
BUFFEREDSTREAM_FLUSH("\n\n")
}
}
//-----------------------------
//-- Print Usage Histogram --
//-----------------------------
if (SizeDistributionArray != NULL) {
unsigned long total_count = 0;
unsigned long total_size = 0;
const unsigned long pctFactor = 200;
for (unsigned int i = 0; i < nSizeDistElements; i++) {
total_count += SizeDistributionArray[i].count;
total_size += SizeDistributionArray[i].lenSum;
}
if ((total_count > 0) && (total_size > 0)) {
printBox(ast, '-', "Block count histogram for ", heapName);
ast->print_cr("Note: The histogram indicates how many blocks (as a percentage\n"
" of all blocks) have a size in the given range.\n"
" %ld characters are printed per percentage point.\n", pctFactor/100);
ast->print_cr("total size of all blocks: %7ldM", (total_size<<log2_seg_size)/M);
ast->print_cr("total number of all blocks: %7ld\n", total_count);
BUFFEREDSTREAM_FLUSH_LOCKED("")
ast->print_cr("[Size Range)------avg.-size-+----count-+");
for (unsigned int i = 0; i < nSizeDistElements; i++) {
if (SizeDistributionArray[i].rangeStart<<log2_seg_size < K) {
ast->print("[" SIZE_FORMAT_W(5) " .." SIZE_FORMAT_W(5) " ): "
,(size_t)(SizeDistributionArray[i].rangeStart<<log2_seg_size)
,(size_t)(SizeDistributionArray[i].rangeEnd<<log2_seg_size)
);
} else if (SizeDistributionArray[i].rangeStart<<log2_seg_size < M) {
ast->print("[" SIZE_FORMAT_W(5) "K.." SIZE_FORMAT_W(5) "K): "
,(SizeDistributionArray[i].rangeStart<<log2_seg_size)/K
,(SizeDistributionArray[i].rangeEnd<<log2_seg_size)/K
);
} else {
ast->print("[" SIZE_FORMAT_W(5) "M.." SIZE_FORMAT_W(5) "M): "
,(SizeDistributionArray[i].rangeStart<<log2_seg_size)/M
,(SizeDistributionArray[i].rangeEnd<<log2_seg_size)/M
);
}
ast->print(" %8d | %8d |",
SizeDistributionArray[i].count > 0 ? (SizeDistributionArray[i].lenSum<<log2_seg_size)/SizeDistributionArray[i].count : 0,
SizeDistributionArray[i].count);
unsigned int percent = pctFactor*SizeDistributionArray[i].count/total_count;
for (unsigned int j = 1; j <= percent; j++) {
ast->print("%c", (j%((pctFactor/100)*10) == 0) ? ('0'+j/(((unsigned int)pctFactor/100)*10)) : '*');
}
ast->cr();
BUFFEREDSTREAM_FLUSH_AUTO("")
}
ast->print_cr("----------------------------+----------+");
BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
printBox(ast, '-', "Contribution per size range to total size for ", heapName);
ast->print_cr("Note: The histogram indicates how much space (as a percentage of all\n"
" occupied space) is used by the blocks in the given size range.\n"
" %ld characters are printed per percentage point.\n", pctFactor/100);
ast->print_cr("total size of all blocks: %7ldM", (total_size<<log2_seg_size)/M);
ast->print_cr("total number of all blocks: %7ld\n", total_count);
BUFFEREDSTREAM_FLUSH_LOCKED("")
ast->print_cr("[Size Range)------avg.-size-+----count-+");
for (unsigned int i = 0; i < nSizeDistElements; i++) {
if (SizeDistributionArray[i].rangeStart<<log2_seg_size < K) {
ast->print("[" SIZE_FORMAT_W(5) " .." SIZE_FORMAT_W(5) " ): "
,(size_t)(SizeDistributionArray[i].rangeStart<<log2_seg_size)
,(size_t)(SizeDistributionArray[i].rangeEnd<<log2_seg_size)
);
} else if (SizeDistributionArray[i].rangeStart<<log2_seg_size < M) {
ast->print("[" SIZE_FORMAT_W(5) "K.." SIZE_FORMAT_W(5) "K): "
,(SizeDistributionArray[i].rangeStart<<log2_seg_size)/K
,(SizeDistributionArray[i].rangeEnd<<log2_seg_size)/K
);
} else {
ast->print("[" SIZE_FORMAT_W(5) "M.." SIZE_FORMAT_W(5) "M): "
,(SizeDistributionArray[i].rangeStart<<log2_seg_size)/M
,(SizeDistributionArray[i].rangeEnd<<log2_seg_size)/M
);
}
ast->print(" %8d | %8d |",
SizeDistributionArray[i].count > 0 ? (SizeDistributionArray[i].lenSum<<log2_seg_size)/SizeDistributionArray[i].count : 0,
SizeDistributionArray[i].count);
unsigned int percent = pctFactor*(unsigned long)SizeDistributionArray[i].lenSum/total_size;
for (unsigned int j = 1; j <= percent; j++) {
ast->print("%c", (j%((pctFactor/100)*10) == 0) ? ('0'+j/(((unsigned int)pctFactor/100)*10)) : '*');
}
ast->cr();
BUFFEREDSTREAM_FLUSH_AUTO("")
}
ast->print_cr("----------------------------+----------+");
BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
}
}
}
void CodeHeapState::print_freeSpace(outputStream* out, CodeHeap* heap) {
if (!initialization_complete) {
return;
}
const char* heapName = get_heapName(heap);
get_HeapStatGlobals(out, heapName);
if ((StatArray == NULL) || (FreeArray == NULL) || (alloc_granules == 0)) {
return;
}
BUFFEREDSTREAM_DECL(ast, out)
{
printBox(ast, '=', "F R E E S P A C E S T A T I S T I C S for ", heapName);
ast->print_cr("Note: in this context, a gap is the occupied space between two free blocks.\n"
" Those gaps are of interest if there is a chance that they become\n"
" unoccupied, e.g. by class unloading. Then, the two adjacent free\n"
" blocks, together with the now unoccupied space, form a new, large\n"
" free block.");
BUFFEREDSTREAM_FLUSH_LOCKED("\n")
}
{
printBox(ast, '-', "List of all Free Blocks in ", heapName);
unsigned int ix = 0;
for (ix = 0; ix < alloc_freeBlocks-1; ix++) {
ast->print(INTPTR_FORMAT ": Len[%4d] = " HEX32_FORMAT ",", p2i(FreeArray[ix].start), ix, FreeArray[ix].len);
ast->fill_to(38);
ast->print("Gap[%4d..%4d]: " HEX32_FORMAT " bytes,", ix, ix+1, FreeArray[ix].gap);
ast->fill_to(71);
ast->print("block count: %6d", FreeArray[ix].n_gapBlocks);
if (FreeArray[ix].stubs_in_gap) {
ast->print(" !! permanent gap, contains stubs and/or blobs !!");
}
ast->cr();
BUFFEREDSTREAM_FLUSH_AUTO("")
}
ast->print_cr(INTPTR_FORMAT ": Len[%4d] = " HEX32_FORMAT, p2i(FreeArray[ix].start), ix, FreeArray[ix].len);
BUFFEREDSTREAM_FLUSH_LOCKED("\n\n")
}
//-----------------------------------------
//-- Find and Print Top Ten Free Blocks --
//-----------------------------------------
//---< find Top Ten Free Blocks >---
const unsigned int nTop = 10;
unsigned int currMax10 = 0;
struct FreeBlk* FreeTopTen[nTop];
memset(FreeTopTen, 0, sizeof(FreeTopTen));
for (unsigned int ix = 0; ix < alloc_freeBlocks; ix++) {
if (FreeArray[ix].len > currMax10) { // larger than the ten largest found so far
unsigned int currSize = FreeArray[ix].len;
unsigned int iy;
for (iy = 0; iy < nTop && FreeTopTen[iy] != NULL; iy++) {
if (FreeTopTen[iy]->len < currSize) {
for (unsigned int iz = nTop-1; iz > iy; iz--) { // make room to insert new free block
FreeTopTen[iz] = FreeTopTen[iz-1];
}
FreeTopTen[iy] = &FreeArray[ix]; // insert new free block
if (FreeTopTen[nTop-1] != NULL) {
currMax10 = FreeTopTen[nTop-1]->len;
}
break; // done with this, check next free block
}
}
if (iy >= nTop) {
ast->print_cr("Internal logic error. New Max10 = %d detected, but could not be merged. Old Max10 = %d",
currSize, currMax10);
continue;
}
if (FreeTopTen[iy] == NULL) {
FreeTopTen[iy] = &FreeArray[ix];
if (iy == (nTop-1)) {
currMax10 = currSize;
}
}
}
}
BUFFEREDSTREAM_FLUSH_AUTO("")
{
printBox(ast, '-', "Top Ten Free Blocks in ", heapName);
//---< print Top Ten Free Blocks >---
for (unsigned int iy = 0; (iy < nTop) && (FreeTopTen[iy] != NULL); iy++) {
ast->print("Pos %3d: Block %4d - size " HEX32_FORMAT ",", iy+1, FreeTopTen[iy]->index, FreeTopTen[iy]->len);
ast->fill_to(39);
if (FreeTopTen[iy]->index == (alloc_freeBlocks-1)) {
ast->print("last free block in list.");
} else {
ast->print("Gap (to next) " HEX32_FORMAT ",", FreeTopTen[iy]->gap);
ast->fill_to(63);
ast->print("#blocks (in gap) %d", FreeTopTen[iy]->n_gapBlocks);
}
ast->cr();
BUFFEREDSTREAM_FLUSH_AUTO("")
}
}
BUFFEREDSTREAM_FLUSH_LOCKED("\n\n")
//--------------------------------------------------------
//-- Find and Print Top Ten Free-Occupied-Free Triples --
//--------------------------------------------------------
//---< find and print Top Ten Triples (Free-Occupied-Free) >---
currMax10 = 0;
struct FreeBlk *FreeTopTenTriple[nTop];
memset(FreeTopTenTriple, 0, sizeof(FreeTopTenTriple));
for (unsigned int ix = 0; ix < alloc_freeBlocks-1; ix++) {
// If there are stubs in the gap, this gap will never become completely free.
// The triple will thus never merge to one free block.
unsigned int lenTriple = FreeArray[ix].len + (FreeArray[ix].stubs_in_gap ? 0 : FreeArray[ix].gap + FreeArray[ix+1].len);
FreeArray[ix].len = lenTriple;
if (lenTriple > currMax10) { // larger than the ten largest found so far
unsigned int iy;
for (iy = 0; (iy < nTop) && (FreeTopTenTriple[iy] != NULL); iy++) {
if (FreeTopTenTriple[iy]->len < lenTriple) {
for (unsigned int iz = nTop-1; iz > iy; iz--) {
FreeTopTenTriple[iz] = FreeTopTenTriple[iz-1];
}
FreeTopTenTriple[iy] = &FreeArray[ix];
if (FreeTopTenTriple[nTop-1] != NULL) {
currMax10 = FreeTopTenTriple[nTop-1]->len;
}
break;
}
}
if (iy == nTop) {
ast->print_cr("Internal logic error. New Max10 = %d detected, but could not be merged. Old Max10 = %d",
lenTriple, currMax10);
continue;
}
if (FreeTopTenTriple[iy] == NULL) {
FreeTopTenTriple[iy] = &FreeArray[ix];
if (iy == (nTop-1)) {
currMax10 = lenTriple;
}
}
}
}
BUFFEREDSTREAM_FLUSH_AUTO("")
{
printBox(ast, '-', "Top Ten Free-Occupied-Free Triples in ", heapName);
ast->print_cr(" Use this information to judge how likely it is that a large(r) free block\n"
" might get created by code cache sweeping.\n"
" If all the occupied blocks can be swept, the three free blocks will be\n"
" merged into one (much larger) free block. That would reduce free space\n"
" fragmentation.\n");
//---< print Top Ten Free-Occupied-Free Triples >---
for (unsigned int iy = 0; (iy < nTop) && (FreeTopTenTriple[iy] != NULL); iy++) {
ast->print("Pos %3d: Block %4d - size " HEX32_FORMAT ",", iy+1, FreeTopTenTriple[iy]->index, FreeTopTenTriple[iy]->len);
ast->fill_to(39);
ast->print("Gap (to next) " HEX32_FORMAT ",", FreeTopTenTriple[iy]->gap);
ast->fill_to(63);
ast->print("#blocks (in gap) %d", FreeTopTenTriple[iy]->n_gapBlocks);
ast->cr();
BUFFEREDSTREAM_FLUSH_AUTO("")
}
}
BUFFEREDSTREAM_FLUSH_LOCKED("\n\n")
}
void CodeHeapState::print_count(outputStream* out, CodeHeap* heap) {
if (!initialization_complete) {
return;
}
const char* heapName = get_heapName(heap);
get_HeapStatGlobals(out, heapName);
if ((StatArray == NULL) || (alloc_granules == 0)) {
return;
}
BUFFEREDSTREAM_DECL(ast, out)
unsigned int granules_per_line = 32;
char* low_bound = heap->low_boundary();
{
printBox(ast, '=', "B L O C K C O U N T S for ", heapName);
ast->print_cr(" Each granule contains an individual number of heap blocks. Large blocks\n"
" may span multiple granules and are counted for each granule they touch.\n");
if (segment_granules) {
ast->print_cr(" You have selected granule size to be as small as segment size.\n"
" As a result, each granule contains exactly one block (or a part of one block)\n"
" or is displayed as empty (' ') if it's BlobType does not match the selection.\n"
" Occupied granules show their BlobType character, see legend.\n");
print_blobType_legend(ast);
}
BUFFEREDSTREAM_FLUSH_LOCKED("")
}
{
if (segment_granules) {
printBox(ast, '-', "Total (all types) count for granule size == segment size", NULL);
granules_per_line = 128;
for (unsigned int ix = 0; ix < alloc_granules; ix++) {
print_line_delim(out, ast, low_bound, ix, granules_per_line);
print_blobType_single(ast, StatArray[ix].type);
}
} else {
printBox(ast, '-', "Total (all tiers) count, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);
granules_per_line = 128;
for (unsigned int ix = 0; ix < alloc_granules; ix++) {
print_line_delim(out, ast, low_bound, ix, granules_per_line);
unsigned int count = StatArray[ix].t1_count + StatArray[ix].t2_count + StatArray[ix].tx_count
+ StatArray[ix].stub_count + StatArray[ix].dead_count;
print_count_single(ast, count);
}
}
BUFFEREDSTREAM_FLUSH_LOCKED("|\n\n\n")
}
{
if (nBlocks_t1 > 0) {
printBox(ast, '-', "Tier1 nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);
granules_per_line = 128;
for (unsigned int ix = 0; ix < alloc_granules; ix++) {
print_line_delim(out, ast, low_bound, ix, granules_per_line);
if (segment_granules && StatArray[ix].t1_count > 0) {
print_blobType_single(ast, StatArray[ix].type);
} else {
print_count_single(ast, StatArray[ix].t1_count);
}
}
ast->print("|");
} else {
ast->print("No Tier1 nMethods found in CodeHeap.");
}
BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
}
{
if (nBlocks_t2 > 0) {
printBox(ast, '-', "Tier2 nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);
granules_per_line = 128;
for (unsigned int ix = 0; ix < alloc_granules; ix++) {
print_line_delim(out, ast, low_bound, ix, granules_per_line);
if (segment_granules && StatArray[ix].t2_count > 0) {
print_blobType_single(ast, StatArray[ix].type);
} else {
print_count_single(ast, StatArray[ix].t2_count);
}
}
ast->print("|");
} else {
ast->print("No Tier2 nMethods found in CodeHeap.");
}
BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
}
{
if (nBlocks_alive > 0) {
printBox(ast, '-', "not_used/not_entrant/not_installed nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);
granules_per_line = 128;
for (unsigned int ix = 0; ix < alloc_granules; ix++) {
print_line_delim(out, ast, low_bound, ix, granules_per_line);
if (segment_granules && StatArray[ix].tx_count > 0) {
print_blobType_single(ast, StatArray[ix].type);
} else {
print_count_single(ast, StatArray[ix].tx_count);
}
}
ast->print("|");
} else {
ast->print("No not_used/not_entrant nMethods found in CodeHeap.");
}
BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
}
{
if (nBlocks_stub > 0) {
printBox(ast, '-', "Stub & Blob count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);
granules_per_line = 128;
for (unsigned int ix = 0; ix < alloc_granules; ix++) {
print_line_delim(out, ast, low_bound, ix, granules_per_line);
if (segment_granules && StatArray[ix].stub_count > 0) {
print_blobType_single(ast, StatArray[ix].type);
} else {
print_count_single(ast, StatArray[ix].stub_count);
}
}
ast->print("|");
} else {
ast->print("No Stubs and Blobs found in CodeHeap.");
}
BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
}
{
if (nBlocks_dead > 0) {
printBox(ast, '-', "Dead nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);
granules_per_line = 128;
for (unsigned int ix = 0; ix < alloc_granules; ix++) {
print_line_delim(out, ast, low_bound, ix, granules_per_line);
if (segment_granules && StatArray[ix].dead_count > 0) {
print_blobType_single(ast, StatArray[ix].type);
} else {
print_count_single(ast, StatArray[ix].dead_count);
}
}
ast->print("|");
} else {
ast->print("No dead nMethods found in CodeHeap.");
}
BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
}
{
if (!segment_granules) { // Prevent totally redundant printouts
printBox(ast, '-', "Count by tier (combined, no dead blocks): <#t1>:<#t2>:<#s>, 0x0..0xf. '*' indicates >= 16 blocks", NULL);
granules_per_line = 24;
for (unsigned int ix = 0; ix < alloc_granules; ix++) {
print_line_delim(out, ast, low_bound, ix, granules_per_line);
print_count_single(ast, StatArray[ix].t1_count);
ast->print(":");
print_count_single(ast, StatArray[ix].t2_count);
ast->print(":");
if (segment_granules && StatArray[ix].stub_count > 0) {
print_blobType_single(ast, StatArray[ix].type);
} else {
print_count_single(ast, StatArray[ix].stub_count);
}
ast->print(" ");
}
BUFFEREDSTREAM_FLUSH_LOCKED("|\n\n\n")
}
}
}
void CodeHeapState::print_space(outputStream* out, CodeHeap* heap) {
if (!initialization_complete) {
return;
}
const char* heapName = get_heapName(heap);
get_HeapStatGlobals(out, heapName);
if ((StatArray == NULL) || (alloc_granules == 0)) {
return;
}
BUFFEREDSTREAM_DECL(ast, out)
unsigned int granules_per_line = 32;
char* low_bound = heap->low_boundary();
{
printBox(ast, '=', "S P A C E U S A G E & F R A G M E N T A T I O N for ", heapName);
ast->print_cr(" The heap space covered by one granule is occupied to a various extend.\n"
" The granule occupancy is displayed by one decimal digit per granule.\n");
if (segment_granules) {
ast->print_cr(" You have selected granule size to be as small as segment size.\n"
" As a result, each granule contains exactly one block (or a part of one block)\n"
" or is displayed as empty (' ') if it's BlobType does not match the selection.\n"
" Occupied granules show their BlobType character, see legend.\n");
print_blobType_legend(ast);
} else {
ast->print_cr(" These digits represent a fill percentage range (see legend).\n");
print_space_legend(ast);
}
BUFFEREDSTREAM_FLUSH_LOCKED("")
}
{
if (segment_granules) {
printBox(ast, '-', "Total (all types) space consumption for granule size == segment size", NULL);
granules_per_line = 128;
for (unsigned int ix = 0; ix < alloc_granules; ix++) {
print_line_delim(out, ast, low_bound, ix, granules_per_line);
print_blobType_single(ast, StatArray[ix].type);
}
} else {
printBox(ast, '-', "Total (all types) space consumption. ' ' indicates empty, '*' indicates full.", NULL);
granules_per_line = 128;
for (unsigned int ix = 0; ix < alloc_granules; ix++) {
print_line_delim(out, ast, low_bound, ix, granules_per_line);
unsigned int space = StatArray[ix].t1_space + StatArray[ix].t2_space + StatArray[ix].tx_space
+ StatArray[ix].stub_space + StatArray[ix].dead_space;
print_space_single(ast, space);
}
}
BUFFEREDSTREAM_FLUSH_LOCKED("|\n\n\n")
}
{
if (nBlocks_t1 > 0) {
printBox(ast, '-', "Tier1 space consumption. ' ' indicates empty, '*' indicates full", NULL);
granules_per_line = 128;
for (unsigned int ix = 0; ix < alloc_granules; ix++) {
print_line_delim(out, ast, low_bound, ix, granules_per_line);
if (segment_granules && StatArray[ix].t1_space > 0) {
print_blobType_single(ast, StatArray[ix].type);
} else {
print_space_single(ast, StatArray[ix].t1_space);
}
}
ast->print("|");
} else {
ast->print("No Tier1 nMethods found in CodeHeap.");
}
BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
}
{
if (nBlocks_t2 > 0) {
printBox(ast, '-', "Tier2 space consumption. ' ' indicates empty, '*' indicates full", NULL);
granules_per_line = 128;
for (unsigned int ix = 0; ix < alloc_granules; ix++) {
print_line_delim(out, ast, low_bound, ix, granules_per_line);
if (segment_granules && StatArray[ix].t2_space > 0) {
print_blobType_single(ast, StatArray[ix].type);
} else {
print_space_single(ast, StatArray[ix].t2_space);
}
}
ast->print("|");
} else {
ast->print("No Tier2 nMethods found in CodeHeap.");
}
BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
}
{
if (nBlocks_alive > 0) {
printBox(ast, '-', "not_used/not_entrant/not_installed space consumption. ' ' indicates empty, '*' indicates full", NULL);
granules_per_line = 128;
for (unsigned int ix = 0; ix < alloc_granules; ix++) {
print_line_delim(out, ast, low_bound, ix, granules_per_line);
if (segment_granules && StatArray[ix].tx_space > 0) {
print_blobType_single(ast, StatArray[ix].type);
} else {
print_space_single(ast, StatArray[ix].tx_space);
}
}
ast->print("|");
} else {
ast->print("No Tier2 nMethods found in CodeHeap.");
}
BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
}
{
if (nBlocks_stub > 0) {
printBox(ast, '-', "Stub and Blob space consumption. ' ' indicates empty, '*' indicates full", NULL);
granules_per_line = 128;
for (unsigned int ix = 0; ix < alloc_granules; ix++) {
print_line_delim(out, ast, low_bound, ix, granules_per_line);
if (segment_granules && StatArray[ix].stub_space > 0) {
print_blobType_single(ast, StatArray[ix].type);
} else {
print_space_single(ast, StatArray[ix].stub_space);
}
}
ast->print("|");
} else {
ast->print("No Stubs and Blobs found in CodeHeap.");
}
BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
}
{
if (nBlocks_dead > 0) {
printBox(ast, '-', "Dead space consumption. ' ' indicates empty, '*' indicates full", NULL);
granules_per_line = 128;
for (unsigned int ix = 0; ix < alloc_granules; ix++) {
print_line_delim(out, ast, low_bound, ix, granules_per_line);
print_space_single(ast, StatArray[ix].dead_space);
}
ast->print("|");
} else {
ast->print("No dead nMethods found in CodeHeap.");
}
BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
}
{
if (!segment_granules) { // Prevent totally redundant printouts
printBox(ast, '-', "Space consumption by tier (combined): <t1%>:<t2%>:<s%>. ' ' indicates empty, '*' indicates full", NULL);
granules_per_line = 24;
for (unsigned int ix = 0; ix < alloc_granules; ix++) {
print_line_delim(out, ast, low_bound, ix, granules_per_line);
if (segment_granules && StatArray[ix].t1_space > 0) {
print_blobType_single(ast, StatArray[ix].type);
} else {
print_space_single(ast, StatArray[ix].t1_space);
}
ast->print(":");
if (segment_granules && StatArray[ix].t2_space > 0) {
print_blobType_single(ast, StatArray[ix].type);
} else {
print_space_single(ast, StatArray[ix].t2_space);
}
ast->print(":");
if (segment_granules && StatArray[ix].stub_space > 0) {
print_blobType_single(ast, StatArray[ix].type);
} else {
print_space_single(ast, StatArray[ix].stub_space);
}
ast->print(" ");
}
ast->print("|");
BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
}
}
}
void CodeHeapState::print_age(outputStream* out, CodeHeap* heap) {
if (!initialization_complete) {
return;
}
const char* heapName = get_heapName(heap);
get_HeapStatGlobals(out, heapName);
if ((StatArray == NULL) || (alloc_granules == 0)) {
return;
}
BUFFEREDSTREAM_DECL(ast, out)
unsigned int granules_per_line = 32;
char* low_bound = heap->low_boundary();
{
printBox(ast, '=', "M E T H O D A G E by CompileID for ", heapName);
ast->print_cr(" The age of a compiled method in the CodeHeap is not available as a\n"
" time stamp. Instead, a relative age is deducted from the method's compilation ID.\n"
" Age information is available for tier1 and tier2 methods only. There is no\n"
" age information for stubs and blobs, because they have no compilation ID assigned.\n"
" Information for the youngest method (highest ID) in the granule is printed.\n"
" Refer to the legend to learn how method age is mapped to the displayed digit.");
print_age_legend(ast);
BUFFEREDSTREAM_FLUSH_LOCKED("")
}
{
printBox(ast, '-', "Age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL);
granules_per_line = 128;
for (unsigned int ix = 0; ix < alloc_granules; ix++) {
print_line_delim(out, ast, low_bound, ix, granules_per_line);
unsigned int age1 = StatArray[ix].t1_age;
unsigned int age2 = StatArray[ix].t2_age;
unsigned int agex = StatArray[ix].tx_age;
unsigned int age = age1 > age2 ? age1 : age2;
age = age > agex ? age : agex;
print_age_single(ast, age);
}
ast->print("|");
BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
}
{
if (nBlocks_t1 > 0) {
printBox(ast, '-', "Tier1 age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL);
granules_per_line = 128;
for (unsigned int ix = 0; ix < alloc_granules; ix++) {
print_line_delim(out, ast, low_bound, ix, granules_per_line);
print_age_single(ast, StatArray[ix].t1_age);
}
ast->print("|");
} else {
ast->print("No Tier1 nMethods found in CodeHeap.");
}
BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
}
{
if (nBlocks_t2 > 0) {
printBox(ast, '-', "Tier2 age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL);
granules_per_line = 128;
for (unsigned int ix = 0; ix < alloc_granules; ix++) {
print_line_delim(out, ast, low_bound, ix, granules_per_line);
print_age_single(ast, StatArray[ix].t2_age);
}
ast->print("|");
} else {
ast->print("No Tier2 nMethods found in CodeHeap.");
}
BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
}
{
if (nBlocks_alive > 0) {
printBox(ast, '-', "not_used/not_entrant/not_installed age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL);
granules_per_line = 128;
for (unsigned int ix = 0; ix < alloc_granules; ix++) {
print_line_delim(out, ast, low_bound, ix, granules_per_line);
print_age_single(ast, StatArray[ix].tx_age);
}
ast->print("|");
} else {
ast->print("No Tier2 nMethods found in CodeHeap.");
}
BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
}
{
if (!segment_granules) { // Prevent totally redundant printouts
printBox(ast, '-', "age distribution by tier <a1>:<a2>. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL);
granules_per_line = 32;
for (unsigned int ix = 0; ix < alloc_granules; ix++) {
print_line_delim(out, ast, low_bound, ix, granules_per_line);
print_age_single(ast, StatArray[ix].t1_age);
ast->print(":");
print_age_single(ast, StatArray[ix].t2_age);
ast->print(" ");
}
ast->print("|");
BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
}
}
}
void CodeHeapState::print_names(outputStream* out, CodeHeap* heap) {
if (!initialization_complete) {
return;
}
const char* heapName = get_heapName(heap);
get_HeapStatGlobals(out, heapName);
if ((StatArray == NULL) || (alloc_granules == 0)) {
return;
}
BUFFEREDSTREAM_DECL(ast, out)
unsigned int granules_per_line = 128;
char* low_bound = heap->low_boundary();
CodeBlob* last_blob = NULL;
bool name_in_addr_range = true;
bool have_CodeCache_lock = CodeCache_lock->owned_by_self();
//---< print at least 128K per block (i.e. between headers) >---
if (granules_per_line*granule_size < 128*K) {
granules_per_line = (unsigned int)((128*K)/granule_size);
}
printBox(ast, '=', "M E T H O D N A M E S for ", heapName);
ast->print_cr(" Method names are dynamically retrieved from the code cache at print time.\n"
" Due to the living nature of the code heap and because the CodeCache_lock\n"
" is not continuously held, the displayed name might be wrong or no name\n"
" might be found at all. The likelihood for that to happen increases\n"
" over time passed between aggregtion and print steps.\n");
BUFFEREDSTREAM_FLUSH_LOCKED("")
for (unsigned int ix = 0; ix < alloc_granules; ix++) {
//---< print a new blob on a new line >---
if (ix%granules_per_line == 0) {
if (!name_in_addr_range) {
ast->print_cr("No methods, blobs, or stubs found in this address range");
}
name_in_addr_range = false;
size_t end_ix = (ix+granules_per_line <= alloc_granules) ? ix+granules_per_line : alloc_granules;
ast->cr();
ast->print_cr("--------------------------------------------------------------------");
ast->print_cr("Address range [" INTPTR_FORMAT "," INTPTR_FORMAT "), " SIZE_FORMAT "k", p2i(low_bound+ix*granule_size), p2i(low_bound + end_ix*granule_size), (end_ix - ix)*granule_size/(size_t)K);
ast->print_cr("--------------------------------------------------------------------");
BUFFEREDSTREAM_FLUSH_AUTO("")
}
// Only check granule if it contains at least one blob.
unsigned int nBlobs = StatArray[ix].t1_count + StatArray[ix].t2_count + StatArray[ix].tx_count +
StatArray[ix].stub_count + StatArray[ix].dead_count;
if (nBlobs > 0 ) {
for (unsigned int is = 0; is < granule_size; is+=(unsigned int)seg_size) {
// heap->find_start() is safe. Only works on _segmap.
// Returns NULL or void*. Returned CodeBlob may be uninitialized.
char* this_seg = low_bound + ix*granule_size + is;
CodeBlob* this_blob = (CodeBlob*)(heap->find_start(this_seg));
bool blob_is_safe = blob_access_is_safe(this_blob, NULL);
// blob could have been flushed, freed, and merged.
// this_blob < last_blob is an indicator for that.
if (blob_is_safe && (this_blob > last_blob)) {
last_blob = this_blob;
//---< get type and name >---
blobType cbType = noType;
if (segment_granules) {
cbType = (blobType)StatArray[ix].type;
} else {
//---< access these fields only if we own the CodeCache_lock >---
if (have_CodeCache_lock) {
cbType = get_cbType(this_blob);
}
}
//---< access these fields only if we own the CodeCache_lock >---
const char* blob_name = "<unavailable>";
nmethod* nm = NULL;
if (have_CodeCache_lock) {
blob_name = this_blob->name();
nm = this_blob->as_nmethod_or_null();
// this_blob->name() could return NULL if no name was given to CTOR. Inlined, maybe invisible on stack
if ((blob_name == NULL) || !os::is_readable_pointer(blob_name)) {
blob_name = "<unavailable>";
}
}
//---< print table header for new print range >---
if (!name_in_addr_range) {
name_in_addr_range = true;
ast->fill_to(51);
ast->print("%9s", "compiler");
ast->fill_to(61);
ast->print_cr("%6s", "method");
ast->print_cr("%18s %13s %17s %9s %5s %18s %s", "Addr(module) ", "offset", "size", " type lvl", " temp", "blobType ", "Name");
BUFFEREDSTREAM_FLUSH_AUTO("")
}
//---< print line prefix (address and offset from CodeHeap start) >---
ast->print(INTPTR_FORMAT, p2i(this_blob));
ast->fill_to(19);
ast->print("(+" PTR32_FORMAT ")", (unsigned int)((char*)this_blob-low_bound));
ast->fill_to(33);
// access nmethod and Method fields only if we own the CodeCache_lock.
// This fact is implicitly transported via nm != NULL.
if (CompiledMethod::nmethod_access_is_safe(nm)) {
Method* method = nm->method();
ResourceMark rm;
//---< collect all data to locals as quickly as possible >---
unsigned int total_size = nm->total_size();
int hotness = nm->hotness_counter();
bool get_name = (cbType == nMethod_inuse) || (cbType == nMethod_notused);
//---< nMethod size in hex >---
ast->print(PTR32_FORMAT, total_size);
ast->print("(" SIZE_FORMAT_W(4) "K)", total_size/K);
//---< compiler information >---
ast->fill_to(51);
ast->print("%5s %3d", compTypeName[StatArray[ix].compiler], StatArray[ix].level);
//---< method temperature >---
ast->fill_to(62);
ast->print("%5d", hotness);
//---< name and signature >---
ast->fill_to(62+6);
ast->print("%s", blobTypeName[cbType]);
ast->fill_to(82+6);
if (cbType == nMethod_dead) {
ast->print("%14s", " zombie method");
}
if (get_name) {
Symbol* methName = method->name();
const char* methNameS = (methName == NULL) ? NULL : methName->as_C_string();
methNameS = (methNameS == NULL) ? "<method name unavailable>" : methNameS;
Symbol* methSig = method->signature();
const char* methSigS = (methSig == NULL) ? NULL : methSig->as_C_string();
methSigS = (methSigS == NULL) ? "<method signature unavailable>" : methSigS;
ast->print("%s", methNameS);
ast->print("%s", methSigS);
} else {
ast->print("%s", blob_name);
}
} else if (blob_is_safe) {
ast->fill_to(62+6);
ast->print("%s", blobTypeName[cbType]);
ast->fill_to(82+6);
ast->print("%s", blob_name);
} else {
ast->fill_to(62+6);
ast->print("<stale blob>");
}
ast->cr();
BUFFEREDSTREAM_FLUSH_AUTO("")
} else if (!blob_is_safe && (this_blob != last_blob) && (this_blob != NULL)) {
last_blob = this_blob;
}
}
} // nBlobs > 0
}
BUFFEREDSTREAM_FLUSH_LOCKED("\n\n")
}
void CodeHeapState::printBox(outputStream* ast, const char border, const char* text1, const char* text2) {
unsigned int lineLen = 1 + 2 + 2 + 1;
char edge, frame;
if (text1 != NULL) {
lineLen += (unsigned int)strlen(text1); // text1 is much shorter than MAX_INT chars.
}
if (text2 != NULL) {
lineLen += (unsigned int)strlen(text2); // text2 is much shorter than MAX_INT chars.
}
if (border == '-') {
edge = '+';
frame = '|';
} else {
edge = border;
frame = border;
}
ast->print("%c", edge);
for (unsigned int i = 0; i < lineLen-2; i++) {
ast->print("%c", border);
}
ast->print_cr("%c", edge);
ast->print("%c ", frame);
if (text1 != NULL) {
ast->print("%s", text1);
}
if (text2 != NULL) {
ast->print("%s", text2);
}
ast->print_cr(" %c", frame);
ast->print("%c", edge);
for (unsigned int i = 0; i < lineLen-2; i++) {
ast->print("%c", border);
}
ast->print_cr("%c", edge);
}
void CodeHeapState::print_blobType_legend(outputStream* out) {
out->cr();
printBox(out, '-', "Block types used in the following CodeHeap dump", NULL);
for (int type = noType; type < lastType; type += 1) {
out->print_cr(" %c - %s", blobTypeChar[type], blobTypeName[type]);
}
out->print_cr(" -----------------------------------------------------");
out->cr();
}
void CodeHeapState::print_space_legend(outputStream* out) {
unsigned int indicator = 0;
unsigned int age_range = 256;
unsigned int range_beg = latest_compilation_id;
out->cr();
printBox(out, '-', "Space ranges, based on granule occupancy", NULL);
out->print_cr(" - 0%% == occupancy");
for (int i=0; i<=9; i++) {
out->print_cr(" %d - %3d%% < occupancy < %3d%%", i, 10*i, 10*(i+1));
}
out->print_cr(" * - 100%% == occupancy");
out->print_cr(" ----------------------------------------------");
out->cr();
}
void CodeHeapState::print_age_legend(outputStream* out) {
unsigned int indicator = 0;
unsigned int age_range = 256;
unsigned int range_beg = latest_compilation_id;
out->cr();
printBox(out, '-', "Age ranges, based on compilation id", NULL);
while (age_range > 0) {
out->print_cr(" %d - %6d to %6d", indicator, range_beg, latest_compilation_id - latest_compilation_id/age_range);
range_beg = latest_compilation_id - latest_compilation_id/age_range;
age_range /= 2;
indicator += 1;
}
out->print_cr(" -----------------------------------------");
out->cr();
}
void CodeHeapState::print_blobType_single(outputStream* out, u2 /* blobType */ type) {
out->print("%c", blobTypeChar[type]);
}
void CodeHeapState::print_count_single(outputStream* out, unsigned short count) {
if (count >= 16) out->print("*");
else if (count > 0) out->print("%1.1x", count);
else out->print(" ");
}
void CodeHeapState::print_space_single(outputStream* out, unsigned short space) {
size_t space_in_bytes = ((unsigned int)space)<<log2_seg_size;
char fraction = (space == 0) ? ' ' : (space_in_bytes >= granule_size-1) ? '*' : char('0'+10*space_in_bytes/granule_size);
out->print("%c", fraction);
}
void CodeHeapState::print_age_single(outputStream* out, unsigned int age) {
unsigned int indicator = 0;
unsigned int age_range = 256;
if (age > 0) {
while ((age_range > 0) && (latest_compilation_id-age > latest_compilation_id/age_range)) {
age_range /= 2;
indicator += 1;
}
out->print("%c", char('0'+indicator));
} else {
out->print(" ");
}
}
void CodeHeapState::print_line_delim(outputStream* out, outputStream* ast, char* low_bound, unsigned int ix, unsigned int gpl) {
if (ix % gpl == 0) {
if (ix > 0) {
ast->print("|");
}
ast->cr();
assert(out == ast, "must use the same stream!");
ast->print(INTPTR_FORMAT, p2i(low_bound + ix*granule_size));
ast->fill_to(19);
ast->print("(+" PTR32_FORMAT "): |", (unsigned int)(ix*granule_size));
}
}
void CodeHeapState::print_line_delim(outputStream* out, bufferedStream* ast, char* low_bound, unsigned int ix, unsigned int gpl) {
assert(out != ast, "must not use the same stream!");
if (ix % gpl == 0) {
if (ix > 0) {
ast->print("|");
}
ast->cr();
// can't use BUFFEREDSTREAM_FLUSH_IF("", 512) here.
// can't use this expression. bufferedStream::capacity() does not exist.
// if ((ast->capacity() - ast->size()) < 512) {
// Assume instead that default bufferedStream capacity (4K) was used.
if (ast->size() > 3*K) {
ttyLocker ttyl;
out->print("%s", ast->as_string());
ast->reset();
}
ast->print(INTPTR_FORMAT, p2i(low_bound + ix*granule_size));
ast->fill_to(19);
ast->print("(+" PTR32_FORMAT "): |", (unsigned int)(ix*granule_size));
}
}
CodeHeapState::blobType CodeHeapState::get_cbType(CodeBlob* cb) {
if ((cb != NULL) && os::is_readable_pointer(cb)) {
if (cb->is_runtime_stub()) return runtimeStub;
if (cb->is_deoptimization_stub()) return deoptimizationStub;
if (cb->is_uncommon_trap_stub()) return uncommonTrapStub;
if (cb->is_exception_stub()) return exceptionStub;
if (cb->is_safepoint_stub()) return safepointStub;
if (cb->is_adapter_blob()) return adapterBlob;
if (cb->is_method_handles_adapter_blob()) return mh_adapterBlob;
if (cb->is_buffer_blob()) return bufferBlob;
//---< access these fields only if we own the CodeCache_lock >---
// Should be ensured by caller. aggregate() amd print_names() do that.
if (CodeCache_lock->owned_by_self()) {
nmethod* nm = cb->as_nmethod_or_null();
if (nm != NULL) { // no is_readable check required, nm = (nmethod*)cb.
if (nm->is_not_installed()) return nMethod_inconstruction;
if (nm->is_zombie()) return nMethod_dead;
if (nm->is_unloaded()) return nMethod_unloaded;
if (nm->is_in_use()) return nMethod_inuse;
if (nm->is_alive() && !(nm->is_not_entrant())) return nMethod_notused;
if (nm->is_alive()) return nMethod_alive;
return nMethod_dead;
}
}
}
return noType;
}
bool CodeHeapState::blob_access_is_safe(CodeBlob* this_blob, CodeBlob* prev_blob) {
return (this_blob != NULL) && // a blob must have been found, obviously
((this_blob == prev_blob) || (prev_blob == NULL)) && // when re-checking, the same blob must have been found
(this_blob->header_size() >= 0) &&
(this_blob->relocation_size() >= 0) &&
((address)this_blob + this_blob->header_size() == (address)(this_blob->relocation_begin())) &&
((address)this_blob + CodeBlob::align_code_offset(this_blob->header_size() + this_blob->relocation_size()) == (address)(this_blob->content_begin())) &&
os::is_readable_pointer((address)(this_blob->relocation_begin())) &&
os::is_readable_pointer(this_blob->content_begin());
}