657b9db1ba
Updated files with 2011, 2012 and 2013 years according to the file's last updated date Reviewed-by: tbell, lancea, chegar
336 lines
14 KiB
Java
336 lines
14 KiB
Java
/*
|
|
* Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*/
|
|
|
|
/*
|
|
* @test
|
|
* @bug 4347132 4939441
|
|
* @summary Tests for {Math, StrictMath}.cbrt
|
|
* @author Joseph D. Darcy
|
|
*/
|
|
|
|
import sun.misc.DoubleConsts;
|
|
|
|
public class CubeRootTests {
|
|
private CubeRootTests(){}
|
|
|
|
static final double infinityD = Double.POSITIVE_INFINITY;
|
|
static final double NaNd = Double.NaN;
|
|
|
|
// Initialize shared random number generator
|
|
static java.util.Random rand = new java.util.Random();
|
|
|
|
static int testCubeRootCase(double input, double expected) {
|
|
int failures=0;
|
|
|
|
double minus_input = -input;
|
|
double minus_expected = -expected;
|
|
|
|
failures+=Tests.test("Math.cbrt(double)", input,
|
|
Math.cbrt(input), expected);
|
|
failures+=Tests.test("Math.cbrt(double)", minus_input,
|
|
Math.cbrt(minus_input), minus_expected);
|
|
failures+=Tests.test("StrictMath.cbrt(double)", input,
|
|
StrictMath.cbrt(input), expected);
|
|
failures+=Tests.test("StrictMath.cbrt(double)", minus_input,
|
|
StrictMath.cbrt(minus_input), minus_expected);
|
|
|
|
return failures;
|
|
}
|
|
|
|
static int testCubeRoot() {
|
|
int failures = 0;
|
|
double [][] testCases = {
|
|
{NaNd, NaNd},
|
|
{Double.longBitsToDouble(0x7FF0000000000001L), NaNd},
|
|
{Double.longBitsToDouble(0xFFF0000000000001L), NaNd},
|
|
{Double.longBitsToDouble(0x7FF8555555555555L), NaNd},
|
|
{Double.longBitsToDouble(0xFFF8555555555555L), NaNd},
|
|
{Double.longBitsToDouble(0x7FFFFFFFFFFFFFFFL), NaNd},
|
|
{Double.longBitsToDouble(0xFFFFFFFFFFFFFFFFL), NaNd},
|
|
{Double.longBitsToDouble(0x7FFDeadBeef00000L), NaNd},
|
|
{Double.longBitsToDouble(0xFFFDeadBeef00000L), NaNd},
|
|
{Double.longBitsToDouble(0x7FFCafeBabe00000L), NaNd},
|
|
{Double.longBitsToDouble(0xFFFCafeBabe00000L), NaNd},
|
|
{Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY},
|
|
{Double.NEGATIVE_INFINITY, Double.NEGATIVE_INFINITY},
|
|
{+0.0, +0.0},
|
|
{-0.0, -0.0},
|
|
{+1.0, +1.0},
|
|
{-1.0, -1.0},
|
|
{+8.0, +2.0},
|
|
{-8.0, -2.0}
|
|
};
|
|
|
|
for(int i = 0; i < testCases.length; i++) {
|
|
failures += testCubeRootCase(testCases[i][0],
|
|
testCases[i][1]);
|
|
}
|
|
|
|
// Test integer perfect cubes less than 2^53.
|
|
for(int i = 0; i <= 208063; i++) {
|
|
double d = i;
|
|
failures += testCubeRootCase(d*d*d, (double)i);
|
|
}
|
|
|
|
// Test cbrt(2^(3n)) = 2^n.
|
|
for(int i = 18; i <= DoubleConsts.MAX_EXPONENT/3; i++) {
|
|
failures += testCubeRootCase(Math.scalb(1.0, 3*i),
|
|
Math.scalb(1.0, i) );
|
|
}
|
|
|
|
// Test cbrt(2^(-3n)) = 2^-n.
|
|
for(int i = -1; i >= DoubleConsts.MIN_SUB_EXPONENT/3; i--) {
|
|
failures += testCubeRootCase(Math.scalb(1.0, 3*i),
|
|
Math.scalb(1.0, i) );
|
|
}
|
|
|
|
// Test random perfect cubes. Create double values with
|
|
// modest exponents but only have at most the 17 most
|
|
// significant bits in the significand set; 17*3 = 51, which
|
|
// is less than the number of bits in a double's significand.
|
|
long exponentBits1 =
|
|
Double.doubleToLongBits(Math.scalb(1.0, 55)) &
|
|
DoubleConsts.EXP_BIT_MASK;
|
|
long exponentBits2=
|
|
Double.doubleToLongBits(Math.scalb(1.0, -55)) &
|
|
DoubleConsts.EXP_BIT_MASK;
|
|
for(int i = 0; i < 100; i++) {
|
|
// Take 16 bits since the 17th bit is implicit in the
|
|
// exponent
|
|
double input1 =
|
|
Double.longBitsToDouble(exponentBits1 |
|
|
// Significand bits
|
|
((long) (rand.nextInt() & 0xFFFF))<<
|
|
(DoubleConsts.SIGNIFICAND_WIDTH-1-16));
|
|
failures += testCubeRootCase(input1*input1*input1, input1);
|
|
|
|
double input2 =
|
|
Double.longBitsToDouble(exponentBits2 |
|
|
// Significand bits
|
|
((long) (rand.nextInt() & 0xFFFF))<<
|
|
(DoubleConsts.SIGNIFICAND_WIDTH-1-16));
|
|
failures += testCubeRootCase(input2*input2*input2, input2);
|
|
}
|
|
|
|
// Directly test quality of implementation properties of cbrt
|
|
// for values that aren't perfect cubes. Verify returned
|
|
// result meets the 1 ulp test. That is, we want to verify
|
|
// that for positive x > 1,
|
|
// y = cbrt(x),
|
|
//
|
|
// if (err1=x - y^3 ) < 0, abs((y_pp^3 -x )) < err1
|
|
// if (err1=x - y^3 ) > 0, abs((y_mm^3 -x )) < err1
|
|
//
|
|
// where y_mm and y_pp are the next smaller and next larger
|
|
// floating-point value to y. In other words, if y^3 is too
|
|
// big, making y larger does not improve the result; likewise,
|
|
// if y^3 is too small, making y smaller does not improve the
|
|
// result.
|
|
//
|
|
// ...-----|--?--|--?--|-----... Where is the true result?
|
|
// y_mm y y_pp
|
|
//
|
|
// The returned value y should be one of the floating-point
|
|
// values braketing the true result. However, given y, a
|
|
// priori we don't know if the true result falls in [y_mm, y]
|
|
// or [y, y_pp]. The above test looks at the error in x-y^3
|
|
// to determine which region the true result is in; e.g. if
|
|
// y^3 is smaller than x, the true result should be in [y,
|
|
// y_pp]. Therefore, it would be an error for y_mm to be a
|
|
// closer approximation to x^(1/3). In this case, it is
|
|
// permissible, although not ideal, for y_pp^3 to be a closer
|
|
// approximation to x^(1/3) than y^3.
|
|
//
|
|
// We will use pow(y,3) to compute y^3. Although pow is not
|
|
// correctly rounded, StrictMath.pow should have at most 1 ulp
|
|
// error. For y > 1, pow(y_mm,3) and pow(y_pp,3) will differ
|
|
// from pow(y,3) by more than one ulp so the comparision of
|
|
// errors should still be valid.
|
|
|
|
for(int i = 0; i < 1000; i++) {
|
|
double d = 1.0 + rand.nextDouble();
|
|
double err, err_adjacent;
|
|
|
|
double y1 = Math.cbrt(d);
|
|
double y2 = StrictMath.cbrt(d);
|
|
|
|
err = d - StrictMath.pow(y1, 3);
|
|
if (err != 0.0) {
|
|
if(Double.isNaN(err)) {
|
|
failures++;
|
|
System.err.println("Encountered unexpected NaN value: d = " + d +
|
|
"\tcbrt(d) = " + y1);
|
|
} else {
|
|
if (err < 0.0) {
|
|
err_adjacent = StrictMath.pow(Math.nextUp(y1), 3) - d;
|
|
}
|
|
else { // (err > 0.0)
|
|
err_adjacent = StrictMath.pow(Math.nextAfter(y1,0.0), 3) - d;
|
|
}
|
|
|
|
if (Math.abs(err) > Math.abs(err_adjacent)) {
|
|
failures++;
|
|
System.err.println("For Math.cbrt(" + d + "), returned result " +
|
|
y1 + "is not as good as adjacent value.");
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
err = d - StrictMath.pow(y2, 3);
|
|
if (err != 0.0) {
|
|
if(Double.isNaN(err)) {
|
|
failures++;
|
|
System.err.println("Encountered unexpected NaN value: d = " + d +
|
|
"\tcbrt(d) = " + y2);
|
|
} else {
|
|
if (err < 0.0) {
|
|
err_adjacent = StrictMath.pow(Math.nextUp(y2), 3) - d;
|
|
}
|
|
else { // (err > 0.0)
|
|
err_adjacent = StrictMath.pow(Math.nextAfter(y2,0.0), 3) - d;
|
|
}
|
|
|
|
if (Math.abs(err) > Math.abs(err_adjacent)) {
|
|
failures++;
|
|
System.err.println("For StrictMath.cbrt(" + d + "), returned result " +
|
|
y2 + "is not as good as adjacent value.");
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
}
|
|
|
|
// Test monotonicity properites near perfect cubes; test two
|
|
// numbers before and two numbers after; i.e. for
|
|
//
|
|
// pcNeighbors[] =
|
|
// {nextDown(nextDown(pc)),
|
|
// nextDown(pc),
|
|
// pc,
|
|
// nextUp(pc),
|
|
// nextUp(nextUp(pc))}
|
|
//
|
|
// test that cbrt(pcNeighbors[i]) <= cbrt(pcNeighbors[i+1])
|
|
{
|
|
|
|
double pcNeighbors[] = new double[5];
|
|
double pcNeighborsCbrt[] = new double[5];
|
|
double pcNeighborsStrictCbrt[] = new double[5];
|
|
|
|
// Test near cbrt(2^(3n)) = 2^n.
|
|
for(int i = 18; i <= DoubleConsts.MAX_EXPONENT/3; i++) {
|
|
double pc = Math.scalb(1.0, 3*i);
|
|
|
|
pcNeighbors[2] = pc;
|
|
pcNeighbors[1] = Math.nextDown(pc);
|
|
pcNeighbors[0] = Math.nextDown(pcNeighbors[1]);
|
|
pcNeighbors[3] = Math.nextUp(pc);
|
|
pcNeighbors[4] = Math.nextUp(pcNeighbors[3]);
|
|
|
|
for(int j = 0; j < pcNeighbors.length; j++) {
|
|
pcNeighborsCbrt[j] = Math.cbrt(pcNeighbors[j]);
|
|
pcNeighborsStrictCbrt[j] = StrictMath.cbrt(pcNeighbors[j]);
|
|
}
|
|
|
|
for(int j = 0; j < pcNeighborsCbrt.length-1; j++) {
|
|
if(pcNeighborsCbrt[j] > pcNeighborsCbrt[j+1] ) {
|
|
failures++;
|
|
System.err.println("Monotonicity failure for Math.cbrt on " +
|
|
pcNeighbors[j] + " and " +
|
|
pcNeighbors[j+1] + "\n\treturned " +
|
|
pcNeighborsCbrt[j] + " and " +
|
|
pcNeighborsCbrt[j+1] );
|
|
}
|
|
|
|
if(pcNeighborsStrictCbrt[j] > pcNeighborsStrictCbrt[j+1] ) {
|
|
failures++;
|
|
System.err.println("Monotonicity failure for StrictMath.cbrt on " +
|
|
pcNeighbors[j] + " and " +
|
|
pcNeighbors[j+1] + "\n\treturned " +
|
|
pcNeighborsStrictCbrt[j] + " and " +
|
|
pcNeighborsStrictCbrt[j+1] );
|
|
}
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// Test near cbrt(2^(-3n)) = 2^-n.
|
|
for(int i = -1; i >= DoubleConsts.MIN_SUB_EXPONENT/3; i--) {
|
|
double pc = Math.scalb(1.0, 3*i);
|
|
|
|
pcNeighbors[2] = pc;
|
|
pcNeighbors[1] = Math.nextDown(pc);
|
|
pcNeighbors[0] = Math.nextDown(pcNeighbors[1]);
|
|
pcNeighbors[3] = Math.nextUp(pc);
|
|
pcNeighbors[4] = Math.nextUp(pcNeighbors[3]);
|
|
|
|
for(int j = 0; j < pcNeighbors.length; j++) {
|
|
pcNeighborsCbrt[j] = Math.cbrt(pcNeighbors[j]);
|
|
pcNeighborsStrictCbrt[j] = StrictMath.cbrt(pcNeighbors[j]);
|
|
}
|
|
|
|
for(int j = 0; j < pcNeighborsCbrt.length-1; j++) {
|
|
if(pcNeighborsCbrt[j] > pcNeighborsCbrt[j+1] ) {
|
|
failures++;
|
|
System.err.println("Monotonicity failure for Math.cbrt on " +
|
|
pcNeighbors[j] + " and " +
|
|
pcNeighbors[j+1] + "\n\treturned " +
|
|
pcNeighborsCbrt[j] + " and " +
|
|
pcNeighborsCbrt[j+1] );
|
|
}
|
|
|
|
if(pcNeighborsStrictCbrt[j] > pcNeighborsStrictCbrt[j+1] ) {
|
|
failures++;
|
|
System.err.println("Monotonicity failure for StrictMath.cbrt on " +
|
|
pcNeighbors[j] + " and " +
|
|
pcNeighbors[j+1] + "\n\treturned " +
|
|
pcNeighborsStrictCbrt[j] + " and " +
|
|
pcNeighborsStrictCbrt[j+1] );
|
|
}
|
|
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
return failures;
|
|
}
|
|
|
|
public static void main(String argv[]) {
|
|
int failures = 0;
|
|
|
|
failures += testCubeRoot();
|
|
|
|
if (failures > 0) {
|
|
System.err.println("Testing cbrt incurred "
|
|
+ failures + " failures.");
|
|
throw new RuntimeException();
|
|
}
|
|
}
|
|
|
|
}
|