jdk-24/test/hotspot/jtreg/compiler/loopopts/superword/TestScheduleReordersScalarMemops.java
Emanuel Peter 811d08c0a4 8340010: Fix vectorization tests with compact headers
Reviewed-by: chagedorn, rkennke, mli
2024-11-25 10:39:36 +00:00

181 lines
8.3 KiB
Java

/*
* Copyright (c) 2023, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
/*
* @test
* @bug 8304720
* @summary Test some examples where non-vectorized memops also need to
* be reordered during SuperWord::schedule.
* @modules java.base/jdk.internal.misc
* @library /test/lib /
* @run driver compiler.loopopts.superword.TestScheduleReordersScalarMemops nCOH_nAV
* @run driver compiler.loopopts.superword.TestScheduleReordersScalarMemops nCOH_yAV
* @run driver compiler.loopopts.superword.TestScheduleReordersScalarMemops yCOH_nAV
* @run driver compiler.loopopts.superword.TestScheduleReordersScalarMemops yCOH_yAV
*/
package compiler.loopopts.superword;
import jdk.internal.misc.Unsafe;
import jdk.test.lib.Asserts;
import compiler.lib.ir_framework.*;
public class TestScheduleReordersScalarMemops {
static final int RANGE = 1024;
static final int ITER = 10_000;
static Unsafe unsafe = Unsafe.getUnsafe();
int[] goldI0 = new int[RANGE];
float[] goldF0 = new float[RANGE];
int[] goldI1 = new int[RANGE];
float[] goldF1 = new float[RANGE];
public static void main(String args[]) {
TestFramework framework = new TestFramework(TestScheduleReordersScalarMemops.class);
framework.addFlags("--add-modules", "java.base", "--add-exports", "java.base/jdk.internal.misc=ALL-UNNAMED",
"-XX:CompileCommand=compileonly,compiler.loopopts.superword.TestScheduleReordersScalarMemops::test*",
"-XX:CompileCommand=compileonly,compiler.loopopts.superword.TestScheduleReordersScalarMemops::verify",
"-XX:CompileCommand=compileonly,compiler.loopopts.superword.TestScheduleReordersScalarMemops::init",
"-XX:-TieredCompilation", "-Xbatch",
"-XX:+IgnoreUnrecognizedVMOptions", "-XX:LoopUnrollLimit=1000");
switch (args[0]) {
case "nCOH_nAV" -> { framework.addFlags("-XX:+UnlockExperimentalVMOptions", "-XX:-UseCompactObjectHeaders", "-XX:-AlignVector"); }
case "nCOH_yAV" -> { framework.addFlags("-XX:+UnlockExperimentalVMOptions", "-XX:-UseCompactObjectHeaders", "-XX:+AlignVector"); }
case "yCOH_nAV" -> { framework.addFlags("-XX:+UnlockExperimentalVMOptions", "-XX:+UseCompactObjectHeaders", "-XX:-AlignVector"); }
case "yCOH_yAV" -> { framework.addFlags("-XX:+UnlockExperimentalVMOptions", "-XX:+UseCompactObjectHeaders", "-XX:+AlignVector"); }
default -> { throw new RuntimeException("Test argument not recognized: " + args[0]); }
};
framework.start();
}
TestScheduleReordersScalarMemops() {
// compute the gold standard in interpreter mode
init(goldI0, goldF0);
test0(goldI0, goldI0, goldF0, goldF0);
init(goldI1, goldF1);
test1(goldI1, goldI1, goldF1, goldF1);
}
@Run(test = "test0")
@Warmup(100)
public void runTest0() {
int[] dataI = new int[RANGE];
float[] dataF = new float[RANGE];
init(dataI, dataF);
test0(dataI, dataI, dataF, dataF);
verify("test0", dataI, goldI0);
verify("test0", dataF, goldF0);
}
@Test
@IR(counts = {IRNode.MUL_VI, "> 0"},
applyIfOr = {"UseCompactObjectHeaders", "false", "AlignVector", "false"},
applyIfCPUFeatureOr = {"avx2", "true", "asimd", "true"})
static void test0(int[] dataIa, int[] dataIb, float[] dataFa, float[] dataFb) {
for (int i = 0; i < RANGE; i+=2) {
// We have dependency edges:
// A -> X
// Y -> B
// Still, we can vectorize [X,Y].
// We do not vectorize A and B, because they are not isomorphic (add vs mul).
//
// Imagine this is unrolled at least 2x.
// We get order: A0 X0 Y0 B0 A1 X1 Y1 B1
// Vectorized: X0 Y0 X1 Y1
// Scalar: A0 B0 A1 B1
//
// However, since the As need to be before, and the Bs after the vector operations,
// we need to have all As before all Bs. This means we need to reorder the scalar
// operations, and not just the vectorized ones.
//
// A correct reordering would be: A0 A1 [X0, Y0, X1, Y1] B0 B1
//
dataFa[i + 0] = dataIa[i + 0] * 1.3f; // A *1.3
dataIb[i + 0] = (int)dataFb[i + 0] * 11; // X *11
dataIb[i + 1] = (int)dataFb[i + 1] * 11; // Y *11
dataFa[i + 1] = dataIa[i + 1] + 1.2f; // B +1.2
// With AlignVector, we need 8-byte alignment of vector loads/stores.
// UseCompactObjectHeaders=false UseCompactObjectHeaders=true
// adr = base + 16 + 8*i -> always adr = base + 12 + 8*i -> never
// -> vectorize -> no vectorization
}
}
@Run(test = "test1")
@Warmup(100)
public void runTest1() {
int[] dataI = new int[RANGE];
float[] dataF = new float[RANGE];
init(dataI, dataF);
test1(dataI, dataI, dataF, dataF);
verify("test1", dataI, goldI1);
verify("test1", dataF, goldF1);
}
@Test
@IR(counts = {IRNode.MUL_VI, "> 0"},
applyIfOr = {"UseCompactObjectHeaders", "false", "AlignVector", "false"},
applyIfCPUFeatureOr = {"avx2", "true", "asimd", "true"})
static void test1(int[] dataIa, int[] dataIb, float[] dataFa, float[] dataFb) {
for (int i = 0; i < RANGE; i+=2) {
// Do the same as test0, but without int-float conversion.
// This should reproduce on machines where conversion is not implemented.
unsafe.putInt(dataFa, unsafe.ARRAY_FLOAT_BASE_OFFSET + 4L * i + 0, dataIa[i+0] + 1); // A +1
dataIb[i+0] = 11 * unsafe.getInt(dataFb, unsafe.ARRAY_INT_BASE_OFFSET + 4L * i + 0); // X
dataIb[i+1] = 11 * unsafe.getInt(dataFb, unsafe.ARRAY_INT_BASE_OFFSET + 4L * i + 4); // Y
unsafe.putInt(dataFa, unsafe.ARRAY_FLOAT_BASE_OFFSET + 4L * i + 4, dataIa[i+1] * 11); // B *11
// With AlignVector, we need 8-byte alignment of vector loads/stores.
// UseCompactObjectHeaders=false UseCompactObjectHeaders=true
// adr = base + 16 + 8*i -> always adr = base + 12 + 8*i -> never
// -> vectorize -> no vectorization
}
}
static void init(int[] dataI, float[] dataF) {
for (int i = 0; i < RANGE; i++) {
dataI[i] = i + 1;
dataF[i] = i + 0.1f;
}
}
static void verify(String name, int[] data, int[] gold) {
for (int i = 0; i < RANGE; i++) {
if (data[i] != gold[i]) {
throw new RuntimeException(" Invalid " + name + " result: data[" + i + "]: " + data[i] + " != " + gold[i]);
}
}
}
static void verify(String name, float[] data, float[] gold) {
for (int i = 0; i < RANGE; i++) {
int datav = unsafe.getInt(data, unsafe.ARRAY_FLOAT_BASE_OFFSET + 4 * i);
int goldv = unsafe.getInt(gold, unsafe.ARRAY_FLOAT_BASE_OFFSET + 4 * i);
if (datav != goldv) {
throw new RuntimeException(" Invalid " + name + " result: dataF[" + i + "]: " + datav + " != " + goldv);
}
}
}
}