2024-04-24 08:20:49 +00:00

373 lines
12 KiB
Java

/*
* Copyright (c) 2022, 2023, Arm Limited. All rights reserved.
* Copyright (c) 2024, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* @test
* @summary Vectorization test on basic double operations
* @library /test/lib /
*
* @build jdk.test.whitebox.WhiteBox
* compiler.vectorization.runner.VectorizationTestRunner
*
* @run driver jdk.test.lib.helpers.ClassFileInstaller jdk.test.whitebox.WhiteBox
* @run main/othervm -Xbootclasspath/a:.
* -XX:+UnlockDiagnosticVMOptions
* -XX:+WhiteBoxAPI
* compiler.vectorization.runner.BasicDoubleOpTest
*
* @requires (os.simpleArch == "x64") | (os.simpleArch == "aarch64")
* @requires vm.compiler2.enabled
*/
package compiler.vectorization.runner;
import compiler.lib.ir_framework.*;
import java.util.Random;
public class BasicDoubleOpTest extends VectorizationTestRunner {
private static final int SIZE = 543;
private double[] a;
private double[] b;
private double[] c;
private double[] d;
private double[] e;
public BasicDoubleOpTest() {
// Positive test values sign | exponent | mantisa
double smallPositive = Double.longBitsToDouble(0<<63 | 0x03f << 52 | 0x30000f);
double positive = Double.longBitsToDouble(0<<63 | 0x07f << 52 | 0x30000f);
double bigPositive = Double.longBitsToDouble(0<<63 | 0x07f << 52 | 0x30100f);
double biggerPositive = Double.longBitsToDouble(0<<63 | 0x7fe << 52 | 0x30000f);
double maxPositive = Double.MAX_VALUE;
// Special positive
double nan1 = Double.longBitsToDouble(0<<63 | 0x7ff << 52 | 0x7fffff);
double nan2 = Double.longBitsToDouble(0<<63 | 0x7ff << 52 | 0x30000f);
double inf = Double.longBitsToDouble(0<<63 | 0x7ff << 52);
double zero = 0.0;
// Negative test values sign | exponent | mantisa
double smallNegative = Double.longBitsToDouble(1<<63 | 0x003 << 52 | 0x30000f);
double negative = Double.longBitsToDouble(1<<63 | 0x783 << 52 | 0x30100f);
double bigNegative = Double.longBitsToDouble(1<<63 | 0x783 << 52 | 0x30000f);
double biggerNegative = Double.longBitsToDouble(1<<63 | 0x786 << 52 | 0x30000f);
double maxNegative = Double.longBitsToDouble(1<<63 | 0x7fe << 52 | 0x7fffff);
// Special negative
double nNan1 = Double.longBitsToDouble(1<<63 | 0x7ff << 52 | 0x7fffff);
double nNan2 = Double.longBitsToDouble(1<<63 | 0x7ff << 52 | 0x30000f);
double nInf = Double.longBitsToDouble(1<<63 | 0x7ff << 52);
double nZero = -0.0;
double[] numberList = new double[] {
nInf, maxNegative, biggerNegative, bigNegative, negative, smallNegative, nZero,
zero, smallPositive, positive, bigPositive, biggerPositive, maxPositive, inf,
nan1, nan2, nNan1, nNan2
};
Random rnd = new Random(10);
a = new double[SIZE];
b = new double[SIZE];
c = new double[SIZE];
d = new double[SIZE];
e = new double[SIZE];
for (int i = 0; i < SIZE;) {
for (int j = 0; j < numberList.length && i < SIZE; j++, i++) {
for (int k = j; k < numberList.length && i < SIZE; k++, i++) {
if (rnd.nextBoolean()) {
d[i] = numberList[j];
e[i] = numberList[k];
} else {
d[i] = numberList[k];
e[i] = numberList[j];
}
}
}
}
for (int i = 0; i < SIZE; i++) {
a[i] = 850.0 * i + 22222.22;
b[i] = -12345.678;
c[i] = -1.23456e7;
}
}
// ---------------- Arithmetic ----------------
@Test
@IR(applyIfCPUFeatureOr = {"asimd", "true", "sse2", "true"},
counts = {IRNode.NEG_VD, ">0"})
public double[] vectorNeg() {
double[] res = new double[SIZE];
for (int i = 0; i < SIZE; i++) {
res[i] = -a[i];
}
return res;
}
@Test
@IR(applyIfCPUFeatureOr = {"asimd", "true", "sse2", "true"},
counts = {IRNode.ABS_VD, ">0"})
public double[] vectorAbs() {
double[] res = new double[SIZE];
for (int i = 0; i < SIZE; i++) {
res[i] = Math.abs(a[i]);
}
return res;
}
@Test
@IR(applyIfCPUFeatureOr = {"asimd", "true", "avx", "true"},
counts = {IRNode.SQRT_VD, ">0"})
public double[] vectorSqrt() {
double[] res = new double[SIZE];
for (int i = 0; i < SIZE; i++) {
res[i] = Math.sqrt(a[i]);
}
return res;
}
@Test
@IR(applyIfCPUFeatureOr = {"asimd", "true", "avx", "true"},
counts = {IRNode.ROUND_DOUBLE_MODE_V, ">0"})
public double[] vectorCeil() {
double[] res = new double[SIZE];
for (int i = 0; i < SIZE; i++) {
res[i] = Math.ceil(a[i]);
}
return res;
}
@Test
@IR(applyIfCPUFeatureOr = {"asimd", "true", "avx", "true"},
counts = {IRNode.ROUND_DOUBLE_MODE_V, ">0"})
public double[] vectorFloor() {
double[] res = new double[SIZE];
for (int i = 0; i < SIZE; i++) {
res[i] = Math.floor(a[i]);
}
return res;
}
@Test
@IR(applyIfCPUFeatureOr = {"asimd", "true", "avx", "true"},
counts = {IRNode.ROUND_DOUBLE_MODE_V, ">0"})
public double[] vectorRint() {
double[] res = new double[SIZE];
for (int i = 0; i < SIZE; i++) {
res[i] = Math.rint(a[i]);
}
return res;
}
@Test
@IR(applyIfCPUFeatureOr = {"asimd", "true", "sse2", "true"},
counts = {IRNode.ADD_VD, ">0"})
public double[] vectorAdd() {
double[] res = new double[SIZE];
for (int i = 0; i < SIZE; i++) {
res[i] = a[i] + b[i];
}
return res;
}
@Test
@IR(applyIfCPUFeatureOr = {"asimd", "true", "sse2", "true"},
counts = {IRNode.SUB_VD, ">0"})
public double[] vectorSub() {
double[] res = new double[SIZE];
for (int i = 0; i < SIZE; i++) {
res[i] = a[i] - b[i];
}
return res;
}
@Test
@IR(applyIfCPUFeatureOr = {"asimd", "true", "sse2", "true"},
counts = {IRNode.MUL_VD, ">0"})
public double[] vectorMul() {
double[] res = new double[SIZE];
for (int i = 0; i < SIZE; i++) {
res[i] = a[i] * b[i];
}
return res;
}
@Test
@IR(applyIfCPUFeatureOr = {"asimd", "true", "sse2", "true"},
counts = {IRNode.DIV_VD, ">0"})
public double[] vectorDiv() {
double[] res = new double[SIZE];
for (int i = 0; i < SIZE; i++) {
res[i] = a[i] / b[i];
}
return res;
}
@Test
@IR(applyIfCPUFeatureOr = {"asimd", "true", "avx", "true"},
counts = {IRNode.MAX_VD, ">0"})
public double[] vectorMax() {
double[] res = new double[SIZE];
for (int i = 0; i < SIZE; i++) {
res[i] = Math.max(d[i], e[i]);
}
return res;
}
@Test
@IR(applyIfCPUFeatureOr = {"asimd", "true", "avx", "true"},
counts = {IRNode.MAX_VD, "0"})
public double[] vectorMax_8322090() {
double[] res = new double[SIZE];
for (int i = 0; i < SIZE; i++) {
res[i] = Math.max(d[i], d[i]);
}
return res;
}
@Test
@IR(applyIfCPUFeatureOr = {"asimd", "true", "avx", "true"},
counts = {IRNode.MIN_VD, ">0"})
public double[] vectorMin() {
double[] res = new double[SIZE];
for (int i = 0; i < SIZE; i++) {
res[i] = Math.min(d[i], e[i]);
}
return res;
}
@Test
@IR(applyIfCPUFeature = {"asimd", "true"},
counts = {IRNode.FMA_VD, ">0", IRNode.VFMLA, ">0"})
@IR(applyIfCPUFeatureAnd = {"fma", "true", "avx", "true"},
counts = {IRNode.FMA_VD, ">0"})
public double[] vectorMulAdd() {
double[] res = new double[SIZE];
for (int i = 0; i < SIZE; i++) {
res[i] = Math.fma(a[i], b[i], c[i]);
}
return res;
}
@Test
@IR(applyIfCPUFeature = {"asimd", "true"},
counts = {IRNode.FMA_VD, ">0", IRNode.VFMLS, ">0"})
@IR(applyIfCPUFeatureAnd = {"fma", "true", "avx", "true"},
counts = {IRNode.FMA_VD, ">0"})
public double[] vectorMulSub1() {
double[] res = new double[SIZE];
for (int i = 0; i < SIZE; i++) {
res[i] = Math.fma(-a[i], b[i], c[i]);
}
return res;
}
@Test
@IR(applyIfCPUFeature = {"asimd", "true"},
counts = {IRNode.FMA_VD, ">0", IRNode.VFMLS, ">0"})
@IR(applyIfCPUFeatureAnd = {"fma", "true", "avx", "true"},
counts = {IRNode.FMA_VD, ">0"})
public double[] vectorMulSub2() {
double[] res = new double[SIZE];
for (int i = 0; i < SIZE; i++) {
res[i] = Math.fma(a[i], -b[i], c[i]);
}
return res;
}
@Test
@IR(applyIfCPUFeature = {"asimd", "true"},
counts = {IRNode.FMA_VD, ">0"})
@IR(applyIfCPUFeature = {"sve", "true"},
counts = {IRNode.VFNMLA, ">0"})
@IR(applyIfCPUFeatureAnd = {"fma", "true", "avx", "true"},
counts = {IRNode.FMA_VD, ">0"})
public double[] vectorNegateMulAdd1() {
double[] res = new double[SIZE];
for (int i = 0; i < SIZE; i++) {
res[i] = Math.fma(-a[i], b[i], -c[i]);
}
return res;
}
@Test
@IR(applyIfCPUFeature = {"asimd", "true"},
counts = {IRNode.FMA_VD, ">0"})
@IR(applyIfCPUFeature = {"sve", "true"},
counts = {IRNode.VFNMLA, ">0"})
@IR(applyIfCPUFeatureAnd = {"fma", "true", "avx", "true"},
counts = {IRNode.FMA_VD, ">0"})
public double[] vectorNegateMulAdd2() {
double[] res = new double[SIZE];
for (int i = 0; i < SIZE; i++) {
res[i] = Math.fma(a[i], -b[i], -c[i]);
}
return res;
}
@Test
@IR(applyIfCPUFeature = {"asimd", "true"},
counts = {IRNode.FMA_VD, ">0"})
@IR(applyIfCPUFeatureAnd = {"fma", "true", "avx", "true"},
counts = {IRNode.FMA_VD, ">0"})
public double[] vectorNegateMulSub() {
double[] res = new double[SIZE];
for (int i = 0; i < SIZE; i++) {
res[i] = Math.fma(a[i], b[i], -c[i]);
}
return res;
}
// ---------------- Reduction ----------------
@Test
public double reductionAdd() {
double res = 0.0;
for (int i = 0; i < SIZE; i++) {
res += a[i];
}
return res;
}
@Test
public double reductionMax() {
double res = Double.MIN_VALUE;
for (int i = 0; i < SIZE; i++) {
res = Math.max(res, a[i]);
}
return res;
}
@Test
public double reductionMin() {
double res = Double.MAX_VALUE;
for (int i = 0; i < SIZE; i++) {
res = Math.min(res, a[i]);
}
return res;
}
}