5b7643e258
Reviewed-by: alanb
232 lines
8.6 KiB
Java
232 lines
8.6 KiB
Java
/*
|
|
* Copyright (c) 2003, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*/
|
|
|
|
/*
|
|
* @test
|
|
* @bug 4851638 4900189 4939441
|
|
* @summary Tests for {Math, StrictMath}.expm1
|
|
* @author Joseph D. Darcy
|
|
*/
|
|
|
|
import sun.misc.DoubleConsts;
|
|
import sun.misc.FpUtils;
|
|
|
|
/*
|
|
* The Taylor expansion of expxm1(x) = exp(x) -1 is
|
|
*
|
|
* 1 + x/1! + x^2/2! + x^3/3| + ... -1 =
|
|
*
|
|
* x + x^2/2! + x^3/3 + ...
|
|
*
|
|
* Therefore, for small values of x, expxm1 ~= x.
|
|
*
|
|
* For large values of x, expxm1(x) ~= exp(x)
|
|
*
|
|
* For large negative x, expxm1(x) ~= -1.
|
|
*/
|
|
|
|
public class Expm1Tests {
|
|
|
|
private Expm1Tests(){}
|
|
|
|
static final double infinityD = Double.POSITIVE_INFINITY;
|
|
static final double NaNd = Double.NaN;
|
|
|
|
static int testExpm1() {
|
|
int failures = 0;
|
|
|
|
double [][] testCases = {
|
|
{Double.NaN, NaNd},
|
|
{Double.longBitsToDouble(0x7FF0000000000001L), NaNd},
|
|
{Double.longBitsToDouble(0xFFF0000000000001L), NaNd},
|
|
{Double.longBitsToDouble(0x7FF8555555555555L), NaNd},
|
|
{Double.longBitsToDouble(0xFFF8555555555555L), NaNd},
|
|
{Double.longBitsToDouble(0x7FFFFFFFFFFFFFFFL), NaNd},
|
|
{Double.longBitsToDouble(0xFFFFFFFFFFFFFFFFL), NaNd},
|
|
{Double.longBitsToDouble(0x7FFDeadBeef00000L), NaNd},
|
|
{Double.longBitsToDouble(0xFFFDeadBeef00000L), NaNd},
|
|
{Double.longBitsToDouble(0x7FFCafeBabe00000L), NaNd},
|
|
{Double.longBitsToDouble(0xFFFCafeBabe00000L), NaNd},
|
|
{infinityD, infinityD},
|
|
{-infinityD, -1.0},
|
|
{-0.0, -0.0},
|
|
{+0.0, +0.0},
|
|
};
|
|
|
|
// Test special cases
|
|
for(int i = 0; i < testCases.length; i++) {
|
|
failures += testExpm1CaseWithUlpDiff(testCases[i][0],
|
|
testCases[i][1], 0, null);
|
|
}
|
|
|
|
|
|
// For |x| < 2^-54 expm1(x) ~= x
|
|
for(int i = DoubleConsts.MIN_SUB_EXPONENT; i <= -54; i++) {
|
|
double d = Math.scalb(2, i);
|
|
failures += testExpm1Case(d, d);
|
|
failures += testExpm1Case(-d, -d);
|
|
}
|
|
|
|
|
|
// For values of y where exp(y) > 2^54, expm1(x) ~= exp(x).
|
|
// The least such y is ln(2^54) ~= 37.42994775023705; exp(x)
|
|
// overflows for x > ~= 709.8
|
|
|
|
// Use a 2-ulp error threshold to account for errors in the
|
|
// exp implementation; the increments of d in the loop will be
|
|
// exact.
|
|
for(double d = 37.5; d <= 709.5; d += 1.0) {
|
|
failures += testExpm1CaseWithUlpDiff(d, StrictMath.exp(d), 2, null);
|
|
}
|
|
|
|
// For x > 710, expm1(x) should be infinity
|
|
for(int i = 10; i <= DoubleConsts.MAX_EXPONENT; i++) {
|
|
double d = Math.scalb(2, i);
|
|
failures += testExpm1Case(d, infinityD);
|
|
}
|
|
|
|
// By monotonicity, once the limit is reached, the
|
|
// implemenation should return the limit for all smaller
|
|
// values.
|
|
boolean reachedLimit [] = {false, false};
|
|
|
|
// Once exp(y) < 0.5 * ulp(1), expm1(y) ~= -1.0;
|
|
// The greatest such y is ln(2^-53) ~= -36.7368005696771.
|
|
for(double d = -36.75; d >= -127.75; d -= 1.0) {
|
|
failures += testExpm1CaseWithUlpDiff(d, -1.0, 1,
|
|
reachedLimit);
|
|
}
|
|
|
|
for(int i = 7; i <= DoubleConsts.MAX_EXPONENT; i++) {
|
|
double d = -Math.scalb(2, i);
|
|
failures += testExpm1CaseWithUlpDiff(d, -1.0, 1, reachedLimit);
|
|
}
|
|
|
|
// Test for monotonicity failures near multiples of log(2).
|
|
// Test two numbers before and two numbers after each chosen
|
|
// value; i.e.
|
|
//
|
|
// pcNeighbors[] =
|
|
// {nextDown(nextDown(pc)),
|
|
// nextDown(pc),
|
|
// pc,
|
|
// nextUp(pc),
|
|
// nextUp(nextUp(pc))}
|
|
//
|
|
// and we test that expm1(pcNeighbors[i]) <= expm1(pcNeighbors[i+1])
|
|
{
|
|
double pcNeighbors[] = new double[5];
|
|
double pcNeighborsExpm1[] = new double[5];
|
|
double pcNeighborsStrictExpm1[] = new double[5];
|
|
|
|
for(int i = -50; i <= 50; i++) {
|
|
double pc = StrictMath.log(2)*i;
|
|
|
|
pcNeighbors[2] = pc;
|
|
pcNeighbors[1] = FpUtils.nextDown(pc);
|
|
pcNeighbors[0] = FpUtils.nextDown(pcNeighbors[1]);
|
|
pcNeighbors[3] = Math.nextUp(pc);
|
|
pcNeighbors[4] = Math.nextUp(pcNeighbors[3]);
|
|
|
|
for(int j = 0; j < pcNeighbors.length; j++) {
|
|
pcNeighborsExpm1[j] = Math.expm1(pcNeighbors[j]);
|
|
pcNeighborsStrictExpm1[j] = StrictMath.expm1(pcNeighbors[j]);
|
|
}
|
|
|
|
for(int j = 0; j < pcNeighborsExpm1.length-1; j++) {
|
|
if(pcNeighborsExpm1[j] > pcNeighborsExpm1[j+1] ) {
|
|
failures++;
|
|
System.err.println("Monotonicity failure for Math.expm1 on " +
|
|
pcNeighbors[j] + " and " +
|
|
pcNeighbors[j+1] + "\n\treturned " +
|
|
pcNeighborsExpm1[j] + " and " +
|
|
pcNeighborsExpm1[j+1] );
|
|
}
|
|
|
|
if(pcNeighborsStrictExpm1[j] > pcNeighborsStrictExpm1[j+1] ) {
|
|
failures++;
|
|
System.err.println("Monotonicity failure for StrictMath.expm1 on " +
|
|
pcNeighbors[j] + " and " +
|
|
pcNeighbors[j+1] + "\n\treturned " +
|
|
pcNeighborsStrictExpm1[j] + " and " +
|
|
pcNeighborsStrictExpm1[j+1] );
|
|
}
|
|
|
|
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
return failures;
|
|
}
|
|
|
|
public static int testExpm1Case(double input,
|
|
double expected) {
|
|
return testExpm1CaseWithUlpDiff(input, expected, 1, null);
|
|
}
|
|
|
|
public static int testExpm1CaseWithUlpDiff(double input,
|
|
double expected,
|
|
double ulps,
|
|
boolean [] reachedLimit) {
|
|
int failures = 0;
|
|
double mathUlps = ulps, strictUlps = ulps;
|
|
double mathOutput;
|
|
double strictOutput;
|
|
|
|
if (reachedLimit != null) {
|
|
if (reachedLimit[0])
|
|
mathUlps = 0;
|
|
|
|
if (reachedLimit[1])
|
|
strictUlps = 0;
|
|
}
|
|
|
|
failures += Tests.testUlpDiffWithLowerBound("Math.expm1(double)",
|
|
input, mathOutput=Math.expm1(input),
|
|
expected, mathUlps, -1.0);
|
|
failures += Tests.testUlpDiffWithLowerBound("StrictMath.expm1(double)",
|
|
input, strictOutput=StrictMath.expm1(input),
|
|
expected, strictUlps, -1.0);
|
|
if (reachedLimit != null) {
|
|
reachedLimit[0] |= (mathOutput == -1.0);
|
|
reachedLimit[1] |= (strictOutput == -1.0);
|
|
}
|
|
|
|
return failures;
|
|
}
|
|
|
|
public static void main(String argv[]) {
|
|
int failures = 0;
|
|
|
|
failures += testExpm1();
|
|
|
|
if (failures > 0) {
|
|
System.err.println("Testing expm1 incurred "
|
|
+ failures + " failures.");
|
|
throw new RuntimeException();
|
|
}
|
|
}
|
|
}
|