jdk-24/jdk/test/java/lang/Math/CubeRootTests.java
Brian Burkhalter 30e8183ee8 8078672: Print and allow setting by Java property seeds used to initialize Random instances in java.lang numerics tests
Add ability to initial the random number generator from the system property "seed" and print to STDOUT the seed value actually used.

Reviewed-by: darcy
2015-04-29 16:34:49 -07:00

338 lines
14 KiB
Java

/*
* Copyright (c) 2003, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* @test
* @library /lib/testlibrary/
* @build jdk.testlibrary.*
* @run main CubeRootTests
* @bug 4347132 4939441 8078672
* @summary Tests for {Math, StrictMath}.cbrt (use -Dseed=X to set PRNG seed)
* @author Joseph D. Darcy
* @key randomness
*/
public class CubeRootTests {
private CubeRootTests(){}
static final double infinityD = Double.POSITIVE_INFINITY;
static final double NaNd = Double.NaN;
// Initialize shared random number generator
static java.util.Random rand = RandomFactory.getRandom();
static int testCubeRootCase(double input, double expected) {
int failures=0;
double minus_input = -input;
double minus_expected = -expected;
failures+=Tests.test("Math.cbrt(double)", input,
Math.cbrt(input), expected);
failures+=Tests.test("Math.cbrt(double)", minus_input,
Math.cbrt(minus_input), minus_expected);
failures+=Tests.test("StrictMath.cbrt(double)", input,
StrictMath.cbrt(input), expected);
failures+=Tests.test("StrictMath.cbrt(double)", minus_input,
StrictMath.cbrt(minus_input), minus_expected);
return failures;
}
static int testCubeRoot() {
int failures = 0;
double [][] testCases = {
{NaNd, NaNd},
{Double.longBitsToDouble(0x7FF0000000000001L), NaNd},
{Double.longBitsToDouble(0xFFF0000000000001L), NaNd},
{Double.longBitsToDouble(0x7FF8555555555555L), NaNd},
{Double.longBitsToDouble(0xFFF8555555555555L), NaNd},
{Double.longBitsToDouble(0x7FFFFFFFFFFFFFFFL), NaNd},
{Double.longBitsToDouble(0xFFFFFFFFFFFFFFFFL), NaNd},
{Double.longBitsToDouble(0x7FFDeadBeef00000L), NaNd},
{Double.longBitsToDouble(0xFFFDeadBeef00000L), NaNd},
{Double.longBitsToDouble(0x7FFCafeBabe00000L), NaNd},
{Double.longBitsToDouble(0xFFFCafeBabe00000L), NaNd},
{Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY},
{Double.NEGATIVE_INFINITY, Double.NEGATIVE_INFINITY},
{+0.0, +0.0},
{-0.0, -0.0},
{+1.0, +1.0},
{-1.0, -1.0},
{+8.0, +2.0},
{-8.0, -2.0}
};
for(int i = 0; i < testCases.length; i++) {
failures += testCubeRootCase(testCases[i][0],
testCases[i][1]);
}
// Test integer perfect cubes less than 2^53.
for(int i = 0; i <= 208063; i++) {
double d = i;
failures += testCubeRootCase(d*d*d, (double)i);
}
// Test cbrt(2^(3n)) = 2^n.
for(int i = 18; i <= Double.MAX_EXPONENT/3; i++) {
failures += testCubeRootCase(Math.scalb(1.0, 3*i),
Math.scalb(1.0, i) );
}
// Test cbrt(2^(-3n)) = 2^-n.
for(int i = -1; i >= DoubleConsts.MIN_SUB_EXPONENT/3; i--) {
failures += testCubeRootCase(Math.scalb(1.0, 3*i),
Math.scalb(1.0, i) );
}
// Test random perfect cubes. Create double values with
// modest exponents but only have at most the 17 most
// significant bits in the significand set; 17*3 = 51, which
// is less than the number of bits in a double's significand.
long exponentBits1 =
Double.doubleToLongBits(Math.scalb(1.0, 55)) &
DoubleConsts.EXP_BIT_MASK;
long exponentBits2=
Double.doubleToLongBits(Math.scalb(1.0, -55)) &
DoubleConsts.EXP_BIT_MASK;
for(int i = 0; i < 100; i++) {
// Take 16 bits since the 17th bit is implicit in the
// exponent
double input1 =
Double.longBitsToDouble(exponentBits1 |
// Significand bits
((long) (rand.nextInt() & 0xFFFF))<<
(DoubleConsts.SIGNIFICAND_WIDTH-1-16));
failures += testCubeRootCase(input1*input1*input1, input1);
double input2 =
Double.longBitsToDouble(exponentBits2 |
// Significand bits
((long) (rand.nextInt() & 0xFFFF))<<
(DoubleConsts.SIGNIFICAND_WIDTH-1-16));
failures += testCubeRootCase(input2*input2*input2, input2);
}
// Directly test quality of implementation properties of cbrt
// for values that aren't perfect cubes. Verify returned
// result meets the 1 ulp test. That is, we want to verify
// that for positive x > 1,
// y = cbrt(x),
//
// if (err1=x - y^3 ) < 0, abs((y_pp^3 -x )) < err1
// if (err1=x - y^3 ) > 0, abs((y_mm^3 -x )) < err1
//
// where y_mm and y_pp are the next smaller and next larger
// floating-point value to y. In other words, if y^3 is too
// big, making y larger does not improve the result; likewise,
// if y^3 is too small, making y smaller does not improve the
// result.
//
// ...-----|--?--|--?--|-----... Where is the true result?
// y_mm y y_pp
//
// The returned value y should be one of the floating-point
// values braketing the true result. However, given y, a
// priori we don't know if the true result falls in [y_mm, y]
// or [y, y_pp]. The above test looks at the error in x-y^3
// to determine which region the true result is in; e.g. if
// y^3 is smaller than x, the true result should be in [y,
// y_pp]. Therefore, it would be an error for y_mm to be a
// closer approximation to x^(1/3). In this case, it is
// permissible, although not ideal, for y_pp^3 to be a closer
// approximation to x^(1/3) than y^3.
//
// We will use pow(y,3) to compute y^3. Although pow is not
// correctly rounded, StrictMath.pow should have at most 1 ulp
// error. For y > 1, pow(y_mm,3) and pow(y_pp,3) will differ
// from pow(y,3) by more than one ulp so the comparision of
// errors should still be valid.
for(int i = 0; i < 1000; i++) {
double d = 1.0 + rand.nextDouble();
double err, err_adjacent;
double y1 = Math.cbrt(d);
double y2 = StrictMath.cbrt(d);
err = d - StrictMath.pow(y1, 3);
if (err != 0.0) {
if(Double.isNaN(err)) {
failures++;
System.err.println("Encountered unexpected NaN value: d = " + d +
"\tcbrt(d) = " + y1);
} else {
if (err < 0.0) {
err_adjacent = StrictMath.pow(Math.nextUp(y1), 3) - d;
}
else { // (err > 0.0)
err_adjacent = StrictMath.pow(Math.nextAfter(y1,0.0), 3) - d;
}
if (Math.abs(err) > Math.abs(err_adjacent)) {
failures++;
System.err.println("For Math.cbrt(" + d + "), returned result " +
y1 + "is not as good as adjacent value.");
}
}
}
err = d - StrictMath.pow(y2, 3);
if (err != 0.0) {
if(Double.isNaN(err)) {
failures++;
System.err.println("Encountered unexpected NaN value: d = " + d +
"\tcbrt(d) = " + y2);
} else {
if (err < 0.0) {
err_adjacent = StrictMath.pow(Math.nextUp(y2), 3) - d;
}
else { // (err > 0.0)
err_adjacent = StrictMath.pow(Math.nextAfter(y2,0.0), 3) - d;
}
if (Math.abs(err) > Math.abs(err_adjacent)) {
failures++;
System.err.println("For StrictMath.cbrt(" + d + "), returned result " +
y2 + "is not as good as adjacent value.");
}
}
}
}
// Test monotonicity properites near perfect cubes; test two
// numbers before and two numbers after; i.e. for
//
// pcNeighbors[] =
// {nextDown(nextDown(pc)),
// nextDown(pc),
// pc,
// nextUp(pc),
// nextUp(nextUp(pc))}
//
// test that cbrt(pcNeighbors[i]) <= cbrt(pcNeighbors[i+1])
{
double pcNeighbors[] = new double[5];
double pcNeighborsCbrt[] = new double[5];
double pcNeighborsStrictCbrt[] = new double[5];
// Test near cbrt(2^(3n)) = 2^n.
for(int i = 18; i <= Double.MAX_EXPONENT/3; i++) {
double pc = Math.scalb(1.0, 3*i);
pcNeighbors[2] = pc;
pcNeighbors[1] = Math.nextDown(pc);
pcNeighbors[0] = Math.nextDown(pcNeighbors[1]);
pcNeighbors[3] = Math.nextUp(pc);
pcNeighbors[4] = Math.nextUp(pcNeighbors[3]);
for(int j = 0; j < pcNeighbors.length; j++) {
pcNeighborsCbrt[j] = Math.cbrt(pcNeighbors[j]);
pcNeighborsStrictCbrt[j] = StrictMath.cbrt(pcNeighbors[j]);
}
for(int j = 0; j < pcNeighborsCbrt.length-1; j++) {
if(pcNeighborsCbrt[j] > pcNeighborsCbrt[j+1] ) {
failures++;
System.err.println("Monotonicity failure for Math.cbrt on " +
pcNeighbors[j] + " and " +
pcNeighbors[j+1] + "\n\treturned " +
pcNeighborsCbrt[j] + " and " +
pcNeighborsCbrt[j+1] );
}
if(pcNeighborsStrictCbrt[j] > pcNeighborsStrictCbrt[j+1] ) {
failures++;
System.err.println("Monotonicity failure for StrictMath.cbrt on " +
pcNeighbors[j] + " and " +
pcNeighbors[j+1] + "\n\treturned " +
pcNeighborsStrictCbrt[j] + " and " +
pcNeighborsStrictCbrt[j+1] );
}
}
}
// Test near cbrt(2^(-3n)) = 2^-n.
for(int i = -1; i >= DoubleConsts.MIN_SUB_EXPONENT/3; i--) {
double pc = Math.scalb(1.0, 3*i);
pcNeighbors[2] = pc;
pcNeighbors[1] = Math.nextDown(pc);
pcNeighbors[0] = Math.nextDown(pcNeighbors[1]);
pcNeighbors[3] = Math.nextUp(pc);
pcNeighbors[4] = Math.nextUp(pcNeighbors[3]);
for(int j = 0; j < pcNeighbors.length; j++) {
pcNeighborsCbrt[j] = Math.cbrt(pcNeighbors[j]);
pcNeighborsStrictCbrt[j] = StrictMath.cbrt(pcNeighbors[j]);
}
for(int j = 0; j < pcNeighborsCbrt.length-1; j++) {
if(pcNeighborsCbrt[j] > pcNeighborsCbrt[j+1] ) {
failures++;
System.err.println("Monotonicity failure for Math.cbrt on " +
pcNeighbors[j] + " and " +
pcNeighbors[j+1] + "\n\treturned " +
pcNeighborsCbrt[j] + " and " +
pcNeighborsCbrt[j+1] );
}
if(pcNeighborsStrictCbrt[j] > pcNeighborsStrictCbrt[j+1] ) {
failures++;
System.err.println("Monotonicity failure for StrictMath.cbrt on " +
pcNeighbors[j] + " and " +
pcNeighbors[j+1] + "\n\treturned " +
pcNeighborsStrictCbrt[j] + " and " +
pcNeighborsStrictCbrt[j+1] );
}
}
}
}
return failures;
}
public static void main(String argv[]) {
int failures = 0;
failures += testCubeRoot();
if (failures > 0) {
System.err.println("Testing cbrt incurred "
+ failures + " failures.");
throw new RuntimeException();
}
}
}