jdk-24/test/hotspot/jtreg/compiler/c2/Test7177917.java
Igor Ignatyev 7c351405c4 8242310: use reproducible random in hotspot compiler tests
Reviewed-by: kvn, thartmann
2020-04-08 22:58:42 -07:00

153 lines
4.1 KiB
Java

/*
* Copyright (c) 2012, 2020, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/**
* @test
* @key randomness
* @bug 7177917
* @summary Micro-benchmark for Math.pow() and Math.exp()
* @modules java.base/jdk.internal.misc
* @library /test/lib
*
* @run main compiler.c2.Test7177917
*/
package compiler.c2;
import jdk.test.lib.Utils;
import java.util.Random;
public class Test7177917 {
static double d;
static final Random R = Utils.getRandomInstance();
static long m_pow(double[][] values) {
double res = 0;
long start = System.nanoTime();
for (int i = 0; i < values.length; i++) {
res += Math.pow(values[i][0], values[i][1]);
}
long stop = System.nanoTime();
d = res;
return (stop - start) / 1000;
}
static long m_exp(double[] values) {
double res = 0;
long start = System.nanoTime();
for (int i = 0; i < values.length; i++) {
res += Math.exp(values[i]);
}
long stop = System.nanoTime();
d = res;
return (stop - start) / 1000;
}
static double[][] pow_values(int nb) {
double[][] res = new double[nb][2];
for (int i = 0; i < nb; i++) {
double ylogx = (1 + (R.nextDouble() * 2045)) - 1023; // 2045 rather than 2046 as a safety margin
double x = Math.abs(Double.longBitsToDouble(R.nextLong()));
while (x != x) {
x = Math.abs(Double.longBitsToDouble(R.nextLong()));
}
double logx = Math.log(x) / Math.log(2);
double y = ylogx / logx;
res[i][0] = x;
res[i][1] = y;
}
return res;
}
static double[] exp_values(int nb) {
double[] res = new double[nb];
for (int i = 0; i < nb; i++) {
double ylogx = (1 + (R.nextDouble() * 2045)) - 1023; // 2045 rather than 2046 as a safety margin
double x = Math.E;
double logx = Math.log(x) / Math.log(2);
double y = ylogx / logx;
res[i] = y;
}
return res;
}
static public void main(String[] args) {
{
// warmup
double[][] warmup_values = pow_values(10);
m_pow(warmup_values);
for (int i = 0; i < 20000; i++) {
m_pow(warmup_values);
}
// test pow perf
double[][] values = pow_values(1000000);
System.out.println("==> POW " + m_pow(values));
// force uncommon trap
double[][] nan_values = new double[1][2];
nan_values[0][0] = Double.NaN;
nan_values[0][1] = Double.NaN;
m_pow(nan_values);
// force recompilation
for (int i = 0; i < 20000; i++) {
m_pow(warmup_values);
}
// test pow perf again
System.out.println("==> POW " + m_pow(values));
}
{
// warmup
double[] warmup_values = exp_values(10);
m_exp(warmup_values);
for (int i = 0; i < 20000; i++) {
m_exp(warmup_values);
}
// test pow perf
double[] values = exp_values(1000000);
System.out.println("==> EXP " + m_exp(values));
// force uncommon trap
double[] nan_values = new double[1];
nan_values[0] = Double.NaN;
m_exp(nan_values);
// force recompilation
for (int i = 0; i < 20000; i++) {
m_exp(warmup_values);
}
// test pow perf again
System.out.println("==> EXP " + m_exp(values));
}
}
}