jdk-24/src/hotspot/share/gc/z/zHeap.cpp
2019-04-25 08:55:50 +02:00

582 lines
16 KiB
C++

/*
* Copyright (c) 2015, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
#include "precompiled.hpp"
#include "gc/shared/oopStorage.hpp"
#include "gc/z/zAddress.hpp"
#include "gc/z/zGlobals.hpp"
#include "gc/z/zHeap.inline.hpp"
#include "gc/z/zHeapIterator.hpp"
#include "gc/z/zList.inline.hpp"
#include "gc/z/zLock.inline.hpp"
#include "gc/z/zMark.inline.hpp"
#include "gc/z/zOopClosures.inline.hpp"
#include "gc/z/zPage.inline.hpp"
#include "gc/z/zPageTable.inline.hpp"
#include "gc/z/zRelocationSet.inline.hpp"
#include "gc/z/zResurrection.hpp"
#include "gc/z/zRootsIterator.hpp"
#include "gc/z/zStat.hpp"
#include "gc/z/zTask.hpp"
#include "gc/z/zThread.hpp"
#include "gc/z/zTracer.inline.hpp"
#include "gc/z/zVirtualMemory.inline.hpp"
#include "gc/z/zWorkers.inline.hpp"
#include "logging/log.hpp"
#include "memory/resourceArea.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/safepoint.hpp"
#include "runtime/thread.hpp"
#include "utilities/align.hpp"
#include "utilities/debug.hpp"
static const ZStatSampler ZSamplerHeapUsedBeforeMark("Memory", "Heap Used Before Mark", ZStatUnitBytes);
static const ZStatSampler ZSamplerHeapUsedAfterMark("Memory", "Heap Used After Mark", ZStatUnitBytes);
static const ZStatSampler ZSamplerHeapUsedBeforeRelocation("Memory", "Heap Used Before Relocation", ZStatUnitBytes);
static const ZStatSampler ZSamplerHeapUsedAfterRelocation("Memory", "Heap Used After Relocation", ZStatUnitBytes);
static const ZStatCounter ZCounterUndoPageAllocation("Memory", "Undo Page Allocation", ZStatUnitOpsPerSecond);
static const ZStatCounter ZCounterOutOfMemory("Memory", "Out Of Memory", ZStatUnitOpsPerSecond);
ZHeap* ZHeap::_heap = NULL;
ZHeap::ZHeap() :
_workers(),
_object_allocator(_workers.nworkers()),
_page_allocator(heap_min_size(), heap_max_size(), heap_max_reserve_size()),
_page_table(),
_forwarding_table(),
_mark(&_workers, &_page_table),
_reference_processor(&_workers),
_weak_roots_processor(&_workers),
_relocate(&_workers),
_relocation_set(),
_unload(&_workers),
_serviceability(heap_min_size(), heap_max_size()) {
// Install global heap instance
assert(_heap == NULL, "Already initialized");
_heap = this;
// Update statistics
ZStatHeap::set_at_initialize(heap_max_size(), heap_max_reserve_size());
}
size_t ZHeap::heap_min_size() const {
const size_t aligned_min_size = align_up(InitialHeapSize, ZGranuleSize);
return MIN2(aligned_min_size, heap_max_size());
}
size_t ZHeap::heap_max_size() const {
const size_t aligned_max_size = align_up(MaxHeapSize, ZGranuleSize);
return MIN2(aligned_max_size, ZAddressOffsetMax);
}
size_t ZHeap::heap_max_reserve_size() const {
// Reserve one small page per worker plus one shared medium page. This is still just
// an estimate and doesn't guarantee that we can't run out of memory during relocation.
const size_t max_reserve_size = (_workers.nworkers() * ZPageSizeSmall) + ZPageSizeMedium;
return MIN2(max_reserve_size, heap_max_size());
}
bool ZHeap::is_initialized() const {
return _page_allocator.is_initialized() && _mark.is_initialized();
}
size_t ZHeap::min_capacity() const {
return heap_min_size();
}
size_t ZHeap::max_capacity() const {
return _page_allocator.max_capacity();
}
size_t ZHeap::current_max_capacity() const {
return _page_allocator.current_max_capacity();
}
size_t ZHeap::capacity() const {
return _page_allocator.capacity();
}
size_t ZHeap::max_reserve() const {
return _page_allocator.max_reserve();
}
size_t ZHeap::used_high() const {
return _page_allocator.used_high();
}
size_t ZHeap::used_low() const {
return _page_allocator.used_low();
}
size_t ZHeap::used() const {
return _page_allocator.used();
}
size_t ZHeap::unused() const {
return _page_allocator.unused();
}
size_t ZHeap::allocated() const {
return _page_allocator.allocated();
}
size_t ZHeap::reclaimed() const {
return _page_allocator.reclaimed();
}
size_t ZHeap::tlab_capacity() const {
return capacity();
}
size_t ZHeap::tlab_used() const {
return _object_allocator.used();
}
size_t ZHeap::max_tlab_size() const {
return ZObjectSizeLimitSmall;
}
size_t ZHeap::unsafe_max_tlab_alloc() const {
size_t size = _object_allocator.remaining();
if (size < MinTLABSize) {
// The remaining space in the allocator is not enough to
// fit the smallest possible TLAB. This means that the next
// TLAB allocation will force the allocator to get a new
// backing page anyway, which in turn means that we can then
// fit the largest possible TLAB.
size = max_tlab_size();
}
return MIN2(size, max_tlab_size());
}
bool ZHeap::is_in(uintptr_t addr) const {
if (addr < ZAddressReservedStart || addr >= ZAddressReservedEnd) {
return false;
}
const ZPage* const page = _page_table.get(addr);
if (page != NULL) {
return page->is_in(addr);
}
return false;
}
uintptr_t ZHeap::block_start(uintptr_t addr) const {
const ZPage* const page = _page_table.get(addr);
return page->block_start(addr);
}
bool ZHeap::block_is_obj(uintptr_t addr) const {
const ZPage* const page = _page_table.get(addr);
return page->block_is_obj(addr);
}
uint ZHeap::nconcurrent_worker_threads() const {
return _workers.nconcurrent();
}
uint ZHeap::nconcurrent_no_boost_worker_threads() const {
return _workers.nconcurrent_no_boost();
}
void ZHeap::set_boost_worker_threads(bool boost) {
_workers.set_boost(boost);
}
void ZHeap::worker_threads_do(ThreadClosure* tc) const {
_workers.threads_do(tc);
}
void ZHeap::print_worker_threads_on(outputStream* st) const {
_workers.print_threads_on(st);
}
void ZHeap::out_of_memory() {
ResourceMark rm;
ZStatInc(ZCounterOutOfMemory);
log_info(gc)("Out Of Memory (%s)", Thread::current()->name());
}
ZPage* ZHeap::alloc_page(uint8_t type, size_t size, ZAllocationFlags flags) {
ZPage* const page = _page_allocator.alloc_page(type, size, flags);
if (page != NULL) {
// Insert page table entry
_page_table.insert(page);
}
return page;
}
void ZHeap::undo_alloc_page(ZPage* page) {
assert(page->is_allocating(), "Invalid page state");
ZStatInc(ZCounterUndoPageAllocation);
log_trace(gc)("Undo page allocation, thread: " PTR_FORMAT " (%s), page: " PTR_FORMAT ", size: " SIZE_FORMAT,
ZThread::id(), ZThread::name(), p2i(page), page->size());
free_page(page, false /* reclaimed */);
}
void ZHeap::free_page(ZPage* page, bool reclaimed) {
// Remove page table entry
_page_table.remove(page);
// Free page
_page_allocator.free_page(page, reclaimed);
}
void ZHeap::before_flip() {
if (ZVerifyViews) {
// Unmap all pages
_page_allocator.unmap_all_pages();
}
}
void ZHeap::after_flip() {
if (ZVerifyViews) {
// Map all pages
ZPageTableIterator iter(&_page_table);
for (ZPage* page; iter.next(&page);) {
_page_allocator.map_page(page);
}
}
}
void ZHeap::flip_to_marked() {
before_flip();
ZAddress::flip_to_marked();
after_flip();
}
void ZHeap::flip_to_remapped() {
before_flip();
ZAddress::flip_to_remapped();
after_flip();
}
void ZHeap::mark_start() {
assert(SafepointSynchronize::is_at_safepoint(), "Should be at safepoint");
// Update statistics
ZStatSample(ZSamplerHeapUsedBeforeMark, used());
// Flip address view
flip_to_marked();
// Retire allocating pages
_object_allocator.retire_pages();
// Reset allocated/reclaimed/used statistics
_page_allocator.reset_statistics();
// Reset encountered/dropped/enqueued statistics
_reference_processor.reset_statistics();
// Enter mark phase
ZGlobalPhase = ZPhaseMark;
// Reset marking information and mark roots
_mark.start();
// Update statistics
ZStatHeap::set_at_mark_start(capacity(), used());
}
void ZHeap::mark(bool initial) {
_mark.mark(initial);
}
void ZHeap::mark_flush_and_free(Thread* thread) {
_mark.flush_and_free(thread);
}
class ZFixupPartialLoadsClosure : public ZRootsIteratorClosure {
public:
virtual void do_oop(oop* p) {
ZBarrier::mark_barrier_on_root_oop_field(p);
}
virtual void do_oop(narrowOop* p) {
ShouldNotReachHere();
}
};
class ZFixupPartialLoadsTask : public ZTask {
private:
ZThreadRootsIterator _thread_roots;
public:
ZFixupPartialLoadsTask() :
ZTask("ZFixupPartialLoadsTask"),
_thread_roots() {}
virtual void work() {
ZFixupPartialLoadsClosure cl;
_thread_roots.oops_do(&cl);
}
};
void ZHeap::fixup_partial_loads() {
ZFixupPartialLoadsTask task;
_workers.run_parallel(&task);
}
bool ZHeap::mark_end() {
assert(SafepointSynchronize::is_at_safepoint(), "Should be at safepoint");
// C2 can generate code where a safepoint poll is inserted
// between a load and the associated load barrier. To handle
// this case we need to rescan the thread stack here to make
// sure such oops are marked.
fixup_partial_loads();
// Try end marking
if (!_mark.end()) {
// Marking not completed, continue concurrent mark
return false;
}
// Enter mark completed phase
ZGlobalPhase = ZPhaseMarkCompleted;
// Update statistics
ZStatSample(ZSamplerHeapUsedAfterMark, used());
ZStatHeap::set_at_mark_end(capacity(), allocated(), used());
// Block resurrection of weak/phantom references
ZResurrection::block();
// Process weak roots
_weak_roots_processor.process_weak_roots();
// Prepare to unload unused classes and code
_unload.prepare();
return true;
}
void ZHeap::set_soft_reference_policy(bool clear) {
_reference_processor.set_soft_reference_policy(clear);
}
void ZHeap::process_non_strong_references() {
// Process Soft/Weak/Final/PhantomReferences
_reference_processor.process_references();
// Process concurrent weak roots
_weak_roots_processor.process_concurrent_weak_roots();
// Unload unused classes and code
_unload.unload();
// Unblock resurrection of weak/phantom references
ZResurrection::unblock();
// Enqueue Soft/Weak/Final/PhantomReferences. Note that this
// must be done after unblocking resurrection. Otherwise the
// Finalizer thread could call Reference.get() on the Finalizers
// that were just enqueued, which would incorrectly return null
// during the resurrection block window, since such referents
// are only Finalizable marked.
_reference_processor.enqueue_references();
}
void ZHeap::select_relocation_set() {
// Do not allow pages to be deleted
_page_allocator.enable_deferred_delete();
// Register relocatable pages with selector
ZRelocationSetSelector selector;
ZPageTableIterator pt_iter(&_page_table);
for (ZPage* page; pt_iter.next(&page);) {
if (!page->is_relocatable()) {
// Not relocatable, don't register
continue;
}
if (page->is_marked()) {
// Register live page
selector.register_live_page(page);
} else {
// Register garbage page
selector.register_garbage_page(page);
// Reclaim page immediately
free_page(page, true /* reclaimed */);
}
}
// Allow pages to be deleted
_page_allocator.disable_deferred_delete();
// Select pages to relocate
selector.select(&_relocation_set);
// Setup forwarding table
ZRelocationSetIterator rs_iter(&_relocation_set);
for (ZForwarding* forwarding; rs_iter.next(&forwarding);) {
_forwarding_table.insert(forwarding);
}
// Update statistics
ZStatRelocation::set_at_select_relocation_set(selector.relocating());
ZStatHeap::set_at_select_relocation_set(selector.live(),
selector.garbage(),
reclaimed());
}
void ZHeap::reset_relocation_set() {
// Reset forwarding table
ZRelocationSetIterator iter(&_relocation_set);
for (ZForwarding* forwarding; iter.next(&forwarding);) {
_forwarding_table.remove(forwarding);
}
// Reset relocation set
_relocation_set.reset();
}
void ZHeap::relocate_start() {
assert(SafepointSynchronize::is_at_safepoint(), "Should be at safepoint");
// Finish unloading of classes and code
_unload.finish();
// Flip address view
flip_to_remapped();
// Enter relocate phase
ZGlobalPhase = ZPhaseRelocate;
// Update statistics
ZStatSample(ZSamplerHeapUsedBeforeRelocation, used());
ZStatHeap::set_at_relocate_start(capacity(), allocated(), used());
// Remap/Relocate roots
_relocate.start();
}
void ZHeap::relocate() {
// Relocate relocation set
const bool success = _relocate.relocate(&_relocation_set);
// Update statistics
ZStatSample(ZSamplerHeapUsedAfterRelocation, used());
ZStatRelocation::set_at_relocate_end(success);
ZStatHeap::set_at_relocate_end(capacity(), allocated(), reclaimed(),
used(), used_high(), used_low());
}
void ZHeap::object_iterate(ObjectClosure* cl, bool visit_referents) {
assert(SafepointSynchronize::is_at_safepoint(), "Should be at safepoint");
ZHeapIterator iter(visit_referents);
iter.objects_do(cl);
}
void ZHeap::serviceability_initialize() {
_serviceability.initialize();
}
GCMemoryManager* ZHeap::serviceability_memory_manager() {
return _serviceability.memory_manager();
}
MemoryPool* ZHeap::serviceability_memory_pool() {
return _serviceability.memory_pool();
}
ZServiceabilityCounters* ZHeap::serviceability_counters() {
return _serviceability.counters();
}
void ZHeap::print_on(outputStream* st) const {
st->print_cr(" ZHeap used " SIZE_FORMAT "M, capacity " SIZE_FORMAT "M, max capacity " SIZE_FORMAT "M",
used() / M,
capacity() / M,
max_capacity() / M);
MetaspaceUtils::print_on(st);
}
void ZHeap::print_extended_on(outputStream* st) const {
print_on(st);
st->cr();
// Do not allow pages to be deleted
_page_allocator.enable_deferred_delete();
// Print all pages
ZPageTableIterator iter(&_page_table);
for (ZPage* page; iter.next(&page);) {
page->print_on(st);
}
// Allow pages to be deleted
_page_allocator.enable_deferred_delete();
st->cr();
}
class ZVerifyRootsTask : public ZTask {
private:
ZStatTimerDisable _disable;
ZRootsIterator _strong_roots;
ZWeakRootsIterator _weak_roots;
public:
ZVerifyRootsTask() :
ZTask("ZVerifyRootsTask"),
_disable(),
_strong_roots(),
_weak_roots() {}
virtual void work() {
ZStatTimerDisable disable;
ZVerifyOopClosure cl;
_strong_roots.oops_do(&cl);
_weak_roots.oops_do(&cl);
}
};
void ZHeap::verify() {
// Heap verification can only be done between mark end and
// relocate start. This is the only window where all oop are
// good and the whole heap is in a consistent state.
guarantee(ZGlobalPhase == ZPhaseMarkCompleted, "Invalid phase");
{
ZVerifyRootsTask task;
_workers.run_parallel(&task);
}
{
ZVerifyObjectClosure cl;
object_iterate(&cl, false /* visit_referents */);
}
}