jdk-24/test/hotspot/gtest/runtime/test_os_linux.cpp
Thomas Stuefe 1ecf74c296 8325306: Rename static huge pages to explicit huge pages
Reviewed-by: jsjolen, jwaters
2024-02-07 14:54:51 +00:00

471 lines
16 KiB
C++

/*
* Copyright (c) 2018, 2024, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
#include "precompiled.hpp"
#ifdef LINUX
#include "os_linux.hpp"
#include "prims/jniCheck.hpp"
#include "runtime/globals.hpp"
#include "runtime/os.hpp"
#include "utilities/align.hpp"
#include "utilities/decoder.hpp"
#include "concurrentTestRunner.inline.hpp"
#include "testutils.hpp"
#include "unittest.hpp"
#include <sys/mman.h>
static bool using_explicit_hugepages() { return UseLargePages && !UseTransparentHugePages; }
namespace {
static void small_page_write(void* addr, size_t size) {
size_t page_size = os::vm_page_size();
char* end = (char*)addr + size;
for (char* p = (char*)addr; p < end; p += page_size) {
*p = 1;
}
}
class HugeTlbfsMemory : private ::os::Linux {
char* const _ptr;
const size_t _size;
public:
static char* reserve_memory_special_huge_tlbfs(size_t bytes, size_t alignment, size_t page_size, char* req_addr, bool exec) {
return os::reserve_memory_special(bytes, alignment, page_size, req_addr, exec);
}
HugeTlbfsMemory(char* const ptr, size_t size) : _ptr(ptr), _size(size) { }
~HugeTlbfsMemory() {
if (_ptr != nullptr) {
os::release_memory_special(_ptr, _size);
}
}
};
// have to use these functions, as gtest's _PRED macros don't like is_aligned
// nor (is_aligned<size_t, size_t>)
static bool is_size_aligned(size_t size, size_t alignment) {
return is_aligned(size, alignment);
}
static bool is_ptr_aligned(char* ptr, size_t alignment) {
return is_aligned(ptr, alignment);
}
}
TEST_VM(os_linux, reserve_memory_special_huge_tlbfs_size_aligned) {
if (!using_explicit_hugepages()) {
return;
}
size_t lp = os::large_page_size();
for (size_t size = lp; size <= lp * 10; size += lp) {
char* addr = HugeTlbfsMemory::reserve_memory_special_huge_tlbfs(size, lp, lp, nullptr, false);
if (addr != nullptr) {
HugeTlbfsMemory mr(addr, size);
small_page_write(addr, size);
}
}
}
TEST_VM(os_linux, reserve_memory_special_huge_tlbfs_size_not_aligned_without_addr) {
if (!using_explicit_hugepages()) {
return;
}
size_t lp = os::large_page_size();
size_t ag = os::vm_allocation_granularity();
// sizes to test
const size_t sizes[] = {
lp, lp + ag, lp + lp / 2, lp * 2,
lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
lp * 10, lp * 10 + lp / 2
};
const int num_sizes = sizeof(sizes) / sizeof(size_t);
for (int i = 0; i < num_sizes; i++) {
const size_t size = sizes[i];
for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
char* p = HugeTlbfsMemory::reserve_memory_special_huge_tlbfs(size, alignment, lp, nullptr, false);
if (p != nullptr) {
HugeTlbfsMemory mr(p, size);
EXPECT_PRED2(is_ptr_aligned, p, alignment) << " size = " << size;
small_page_write(p, size);
}
}
}
}
TEST_VM(os_linux, reserve_memory_special_huge_tlbfs_size_not_aligned_with_good_req_addr) {
if (!using_explicit_hugepages()) {
return;
}
size_t lp = os::large_page_size();
size_t ag = os::vm_allocation_granularity();
// sizes to test
const size_t sizes[] = {
lp, lp + ag, lp + lp / 2, lp * 2,
lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
lp * 10, lp * 10 + lp / 2
};
const int num_sizes = sizeof(sizes) / sizeof(size_t);
// Pre-allocate an area as large as the largest allocation
// and aligned to the largest alignment we will be testing.
const size_t mapping_size = sizes[num_sizes - 1] * 2;
char* const mapping = (char*) ::mmap(nullptr, mapping_size,
PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
-1, 0);
ASSERT_TRUE(mapping != MAP_FAILED) << " mmap failed, mapping_size = " << mapping_size;
// Unmap the mapping, it will serve as a value for a "good" req_addr
::munmap(mapping, mapping_size);
for (int i = 0; i < num_sizes; i++) {
const size_t size = sizes[i];
for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
// req_addr must be at least large page aligned.
char* const req_addr = align_up(mapping, MAX2(alignment, lp));
char* p = HugeTlbfsMemory::reserve_memory_special_huge_tlbfs(size, alignment, lp, req_addr, false);
if (p != nullptr) {
HugeTlbfsMemory mr(p, size);
ASSERT_EQ(req_addr, p) << " size = " << size << ", alignment = " << alignment;
small_page_write(p, size);
}
}
}
}
TEST_VM(os_linux, reserve_memory_special_huge_tlbfs_size_not_aligned_with_bad_req_addr) {
if (!using_explicit_hugepages()) {
return;
}
size_t lp = os::large_page_size();
size_t ag = os::vm_allocation_granularity();
// sizes to test
const size_t sizes[] = {
lp, lp + ag, lp + lp / 2, lp * 2,
lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
lp * 10, lp * 10 + lp / 2
};
const int num_sizes = sizeof(sizes) / sizeof(size_t);
// Pre-allocate an area as large as the largest allocation
// and aligned to the largest alignment we will be testing.
const size_t mapping_size = sizes[num_sizes - 1] * 2;
char* const mapping = (char*) ::mmap(nullptr, mapping_size,
PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
-1, 0);
ASSERT_TRUE(mapping != MAP_FAILED) << " mmap failed, mapping_size = " << mapping_size;
// Leave the mapping intact, it will server as "bad" req_addr
class MappingHolder {
char* const _mapping;
size_t _size;
public:
MappingHolder(char* mapping, size_t size) : _mapping(mapping), _size(size) { }
~MappingHolder() {
::munmap(_mapping, _size);
}
} holder(mapping, mapping_size);
for (int i = 0; i < num_sizes; i++) {
const size_t size = sizes[i];
for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
// req_addr must be at least large page aligned.
char* const req_addr = align_up(mapping, MAX2(alignment, lp));
char* p = HugeTlbfsMemory::reserve_memory_special_huge_tlbfs(size, alignment, lp, req_addr, false);
HugeTlbfsMemory mr(p, size);
// as the area around req_addr contains already existing mappings, the API should always
// return null (as per contract, it cannot return another address)
EXPECT_TRUE(p == nullptr) << " size = " << size
<< ", alignment = " << alignment
<< ", req_addr = " << req_addr
<< ", p = " << p;
}
}
}
class TestReserveMemorySpecial : AllStatic {
public:
static void small_page_write(void* addr, size_t size) {
size_t page_size = os::vm_page_size();
char* end = (char*)addr + size;
for (char* p = (char*)addr; p < end; p += page_size) {
*p = 1;
}
}
static void test_reserve_memory_special_huge_tlbfs_size_aligned(size_t size, size_t alignment, size_t page_size) {
if (!using_explicit_hugepages()) {
return;
}
char* addr = os::reserve_memory_special(size, alignment, page_size, nullptr, false);
if (addr != nullptr) {
small_page_write(addr, size);
os::release_memory_special(addr, size);
}
}
static void test_reserve_memory_special_huge_tlbfs_size_aligned() {
if (!using_explicit_hugepages()) {
return;
}
size_t lp = os::large_page_size();
for (size_t size = lp; size <= lp * 10; size += lp) {
test_reserve_memory_special_huge_tlbfs_size_aligned(size, lp, lp);
}
}
static void test_reserve_memory_special_huge_tlbfs_size_not_aligned() {
size_t lp = os::large_page_size();
size_t ag = os::vm_allocation_granularity();
// sizes to test
const size_t sizes[] = {
lp, lp + ag, lp + lp / 2, lp * 2,
lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
lp * 10, lp * 10 + lp / 2
};
const int num_sizes = sizeof(sizes) / sizeof(size_t);
// For each size/alignment combination, we test three scenarios:
// 1) with req_addr == nullptr
// 2) with a non-null req_addr at which we expect to successfully allocate
// 3) with a non-null req_addr which contains a pre-existing mapping, at which we
// expect the allocation to either fail or to ignore req_addr
// Pre-allocate two areas; they shall be as large as the largest allocation
// and aligned to the largest alignment we will be testing.
const size_t mapping_size = sizes[num_sizes - 1] * 2;
char* const mapping1 = (char*) ::mmap(nullptr, mapping_size,
PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
-1, 0);
EXPECT_NE(mapping1, MAP_FAILED);
char* const mapping2 = (char*) ::mmap(nullptr, mapping_size,
PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
-1, 0);
EXPECT_NE(mapping2, MAP_FAILED);
// Unmap the first mapping, but leave the second mapping intact: the first
// mapping will serve as a value for a "good" req_addr (case 2). The second
// mapping, still intact, as "bad" req_addr (case 3).
::munmap(mapping1, mapping_size);
// Case 1
for (int i = 0; i < num_sizes; i++) {
const size_t size = sizes[i];
for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
char* p = os::reserve_memory_special(size, alignment, lp, nullptr, false);
if (p != nullptr) {
EXPECT_TRUE(is_aligned(p, alignment));
small_page_write(p, size);
os::release_memory_special(p, size);
}
}
}
// Case 2
for (int i = 0; i < num_sizes; i++) {
const size_t size = sizes[i];
for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
// req_addr must be at least large page aligned.
char* const req_addr = align_up(mapping1, MAX2(alignment, lp));
char* p = os::reserve_memory_special(size, alignment, lp, req_addr, false);
if (p != nullptr) {
EXPECT_EQ(p, req_addr);
small_page_write(p, size);
os::release_memory_special(p, size);
}
}
}
// Case 3
for (int i = 0; i < num_sizes; i++) {
const size_t size = sizes[i];
for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
// req_addr must be at least large page aligned.
char* const req_addr = align_up(mapping2, MAX2(alignment, lp));
char* p = os::reserve_memory_special(size, alignment, lp, req_addr, false);
// as the area around req_addr contains already existing mappings, the API should always
// return nullptr (as per contract, it cannot return another address)
EXPECT_TRUE(p == nullptr);
}
}
::munmap(mapping2, mapping_size);
}
static void test() {
if (!using_explicit_hugepages()) {
return;
}
test_reserve_memory_special_huge_tlbfs_size_aligned();
test_reserve_memory_special_huge_tlbfs_size_not_aligned();
}
};
TEST_VM(os_linux, reserve_memory_special) {
TestReserveMemorySpecial::test();
}
class ReserveMemorySpecialRunnable : public TestRunnable {
public:
void runUnitTest() const {
TestReserveMemorySpecial::test();
}
};
TEST_VM(os_linux, reserve_memory_special_concurrent) {
if (UseLargePages) {
ReserveMemorySpecialRunnable runnable;
ConcurrentTestRunner testRunner(&runnable, 5, 3000);
testRunner.run();
}
}
TEST_VM(os_linux, pretouch_thp_and_use_concurrent) {
// Explicitly enable thp to test cocurrent system calls.
const size_t size = 1 * G;
const bool useThp = UseTransparentHugePages;
UseTransparentHugePages = true;
char* const heap = os::reserve_memory(size, false, mtInternal);
EXPECT_NE(heap, (char*)NULL);
EXPECT_TRUE(os::commit_memory(heap, size, false));
{
auto pretouch = [heap, size](Thread*, int) {
os::pretouch_memory(heap, heap + size, os::vm_page_size());
};
auto useMemory = [heap, size](Thread*, int) {
int* iptr = reinterpret_cast<int*>(heap);
for (int i = 0; i < 1000; i++) *iptr++ = i;
};
TestThreadGroup<decltype(pretouch)> pretouchThreads{pretouch, 4};
TestThreadGroup<decltype(useMemory)> useMemoryThreads{useMemory, 4};
useMemoryThreads.doit();
pretouchThreads.doit();
useMemoryThreads.join();
pretouchThreads.join();
}
int* iptr = reinterpret_cast<int*>(heap);
for (int i = 0; i < 1000; i++)
EXPECT_EQ(*iptr++, i);
EXPECT_TRUE(os::uncommit_memory(heap, size, false));
EXPECT_TRUE(os::release_memory(heap, size));
UseTransparentHugePages = useThp;
}
// Check that method JNI_CreateJavaVM is found.
TEST(os_linux, addr_to_function_valid) {
char buf[128] = "";
int offset = -1;
address valid_function_pointer = (address)JNI_CreateJavaVM;
ASSERT_TRUE(os::dll_address_to_function_name(valid_function_pointer, buf, sizeof(buf), &offset, true));
ASSERT_THAT(buf, testing::HasSubstr("JNI_CreateJavaVM"));
ASSERT_TRUE(offset >= 0);
}
#if !defined(__clang_major__) || (__clang_major__ >= 5) // DWARF does not support Clang versions older than 5.0.
// Test valid address of method ReportJNIFatalError in jniCheck.hpp. We should get "jniCheck.hpp" in the buffer and a valid line number.
TEST_VM(os_linux, decoder_get_source_info_valid) {
char buf[128] = "";
int line = -1;
address valid_function_pointer = (address)ReportJNIFatalError;
ASSERT_TRUE(Decoder::get_source_info(valid_function_pointer, buf, sizeof(buf), &line));
EXPECT_STREQ(buf, "jniCheck.hpp");
ASSERT_TRUE(line > 0);
}
// Test invalid addresses. Should not cause harm and output buffer and line must contain "" and -1, respectively.
TEST_VM(os_linux, decoder_get_source_info_invalid) {
char buf[128] = "";
int line = -1;
address invalid_function_pointers[] = { nullptr, (address)1, (address)&line };
for (address addr : invalid_function_pointers) {
strcpy(buf, "somestring");
line = 12;
// We should return false but do not crash or fail in any way.
ASSERT_FALSE(Decoder::get_source_info(addr, buf, sizeof(buf), &line));
ASSERT_TRUE(buf[0] == '\0'); // Should contain "" on error
ASSERT_TRUE(line == -1); // Should contain -1 on error
}
}
// Test with valid address but a too small buffer to store the entire filename. Should find generic <OVERFLOW> message
// and a valid line number.
TEST_VM(os_linux, decoder_get_source_info_valid_overflow) {
char buf[11] = "";
int line = -1;
address valid_function_pointer = (address)ReportJNIFatalError;
ASSERT_TRUE(Decoder::get_source_info(valid_function_pointer, buf, 11, &line));
EXPECT_STREQ(buf, "<OVERFLOW>");
ASSERT_TRUE(line > 0);
}
// Test with valid address but a too small buffer that can neither store the entire filename nor the generic <OVERFLOW>
// message. We should find "L" as filename and a valid line number.
TEST_VM(os_linux, decoder_get_source_info_valid_overflow_minimal) {
char buf[2] = "";
int line = -1;
address valid_function_pointer = (address)ReportJNIFatalError;
ASSERT_TRUE(Decoder::get_source_info(valid_function_pointer, buf, 2, &line));
EXPECT_STREQ(buf, "L"); // Overflow message does not fit, so we fall back to "L:line_number"
ASSERT_TRUE(line > 0); // Line should correctly be found and returned
}
#endif // clang
#ifdef __GLIBC__
TEST_VM(os_linux, glibc_mallinfo_wrapper) {
// Very basic test. Call it. That proves that resolution and invocation works.
os::Linux::glibc_mallinfo mi;
bool did_wrap = false;
os::Linux::get_mallinfo(&mi, &did_wrap);
void* p = os::malloc(2 * K, mtTest);
ASSERT_NOT_NULL(p);
// We should see total allocation values > 0
ASSERT_GE((mi.uordblks + mi.hblkhd), 2 * K);
// These values also should exceed some reasonable size.
ASSERT_LT(mi.fordblks, 2 * G);
ASSERT_LT(mi.uordblks, 2 * G);
ASSERT_LT(mi.hblkhd, 2 * G);
os::free(p);
}
#endif // __GLIBC__
#endif // LINUX