jdk-24/test/micro/org/openjdk/bench/vm/compiler/Multiplication.java
2022-08-03 18:01:26 +00:00

125 lines
4.0 KiB
Java

/*
* Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package org.openjdk.bench.vm.compiler;
import org.openjdk.jmh.annotations.Benchmark;
import org.openjdk.jmh.annotations.BenchmarkMode;
import org.openjdk.jmh.annotations.Fork;
import org.openjdk.jmh.annotations.Measurement;
import org.openjdk.jmh.annotations.Mode;
import org.openjdk.jmh.annotations.OutputTimeUnit;
import org.openjdk.jmh.annotations.Param;
import org.openjdk.jmh.annotations.Scope;
import org.openjdk.jmh.annotations.Setup;
import org.openjdk.jmh.annotations.State;
import org.openjdk.jmh.annotations.Warmup;
import java.util.concurrent.TimeUnit;
/**
* Tests speed of multiplication calculations with constants.
*/
@BenchmarkMode(Mode.AverageTime)
@OutputTimeUnit(TimeUnit.NANOSECONDS)
@State(Scope.Thread)
@Warmup(iterations = 4, time = 2, timeUnit = TimeUnit.SECONDS)
@Measurement(iterations = 4, time = 2, timeUnit = TimeUnit.SECONDS)
@Fork(value = 3)
public class Multiplication {
@Param("500")
private int arraySize;
private long[] longArraySmall, longArrayBig;
@Setup
public void setupSubclass() {
longArraySmall = new long[arraySize];
longArrayBig = new long[arraySize];
/*
* small values always have higher 32 bits cleared. big values always
* have higher 32 bits set.
*/
for (int i = 0; i < arraySize; i++) {
longArraySmall[i] = 100L * i + i;
longArrayBig[i] = ((100L * i + i) << 32) + 4543 + i * 4;
}
}
/* helper for small constant benchmarks. */
private static long smallConstantHelper(long[] values) {
long sum = 0;
for (long value : values) {
sum += value * 453543L;
}
return sum;
}
/* helper for big constant benchmarks. */
private static long bigConstantHelper(long[] values) {
long sum = 0;
for (long value : values) {
sum += value * 4554345533543L;
}
return sum;
}
/**
* Test multiplications of longs. One of the operands is a small constant and the other is a variable that always is
* small.
*/
@Benchmark
public long testLongSmallVariableSmallConstantMul() {
return smallConstantHelper(longArraySmall);
}
/**
* Test multiplications of longs. One of the operands is a big constant and the other is a variable that always is
* small.
*/
@Benchmark
public long testLongSmallVariableBigConstantMul() {
return bigConstantHelper(longArraySmall);
}
/**
* Test multiplications of longs. One of the operands is a small constant and the other is a variable that always is
* big.
*/
@Benchmark
public long testLongBigVariableSmallConstantMul() {
return smallConstantHelper(longArrayBig);
}
/**
* Test multiplications of longs. One of the operands is a big constant and the other is a variable that always is
* big.
*/
@Benchmark
public long testLongBigVariableBigConstantMul() {
return bigConstantHelper(longArrayBig);
}
}