d8635f58cd
Reviewed-by: mgerdin, stefank
561 lines
22 KiB
C++
561 lines
22 KiB
C++
/*
|
|
* Copyright (c) 2000, 2012, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#ifndef SHARE_VM_MEMORY_BLOCKOFFSETTABLE_HPP
|
|
#define SHARE_VM_MEMORY_BLOCKOFFSETTABLE_HPP
|
|
|
|
#include "memory/memRegion.hpp"
|
|
#include "runtime/virtualspace.hpp"
|
|
#include "utilities/globalDefinitions.hpp"
|
|
|
|
// The CollectedHeap type requires subtypes to implement a method
|
|
// "block_start". For some subtypes, notably generational
|
|
// systems using card-table-based write barriers, the efficiency of this
|
|
// operation may be important. Implementations of the "BlockOffsetArray"
|
|
// class may be useful in providing such efficient implementations.
|
|
//
|
|
// BlockOffsetTable (abstract)
|
|
// - BlockOffsetArray (abstract)
|
|
// - BlockOffsetArrayNonContigSpace
|
|
// - BlockOffsetArrayContigSpace
|
|
//
|
|
|
|
class ContiguousSpace;
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
// The BlockOffsetTable "interface"
|
|
//////////////////////////////////////////////////////////////////////////
|
|
class BlockOffsetTable VALUE_OBJ_CLASS_SPEC {
|
|
friend class VMStructs;
|
|
protected:
|
|
// These members describe the region covered by the table.
|
|
|
|
// The space this table is covering.
|
|
HeapWord* _bottom; // == reserved.start
|
|
HeapWord* _end; // End of currently allocated region.
|
|
|
|
public:
|
|
// Initialize the table to cover the given space.
|
|
// The contents of the initial table are undefined.
|
|
BlockOffsetTable(HeapWord* bottom, HeapWord* end):
|
|
_bottom(bottom), _end(end) {
|
|
assert(_bottom <= _end, "arguments out of order");
|
|
}
|
|
|
|
// Note that the committed size of the covered space may have changed,
|
|
// so the table size might also wish to change.
|
|
virtual void resize(size_t new_word_size) = 0;
|
|
|
|
virtual void set_bottom(HeapWord* new_bottom) {
|
|
assert(new_bottom <= _end, "new_bottom > _end");
|
|
_bottom = new_bottom;
|
|
resize(pointer_delta(_end, _bottom));
|
|
}
|
|
|
|
// Requires "addr" to be contained by a block, and returns the address of
|
|
// the start of that block.
|
|
virtual HeapWord* block_start_unsafe(const void* addr) const = 0;
|
|
|
|
// Returns the address of the start of the block containing "addr", or
|
|
// else "null" if it is covered by no block.
|
|
HeapWord* block_start(const void* addr) const;
|
|
};
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
// One implementation of "BlockOffsetTable," the BlockOffsetArray,
|
|
// divides the covered region into "N"-word subregions (where
|
|
// "N" = 2^"LogN". An array with an entry for each such subregion
|
|
// indicates how far back one must go to find the start of the
|
|
// chunk that includes the first word of the subregion.
|
|
//
|
|
// Each BlockOffsetArray is owned by a Space. However, the actual array
|
|
// may be shared by several BlockOffsetArrays; this is useful
|
|
// when a single resizable area (such as a generation) is divided up into
|
|
// several spaces in which contiguous allocation takes place. (Consider,
|
|
// for example, the garbage-first generation.)
|
|
|
|
// Here is the shared array type.
|
|
//////////////////////////////////////////////////////////////////////////
|
|
// BlockOffsetSharedArray
|
|
//////////////////////////////////////////////////////////////////////////
|
|
class BlockOffsetSharedArray: public CHeapObj<mtGC> {
|
|
friend class BlockOffsetArray;
|
|
friend class BlockOffsetArrayNonContigSpace;
|
|
friend class BlockOffsetArrayContigSpace;
|
|
friend class VMStructs;
|
|
|
|
private:
|
|
enum SomePrivateConstants {
|
|
LogN = 9,
|
|
LogN_words = LogN - LogHeapWordSize,
|
|
N_bytes = 1 << LogN,
|
|
N_words = 1 << LogN_words
|
|
};
|
|
|
|
bool _init_to_zero;
|
|
|
|
// The reserved region covered by the shared array.
|
|
MemRegion _reserved;
|
|
|
|
// End of the current committed region.
|
|
HeapWord* _end;
|
|
|
|
// Array for keeping offsets for retrieving object start fast given an
|
|
// address.
|
|
VirtualSpace _vs;
|
|
u_char* _offset_array; // byte array keeping backwards offsets
|
|
|
|
protected:
|
|
// Bounds checking accessors:
|
|
// For performance these have to devolve to array accesses in product builds.
|
|
u_char offset_array(size_t index) const {
|
|
assert(index < _vs.committed_size(), "index out of range");
|
|
return _offset_array[index];
|
|
}
|
|
// An assertion-checking helper method for the set_offset_array() methods below.
|
|
void check_reducing_assertion(bool reducing);
|
|
|
|
void set_offset_array(size_t index, u_char offset, bool reducing = false) {
|
|
check_reducing_assertion(reducing);
|
|
assert(index < _vs.committed_size(), "index out of range");
|
|
assert(!reducing || _offset_array[index] >= offset, "Not reducing");
|
|
_offset_array[index] = offset;
|
|
}
|
|
|
|
void set_offset_array(size_t index, HeapWord* high, HeapWord* low, bool reducing = false) {
|
|
check_reducing_assertion(reducing);
|
|
assert(index < _vs.committed_size(), "index out of range");
|
|
assert(high >= low, "addresses out of order");
|
|
assert(pointer_delta(high, low) <= N_words, "offset too large");
|
|
assert(!reducing || _offset_array[index] >= (u_char)pointer_delta(high, low),
|
|
"Not reducing");
|
|
_offset_array[index] = (u_char)pointer_delta(high, low);
|
|
}
|
|
|
|
void set_offset_array(HeapWord* left, HeapWord* right, u_char offset, bool reducing = false) {
|
|
check_reducing_assertion(reducing);
|
|
assert(index_for(right - 1) < _vs.committed_size(),
|
|
"right address out of range");
|
|
assert(left < right, "Heap addresses out of order");
|
|
size_t num_cards = pointer_delta(right, left) >> LogN_words;
|
|
|
|
// Below, we may use an explicit loop instead of memset()
|
|
// because on certain platforms memset() can give concurrent
|
|
// readers "out-of-thin-air," phantom zeros; see 6948537.
|
|
if (UseMemSetInBOT) {
|
|
memset(&_offset_array[index_for(left)], offset, num_cards);
|
|
} else {
|
|
size_t i = index_for(left);
|
|
const size_t end = i + num_cards;
|
|
for (; i < end; i++) {
|
|
// Elided until CR 6977974 is fixed properly.
|
|
// assert(!reducing || _offset_array[i] >= offset, "Not reducing");
|
|
_offset_array[i] = offset;
|
|
}
|
|
}
|
|
}
|
|
|
|
void set_offset_array(size_t left, size_t right, u_char offset, bool reducing = false) {
|
|
check_reducing_assertion(reducing);
|
|
assert(right < _vs.committed_size(), "right address out of range");
|
|
assert(left <= right, "indexes out of order");
|
|
size_t num_cards = right - left + 1;
|
|
|
|
// Below, we may use an explicit loop instead of memset
|
|
// because on certain platforms memset() can give concurrent
|
|
// readers "out-of-thin-air," phantom zeros; see 6948537.
|
|
if (UseMemSetInBOT) {
|
|
memset(&_offset_array[left], offset, num_cards);
|
|
} else {
|
|
size_t i = left;
|
|
const size_t end = i + num_cards;
|
|
for (; i < end; i++) {
|
|
// Elided until CR 6977974 is fixed properly.
|
|
// assert(!reducing || _offset_array[i] >= offset, "Not reducing");
|
|
_offset_array[i] = offset;
|
|
}
|
|
}
|
|
}
|
|
|
|
void check_offset_array(size_t index, HeapWord* high, HeapWord* low) const {
|
|
assert(index < _vs.committed_size(), "index out of range");
|
|
assert(high >= low, "addresses out of order");
|
|
assert(pointer_delta(high, low) <= N_words, "offset too large");
|
|
assert(_offset_array[index] == pointer_delta(high, low),
|
|
"Wrong offset");
|
|
}
|
|
|
|
bool is_card_boundary(HeapWord* p) const;
|
|
|
|
// Return the number of slots needed for an offset array
|
|
// that covers mem_region_words words.
|
|
// We always add an extra slot because if an object
|
|
// ends on a card boundary we put a 0 in the next
|
|
// offset array slot, so we want that slot always
|
|
// to be reserved.
|
|
|
|
size_t compute_size(size_t mem_region_words) {
|
|
size_t number_of_slots = (mem_region_words / N_words) + 1;
|
|
return ReservedSpace::allocation_align_size_up(number_of_slots);
|
|
}
|
|
|
|
public:
|
|
// Initialize the table to cover from "base" to (at least)
|
|
// "base + init_word_size". In the future, the table may be expanded
|
|
// (see "resize" below) up to the size of "_reserved" (which must be at
|
|
// least "init_word_size".) The contents of the initial table are
|
|
// undefined; it is the responsibility of the constituent
|
|
// BlockOffsetTable(s) to initialize cards.
|
|
BlockOffsetSharedArray(MemRegion reserved, size_t init_word_size);
|
|
|
|
// Notes a change in the committed size of the region covered by the
|
|
// table. The "new_word_size" may not be larger than the size of the
|
|
// reserved region this table covers.
|
|
void resize(size_t new_word_size);
|
|
|
|
void set_bottom(HeapWord* new_bottom);
|
|
|
|
// Whether entries should be initialized to zero. Used currently only for
|
|
// error checking.
|
|
void set_init_to_zero(bool val) { _init_to_zero = val; }
|
|
bool init_to_zero() { return _init_to_zero; }
|
|
|
|
// Updates all the BlockOffsetArray's sharing this shared array to
|
|
// reflect the current "top"'s of their spaces.
|
|
void update_offset_arrays(); // Not yet implemented!
|
|
|
|
// Return the appropriate index into "_offset_array" for "p".
|
|
size_t index_for(const void* p) const;
|
|
|
|
// Return the address indicating the start of the region corresponding to
|
|
// "index" in "_offset_array".
|
|
HeapWord* address_for_index(size_t index) const;
|
|
};
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
// The BlockOffsetArray whose subtypes use the BlockOffsetSharedArray.
|
|
//////////////////////////////////////////////////////////////////////////
|
|
class BlockOffsetArray: public BlockOffsetTable {
|
|
friend class VMStructs;
|
|
friend class G1BlockOffsetArray; // temp. until we restructure and cleanup
|
|
protected:
|
|
// The following enums are used by do_block_internal() below
|
|
enum Action {
|
|
Action_single, // BOT records a single block (see single_block())
|
|
Action_mark, // BOT marks the start of a block (see mark_block())
|
|
Action_check // Check that BOT records block correctly
|
|
// (see verify_single_block()).
|
|
};
|
|
|
|
enum SomePrivateConstants {
|
|
N_words = BlockOffsetSharedArray::N_words,
|
|
LogN = BlockOffsetSharedArray::LogN,
|
|
// entries "e" of at least N_words mean "go back by Base^(e-N_words)."
|
|
// All entries are less than "N_words + N_powers".
|
|
LogBase = 4,
|
|
Base = (1 << LogBase),
|
|
N_powers = 14
|
|
};
|
|
|
|
static size_t power_to_cards_back(uint i) {
|
|
return (size_t)1 << (LogBase * i);
|
|
}
|
|
static size_t power_to_words_back(uint i) {
|
|
return power_to_cards_back(i) * N_words;
|
|
}
|
|
static size_t entry_to_cards_back(u_char entry) {
|
|
assert(entry >= N_words, "Precondition");
|
|
return power_to_cards_back(entry - N_words);
|
|
}
|
|
static size_t entry_to_words_back(u_char entry) {
|
|
assert(entry >= N_words, "Precondition");
|
|
return power_to_words_back(entry - N_words);
|
|
}
|
|
|
|
// The shared array, which is shared with other BlockOffsetArray's
|
|
// corresponding to different spaces within a generation or span of
|
|
// memory.
|
|
BlockOffsetSharedArray* _array;
|
|
|
|
// The space that owns this subregion.
|
|
Space* _sp;
|
|
|
|
// If true, array entries are initialized to 0; otherwise, they are
|
|
// initialized to point backwards to the beginning of the covered region.
|
|
bool _init_to_zero;
|
|
|
|
// An assertion-checking helper method for the set_remainder*() methods below.
|
|
void check_reducing_assertion(bool reducing) { _array->check_reducing_assertion(reducing); }
|
|
|
|
// Sets the entries
|
|
// corresponding to the cards starting at "start" and ending at "end"
|
|
// to point back to the card before "start": the interval [start, end)
|
|
// is right-open. The last parameter, reducing, indicates whether the
|
|
// updates to individual entries always reduce the entry from a higher
|
|
// to a lower value. (For example this would hold true during a temporal
|
|
// regime during which only block splits were updating the BOT.
|
|
void set_remainder_to_point_to_start(HeapWord* start, HeapWord* end, bool reducing = false);
|
|
// Same as above, except that the args here are a card _index_ interval
|
|
// that is closed: [start_index, end_index]
|
|
void set_remainder_to_point_to_start_incl(size_t start, size_t end, bool reducing = false);
|
|
|
|
// A helper function for BOT adjustment/verification work
|
|
void do_block_internal(HeapWord* blk_start, HeapWord* blk_end, Action action, bool reducing = false);
|
|
|
|
public:
|
|
// The space may not have its bottom and top set yet, which is why the
|
|
// region is passed as a parameter. If "init_to_zero" is true, the
|
|
// elements of the array are initialized to zero. Otherwise, they are
|
|
// initialized to point backwards to the beginning.
|
|
BlockOffsetArray(BlockOffsetSharedArray* array, MemRegion mr,
|
|
bool init_to_zero_);
|
|
|
|
// Note: this ought to be part of the constructor, but that would require
|
|
// "this" to be passed as a parameter to a member constructor for
|
|
// the containing concrete subtype of Space.
|
|
// This would be legal C++, but MS VC++ doesn't allow it.
|
|
void set_space(Space* sp) { _sp = sp; }
|
|
|
|
// Resets the covered region to the given "mr".
|
|
void set_region(MemRegion mr) {
|
|
_bottom = mr.start();
|
|
_end = mr.end();
|
|
}
|
|
|
|
// Note that the committed size of the covered space may have changed,
|
|
// so the table size might also wish to change.
|
|
virtual void resize(size_t new_word_size) {
|
|
HeapWord* new_end = _bottom + new_word_size;
|
|
if (_end < new_end && !init_to_zero()) {
|
|
// verify that the old and new boundaries are also card boundaries
|
|
assert(_array->is_card_boundary(_end),
|
|
"_end not a card boundary");
|
|
assert(_array->is_card_boundary(new_end),
|
|
"new _end would not be a card boundary");
|
|
// set all the newly added cards
|
|
_array->set_offset_array(_end, new_end, N_words);
|
|
}
|
|
_end = new_end; // update _end
|
|
}
|
|
|
|
// Adjust the BOT to show that it has a single block in the
|
|
// range [blk_start, blk_start + size). All necessary BOT
|
|
// cards are adjusted, but _unallocated_block isn't.
|
|
void single_block(HeapWord* blk_start, HeapWord* blk_end);
|
|
void single_block(HeapWord* blk, size_t size) {
|
|
single_block(blk, blk + size);
|
|
}
|
|
|
|
// When the alloc_block() call returns, the block offset table should
|
|
// have enough information such that any subsequent block_start() call
|
|
// with an argument equal to an address that is within the range
|
|
// [blk_start, blk_end) would return the value blk_start, provided
|
|
// there have been no calls in between that reset this information
|
|
// (e.g. see BlockOffsetArrayNonContigSpace::single_block() call
|
|
// for an appropriate range covering the said interval).
|
|
// These methods expect to be called with [blk_start, blk_end)
|
|
// representing a block of memory in the heap.
|
|
virtual void alloc_block(HeapWord* blk_start, HeapWord* blk_end);
|
|
void alloc_block(HeapWord* blk, size_t size) {
|
|
alloc_block(blk, blk + size);
|
|
}
|
|
|
|
// If true, initialize array slots with no allocated blocks to zero.
|
|
// Otherwise, make them point back to the front.
|
|
bool init_to_zero() { return _init_to_zero; }
|
|
// Corresponding setter
|
|
void set_init_to_zero(bool val) {
|
|
_init_to_zero = val;
|
|
assert(_array != NULL, "_array should be non-NULL");
|
|
_array->set_init_to_zero(val);
|
|
}
|
|
|
|
// Debugging
|
|
// Return the index of the last entry in the "active" region.
|
|
virtual size_t last_active_index() const = 0;
|
|
// Verify the block offset table
|
|
void verify() const;
|
|
void check_all_cards(size_t left_card, size_t right_card) const;
|
|
};
|
|
|
|
////////////////////////////////////////////////////////////////////////////
|
|
// A subtype of BlockOffsetArray that takes advantage of the fact
|
|
// that its underlying space is a NonContiguousSpace, so that some
|
|
// specialized interfaces can be made available for spaces that
|
|
// manipulate the table.
|
|
////////////////////////////////////////////////////////////////////////////
|
|
class BlockOffsetArrayNonContigSpace: public BlockOffsetArray {
|
|
friend class VMStructs;
|
|
private:
|
|
// The portion [_unallocated_block, _sp.end()) of the space that
|
|
// is a single block known not to contain any objects.
|
|
// NOTE: See BlockOffsetArrayUseUnallocatedBlock flag.
|
|
HeapWord* _unallocated_block;
|
|
|
|
public:
|
|
BlockOffsetArrayNonContigSpace(BlockOffsetSharedArray* array, MemRegion mr):
|
|
BlockOffsetArray(array, mr, false),
|
|
_unallocated_block(_bottom) { }
|
|
|
|
// Accessor
|
|
HeapWord* unallocated_block() const {
|
|
assert(BlockOffsetArrayUseUnallocatedBlock,
|
|
"_unallocated_block is not being maintained");
|
|
return _unallocated_block;
|
|
}
|
|
|
|
void set_unallocated_block(HeapWord* block) {
|
|
assert(BlockOffsetArrayUseUnallocatedBlock,
|
|
"_unallocated_block is not being maintained");
|
|
assert(block >= _bottom && block <= _end, "out of range");
|
|
_unallocated_block = block;
|
|
}
|
|
|
|
// These methods expect to be called with [blk_start, blk_end)
|
|
// representing a block of memory in the heap.
|
|
void alloc_block(HeapWord* blk_start, HeapWord* blk_end);
|
|
void alloc_block(HeapWord* blk, size_t size) {
|
|
alloc_block(blk, blk + size);
|
|
}
|
|
|
|
// The following methods are useful and optimized for a
|
|
// non-contiguous space.
|
|
|
|
// Given a block [blk_start, blk_start + full_blk_size), and
|
|
// a left_blk_size < full_blk_size, adjust the BOT to show two
|
|
// blocks [blk_start, blk_start + left_blk_size) and
|
|
// [blk_start + left_blk_size, blk_start + full_blk_size).
|
|
// It is assumed (and verified in the non-product VM) that the
|
|
// BOT was correct for the original block.
|
|
void split_block(HeapWord* blk_start, size_t full_blk_size,
|
|
size_t left_blk_size);
|
|
|
|
// Adjust BOT to show that it has a block in the range
|
|
// [blk_start, blk_start + size). Only the first card
|
|
// of BOT is touched. It is assumed (and verified in the
|
|
// non-product VM) that the remaining cards of the block
|
|
// are correct.
|
|
void mark_block(HeapWord* blk_start, HeapWord* blk_end, bool reducing = false);
|
|
void mark_block(HeapWord* blk, size_t size, bool reducing = false) {
|
|
mark_block(blk, blk + size, reducing);
|
|
}
|
|
|
|
// Adjust _unallocated_block to indicate that a particular
|
|
// block has been newly allocated or freed. It is assumed (and
|
|
// verified in the non-product VM) that the BOT is correct for
|
|
// the given block.
|
|
void allocated(HeapWord* blk_start, HeapWord* blk_end, bool reducing = false) {
|
|
// Verify that the BOT shows [blk, blk + blk_size) to be one block.
|
|
verify_single_block(blk_start, blk_end);
|
|
if (BlockOffsetArrayUseUnallocatedBlock) {
|
|
_unallocated_block = MAX2(_unallocated_block, blk_end);
|
|
}
|
|
}
|
|
|
|
void allocated(HeapWord* blk, size_t size, bool reducing = false) {
|
|
allocated(blk, blk + size, reducing);
|
|
}
|
|
|
|
void freed(HeapWord* blk_start, HeapWord* blk_end);
|
|
void freed(HeapWord* blk, size_t size);
|
|
|
|
HeapWord* block_start_unsafe(const void* addr) const;
|
|
|
|
// Requires "addr" to be the start of a card and returns the
|
|
// start of the block that contains the given address.
|
|
HeapWord* block_start_careful(const void* addr) const;
|
|
|
|
// Verification & debugging: ensure that the offset table reflects
|
|
// the fact that the block [blk_start, blk_end) or [blk, blk + size)
|
|
// is a single block of storage. NOTE: can't const this because of
|
|
// call to non-const do_block_internal() below.
|
|
void verify_single_block(HeapWord* blk_start, HeapWord* blk_end)
|
|
PRODUCT_RETURN;
|
|
void verify_single_block(HeapWord* blk, size_t size) PRODUCT_RETURN;
|
|
|
|
// Verify that the given block is before _unallocated_block
|
|
void verify_not_unallocated(HeapWord* blk_start, HeapWord* blk_end)
|
|
const PRODUCT_RETURN;
|
|
void verify_not_unallocated(HeapWord* blk, size_t size)
|
|
const PRODUCT_RETURN;
|
|
|
|
// Debugging support
|
|
virtual size_t last_active_index() const;
|
|
};
|
|
|
|
////////////////////////////////////////////////////////////////////////////
|
|
// A subtype of BlockOffsetArray that takes advantage of the fact
|
|
// that its underlying space is a ContiguousSpace, so that its "active"
|
|
// region can be more efficiently tracked (than for a non-contiguous space).
|
|
////////////////////////////////////////////////////////////////////////////
|
|
class BlockOffsetArrayContigSpace: public BlockOffsetArray {
|
|
friend class VMStructs;
|
|
private:
|
|
// allocation boundary at which offset array must be updated
|
|
HeapWord* _next_offset_threshold;
|
|
size_t _next_offset_index; // index corresponding to that boundary
|
|
|
|
// Work function when allocation start crosses threshold.
|
|
void alloc_block_work(HeapWord* blk_start, HeapWord* blk_end);
|
|
|
|
public:
|
|
BlockOffsetArrayContigSpace(BlockOffsetSharedArray* array, MemRegion mr):
|
|
BlockOffsetArray(array, mr, true) {
|
|
_next_offset_threshold = NULL;
|
|
_next_offset_index = 0;
|
|
}
|
|
|
|
void set_contig_space(ContiguousSpace* sp) { set_space((Space*)sp); }
|
|
|
|
// Initialize the threshold for an empty heap.
|
|
HeapWord* initialize_threshold();
|
|
// Zero out the entry for _bottom (offset will be zero)
|
|
void zero_bottom_entry();
|
|
|
|
// Return the next threshold, the point at which the table should be
|
|
// updated.
|
|
HeapWord* threshold() const { return _next_offset_threshold; }
|
|
|
|
// In general, these methods expect to be called with
|
|
// [blk_start, blk_end) representing a block of memory in the heap.
|
|
// In this implementation, however, we are OK even if blk_start and/or
|
|
// blk_end are NULL because NULL is represented as 0, and thus
|
|
// never exceeds the "_next_offset_threshold".
|
|
void alloc_block(HeapWord* blk_start, HeapWord* blk_end) {
|
|
if (blk_end > _next_offset_threshold) {
|
|
alloc_block_work(blk_start, blk_end);
|
|
}
|
|
}
|
|
void alloc_block(HeapWord* blk, size_t size) {
|
|
alloc_block(blk, blk + size);
|
|
}
|
|
|
|
HeapWord* block_start_unsafe(const void* addr) const;
|
|
|
|
// Debugging support
|
|
virtual size_t last_active_index() const;
|
|
};
|
|
|
|
#endif // SHARE_VM_MEMORY_BLOCKOFFSETTABLE_HPP
|