jdk-24/src/hotspot/share/gc/g1/g1DirtyCardQueue.cpp
Kim Barrett 4694da31f8 8242078: G1: Improve concurrent refinement analytics and logging
Unify data collection and reporting.

Reviewed-by: tschatzl, sjohanss
2020-04-14 17:31:53 -04:00

712 lines
25 KiB
C++

/*
* Copyright (c) 2001, 2020, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc/g1/g1BufferNodeList.hpp"
#include "gc/g1/g1CardTableEntryClosure.hpp"
#include "gc/g1/g1CollectedHeap.inline.hpp"
#include "gc/g1/g1ConcurrentRefineStats.hpp"
#include "gc/g1/g1ConcurrentRefineThread.hpp"
#include "gc/g1/g1DirtyCardQueue.hpp"
#include "gc/g1/g1FreeIdSet.hpp"
#include "gc/g1/g1RedirtyCardsQueue.hpp"
#include "gc/g1/g1RemSet.hpp"
#include "gc/g1/g1ThreadLocalData.hpp"
#include "gc/g1/heapRegionRemSet.hpp"
#include "gc/shared/suspendibleThreadSet.hpp"
#include "memory/iterator.hpp"
#include "runtime/atomic.hpp"
#include "runtime/mutex.hpp"
#include "runtime/mutexLocker.hpp"
#include "runtime/os.hpp"
#include "runtime/safepoint.hpp"
#include "runtime/thread.inline.hpp"
#include "runtime/threadSMR.hpp"
#include "utilities/globalCounter.inline.hpp"
#include "utilities/macros.hpp"
#include "utilities/quickSort.hpp"
#include "utilities/ticks.hpp"
G1DirtyCardQueue::G1DirtyCardQueue(G1DirtyCardQueueSet* qset) :
// Dirty card queues are always active, so we create them with their
// active field set to true.
PtrQueue(qset, true /* active */),
_refinement_stats(new G1ConcurrentRefineStats())
{ }
G1DirtyCardQueue::~G1DirtyCardQueue() {
flush();
delete _refinement_stats;
}
void G1DirtyCardQueue::flush() {
_refinement_stats->inc_dirtied_cards(size());
flush_impl();
}
void G1DirtyCardQueue::on_thread_detach() {
assert(this == &G1ThreadLocalData::dirty_card_queue(Thread::current()), "precondition");
flush();
dirty_card_qset()->record_detached_refinement_stats(_refinement_stats);
}
void G1DirtyCardQueue::handle_completed_buffer() {
assert(!is_empty(), "precondition");
_refinement_stats->inc_dirtied_cards(size());
BufferNode* node = BufferNode::make_node_from_buffer(_buf, index());
allocate_buffer();
dirty_card_qset()->handle_completed_buffer(node, _refinement_stats);
}
// Assumed to be zero by concurrent threads.
static uint par_ids_start() { return 0; }
G1DirtyCardQueueSet::G1DirtyCardQueueSet(BufferNode::Allocator* allocator) :
PtrQueueSet(allocator),
_primary_refinement_thread(NULL),
_num_cards(0),
_completed(),
_paused(),
_free_ids(par_ids_start(), num_par_ids()),
_process_cards_threshold(ProcessCardsThresholdNever),
_max_cards(MaxCardsUnlimited),
_padded_max_cards(MaxCardsUnlimited),
_detached_refinement_stats()
{
_all_active = true;
}
G1DirtyCardQueueSet::~G1DirtyCardQueueSet() {
abandon_completed_buffers();
}
// Determines how many mutator threads can process the buffers in parallel.
uint G1DirtyCardQueueSet::num_par_ids() {
return (uint)os::initial_active_processor_count();
}
void G1DirtyCardQueueSet::handle_zero_index_for_thread(Thread* t) {
G1ThreadLocalData::dirty_card_queue(t).handle_zero_index();
}
#ifdef ASSERT
G1DirtyCardQueueSet::Queue::~Queue() {
assert(_head == NULL, "precondition");
assert(_tail == NULL, "precondition");
}
#endif // ASSERT
BufferNode* G1DirtyCardQueueSet::Queue::top() const {
return Atomic::load(&_head);
}
// An append operation atomically exchanges the new tail with the queue tail.
// It then sets the "next" value of the old tail to the head of the list being
// appended; it is an invariant that the old tail's "next" value is NULL.
// But if the old tail is NULL then the queue was empty. In this case the
// head of the list being appended is instead stored in the queue head; it is
// an invariant that the queue head is NULL in this case.
//
// This means there is a period between the exchange and the old tail update
// where the queue sequence is split into two parts, the list from the queue
// head to the old tail, and the list being appended. If there are concurrent
// push/append operations, each may introduce another such segment. But they
// all eventually get resolved by their respective updates of their old tail's
// "next" value. This also means that pop operations must handle a buffer
// with a NULL "next" value specially.
//
// A push operation is just a degenerate append, where the buffer being pushed
// is both the head and the tail of the list being appended.
void G1DirtyCardQueueSet::Queue::append(BufferNode& first, BufferNode& last) {
assert(last.next() == NULL, "precondition");
BufferNode* old_tail = Atomic::xchg(&_tail, &last);
if (old_tail == NULL) { // Was empty.
Atomic::store(&_head, &first);
} else {
assert(old_tail->next() == NULL, "invariant");
old_tail->set_next(&first);
}
}
BufferNode* G1DirtyCardQueueSet::Queue::pop() {
Thread* current_thread = Thread::current();
while (true) {
// Use a critical section per iteration, rather than over the whole
// operation. We're not guaranteed to make progress. Lingering in one
// CS could lead to excessive allocation of buffers, because the CS
// blocks return of released buffers to the free list for reuse.
GlobalCounter::CriticalSection cs(current_thread);
BufferNode* result = Atomic::load_acquire(&_head);
if (result == NULL) return NULL; // Queue is empty.
BufferNode* next = Atomic::load_acquire(BufferNode::next_ptr(*result));
if (next != NULL) {
// The "usual" lock-free pop from the head of a singly linked list.
if (result == Atomic::cmpxchg(&_head, result, next)) {
// Former head successfully taken; it is not the last.
assert(Atomic::load(&_tail) != result, "invariant");
assert(result->next() != NULL, "invariant");
result->set_next(NULL);
return result;
}
// Lost the race; try again.
continue;
}
// next is NULL. This case is handled differently from the "usual"
// lock-free pop from the head of a singly linked list.
// If _tail == result then result is the only element in the list. We can
// remove it from the list by first setting _tail to NULL and then setting
// _head to NULL, the order being important. We set _tail with cmpxchg in
// case of a concurrent push/append/pop also changing _tail. If we win
// then we've claimed result.
if (Atomic::cmpxchg(&_tail, result, (BufferNode*)NULL) == result) {
assert(result->next() == NULL, "invariant");
// Now that we've claimed result, also set _head to NULL. But we must
// be careful of a concurrent push/append after we NULLed _tail, since
// it may have already performed its list-was-empty update of _head,
// which we must not overwrite.
Atomic::cmpxchg(&_head, result, (BufferNode*)NULL);
return result;
}
// If _head != result then we lost the race to take result; try again.
if (result != Atomic::load_acquire(&_head)) {
continue;
}
// An in-progress concurrent operation interfered with taking the head
// element when it was the only element. A concurrent pop may have won
// the race to clear the tail but not yet cleared the head. Alternatively,
// a concurrent push/append may have changed the tail but not yet linked
// result->next(). We cannot take result in either case. We don't just
// try again, because we could spin for a long time waiting for that
// concurrent operation to finish. In the first case, returning NULL is
// fine; we lost the race for the only element to another thread. We
// also return NULL for the second case, and let the caller cope.
return NULL;
}
}
G1DirtyCardQueueSet::HeadTail G1DirtyCardQueueSet::Queue::take_all() {
assert_at_safepoint();
HeadTail result(Atomic::load(&_head), Atomic::load(&_tail));
Atomic::store(&_head, (BufferNode*)NULL);
Atomic::store(&_tail, (BufferNode*)NULL);
return result;
}
void G1DirtyCardQueueSet::enqueue_completed_buffer(BufferNode* cbn) {
assert(cbn != NULL, "precondition");
// Increment _num_cards before adding to queue, so queue removal doesn't
// need to deal with _num_cards possibly going negative.
size_t new_num_cards = Atomic::add(&_num_cards, buffer_size() - cbn->index());
_completed.push(*cbn);
if ((new_num_cards > process_cards_threshold()) &&
(_primary_refinement_thread != NULL)) {
_primary_refinement_thread->activate();
}
}
BufferNode* G1DirtyCardQueueSet::get_completed_buffer() {
BufferNode* result = _completed.pop();
if (result == NULL) { // Unlikely if no paused buffers.
enqueue_previous_paused_buffers();
result = _completed.pop();
if (result == NULL) return NULL;
}
Atomic::sub(&_num_cards, buffer_size() - result->index());
return result;
}
#ifdef ASSERT
void G1DirtyCardQueueSet::verify_num_cards() const {
size_t actual = 0;
BufferNode* cur = _completed.top();
for ( ; cur != NULL; cur = cur->next()) {
actual += buffer_size() - cur->index();
}
assert(actual == Atomic::load(&_num_cards),
"Num entries in completed buffers should be " SIZE_FORMAT " but are " SIZE_FORMAT,
Atomic::load(&_num_cards), actual);
}
#endif // ASSERT
G1DirtyCardQueueSet::PausedBuffers::PausedList::PausedList() :
_head(NULL), _tail(NULL),
_safepoint_id(SafepointSynchronize::safepoint_id())
{}
#ifdef ASSERT
G1DirtyCardQueueSet::PausedBuffers::PausedList::~PausedList() {
assert(Atomic::load(&_head) == NULL, "precondition");
assert(_tail == NULL, "precondition");
}
#endif // ASSERT
bool G1DirtyCardQueueSet::PausedBuffers::PausedList::is_next() const {
assert_not_at_safepoint();
return _safepoint_id == SafepointSynchronize::safepoint_id();
}
void G1DirtyCardQueueSet::PausedBuffers::PausedList::add(BufferNode* node) {
assert_not_at_safepoint();
assert(is_next(), "precondition");
BufferNode* old_head = Atomic::xchg(&_head, node);
if (old_head == NULL) {
assert(_tail == NULL, "invariant");
_tail = node;
} else {
node->set_next(old_head);
}
}
G1DirtyCardQueueSet::HeadTail G1DirtyCardQueueSet::PausedBuffers::PausedList::take() {
BufferNode* head = Atomic::load(&_head);
BufferNode* tail = _tail;
Atomic::store(&_head, (BufferNode*)NULL);
_tail = NULL;
return HeadTail(head, tail);
}
G1DirtyCardQueueSet::PausedBuffers::PausedBuffers() : _plist(NULL) {}
#ifdef ASSERT
G1DirtyCardQueueSet::PausedBuffers::~PausedBuffers() {
assert(Atomic::load(&_plist) == NULL, "invariant");
}
#endif // ASSERT
void G1DirtyCardQueueSet::PausedBuffers::add(BufferNode* node) {
assert_not_at_safepoint();
PausedList* plist = Atomic::load_acquire(&_plist);
if (plist == NULL) {
// Try to install a new next list.
plist = new PausedList();
PausedList* old_plist = Atomic::cmpxchg(&_plist, (PausedList*)NULL, plist);
if (old_plist != NULL) {
// Some other thread installed a new next list. Use it instead.
delete plist;
plist = old_plist;
}
}
assert(plist->is_next(), "invariant");
plist->add(node);
}
G1DirtyCardQueueSet::HeadTail G1DirtyCardQueueSet::PausedBuffers::take_previous() {
assert_not_at_safepoint();
PausedList* previous;
{
// Deal with plist in a critical section, to prevent it from being
// deleted out from under us by a concurrent take_previous().
GlobalCounter::CriticalSection cs(Thread::current());
previous = Atomic::load_acquire(&_plist);
if ((previous == NULL) || // Nothing to take.
previous->is_next() || // Not from a previous safepoint.
// Some other thread stole it.
(Atomic::cmpxchg(&_plist, previous, (PausedList*)NULL) != previous)) {
return HeadTail();
}
}
// We now own previous.
HeadTail result = previous->take();
// There might be other threads examining previous (in concurrent
// take_previous()). Synchronize to wait until any such threads are
// done with such examination before deleting.
GlobalCounter::write_synchronize();
delete previous;
return result;
}
G1DirtyCardQueueSet::HeadTail G1DirtyCardQueueSet::PausedBuffers::take_all() {
assert_at_safepoint();
HeadTail result;
PausedList* plist = Atomic::load(&_plist);
if (plist != NULL) {
Atomic::store(&_plist, (PausedList*)NULL);
result = plist->take();
delete plist;
}
return result;
}
void G1DirtyCardQueueSet::record_paused_buffer(BufferNode* node) {
assert_not_at_safepoint();
assert(node->next() == NULL, "precondition");
// Ensure there aren't any paused buffers from a previous safepoint.
enqueue_previous_paused_buffers();
// Cards for paused buffers are included in count, to contribute to
// notification checking after the coming safepoint if it doesn't GC.
// Note that this means the queue's _num_cards differs from the number
// of cards in the queued buffers when there are paused buffers.
Atomic::add(&_num_cards, buffer_size() - node->index());
_paused.add(node);
}
void G1DirtyCardQueueSet::enqueue_paused_buffers_aux(const HeadTail& paused) {
if (paused._head != NULL) {
assert(paused._tail != NULL, "invariant");
// Cards from paused buffers are already recorded in the queue count.
_completed.append(*paused._head, *paused._tail);
}
}
void G1DirtyCardQueueSet::enqueue_previous_paused_buffers() {
assert_not_at_safepoint();
enqueue_paused_buffers_aux(_paused.take_previous());
}
void G1DirtyCardQueueSet::enqueue_all_paused_buffers() {
assert_at_safepoint();
enqueue_paused_buffers_aux(_paused.take_all());
}
void G1DirtyCardQueueSet::abandon_completed_buffers() {
enqueue_all_paused_buffers();
verify_num_cards();
G1BufferNodeList list = take_all_completed_buffers();
BufferNode* buffers_to_delete = list._head;
while (buffers_to_delete != NULL) {
BufferNode* bn = buffers_to_delete;
buffers_to_delete = bn->next();
bn->set_next(NULL);
deallocate_buffer(bn);
}
}
void G1DirtyCardQueueSet::notify_if_necessary() {
if ((_primary_refinement_thread != NULL) &&
(num_cards() > process_cards_threshold())) {
_primary_refinement_thread->activate();
}
}
// Merge lists of buffers. The source queue set is emptied as a
// result. The queue sets must share the same allocator.
void G1DirtyCardQueueSet::merge_bufferlists(G1RedirtyCardsQueueSet* src) {
assert(allocator() == src->allocator(), "precondition");
const G1BufferNodeList from = src->take_all_completed_buffers();
if (from._head != NULL) {
Atomic::add(&_num_cards, from._entry_count);
_completed.append(*from._head, *from._tail);
}
}
G1BufferNodeList G1DirtyCardQueueSet::take_all_completed_buffers() {
enqueue_all_paused_buffers();
verify_num_cards();
HeadTail buffers = _completed.take_all();
size_t num_cards = Atomic::load(&_num_cards);
Atomic::store(&_num_cards, size_t(0));
return G1BufferNodeList(buffers._head, buffers._tail, num_cards);
}
class G1RefineBufferedCards : public StackObj {
BufferNode* const _node;
CardTable::CardValue** const _node_buffer;
const size_t _node_buffer_size;
const uint _worker_id;
G1ConcurrentRefineStats* _stats;
G1RemSet* const _g1rs;
static inline int compare_card(const CardTable::CardValue* p1,
const CardTable::CardValue* p2) {
return p2 - p1;
}
// Sorts the cards from start_index to _node_buffer_size in *decreasing*
// address order. Tests showed that this order is preferable to not sorting
// or increasing address order.
void sort_cards(size_t start_index) {
QuickSort::sort(&_node_buffer[start_index],
_node_buffer_size - start_index,
compare_card,
false);
}
// Returns the index to the first clean card in the buffer.
size_t clean_cards() {
const size_t start = _node->index();
assert(start <= _node_buffer_size, "invariant");
// Two-fingered compaction algorithm similar to the filtering mechanism in
// SATBMarkQueue. The main difference is that clean_card_before_refine()
// could change the buffer element in-place.
// We don't check for SuspendibleThreadSet::should_yield(), because
// cleaning and redirtying the cards is fast.
CardTable::CardValue** src = &_node_buffer[start];
CardTable::CardValue** dst = &_node_buffer[_node_buffer_size];
assert(src <= dst, "invariant");
for ( ; src < dst; ++src) {
// Search low to high for a card to keep.
if (_g1rs->clean_card_before_refine(src)) {
// Found keeper. Search high to low for a card to discard.
while (src < --dst) {
if (!_g1rs->clean_card_before_refine(dst)) {
*dst = *src; // Replace discard with keeper.
break;
}
}
// If discard search failed (src == dst), the outer loop will also end.
}
}
// dst points to the first retained clean card, or the end of the buffer
// if all the cards were discarded.
const size_t first_clean = dst - _node_buffer;
assert(first_clean >= start && first_clean <= _node_buffer_size, "invariant");
// Discarded cards are considered as refined.
_stats->inc_refined_cards(first_clean - start);
_stats->inc_precleaned_cards(first_clean - start);
return first_clean;
}
bool refine_cleaned_cards(size_t start_index) {
bool result = true;
size_t i = start_index;
for ( ; i < _node_buffer_size; ++i) {
if (SuspendibleThreadSet::should_yield()) {
redirty_unrefined_cards(i);
result = false;
break;
}
_g1rs->refine_card_concurrently(_node_buffer[i], _worker_id);
}
_node->set_index(i);
_stats->inc_refined_cards(i - start_index);
return result;
}
void redirty_unrefined_cards(size_t start) {
for ( ; start < _node_buffer_size; ++start) {
*_node_buffer[start] = G1CardTable::dirty_card_val();
}
}
public:
G1RefineBufferedCards(BufferNode* node,
size_t node_buffer_size,
uint worker_id,
G1ConcurrentRefineStats* stats) :
_node(node),
_node_buffer(reinterpret_cast<CardTable::CardValue**>(BufferNode::make_buffer_from_node(node))),
_node_buffer_size(node_buffer_size),
_worker_id(worker_id),
_stats(stats),
_g1rs(G1CollectedHeap::heap()->rem_set()) {}
bool refine() {
size_t first_clean_index = clean_cards();
if (first_clean_index == _node_buffer_size) {
_node->set_index(first_clean_index);
return true;
}
// This fence serves two purposes. First, the cards must be cleaned
// before processing the contents. Second, we can't proceed with
// processing a region until after the read of the region's top in
// collect_and_clean_cards(), for synchronization with possibly concurrent
// humongous object allocation (see comment at the StoreStore fence before
// setting the regions' tops in humongous allocation path).
// It's okay that reading region's top and reading region's type were racy
// wrto each other. We need both set, in any order, to proceed.
OrderAccess::fence();
sort_cards(first_clean_index);
return refine_cleaned_cards(first_clean_index);
}
};
bool G1DirtyCardQueueSet::refine_buffer(BufferNode* node,
uint worker_id,
G1ConcurrentRefineStats* stats) {
Ticks start_time = Ticks::now();
G1RefineBufferedCards buffered_cards(node,
buffer_size(),
worker_id,
stats);
bool result = buffered_cards.refine();
stats->inc_refinement_time(Ticks::now() - start_time);
return result;
}
void G1DirtyCardQueueSet::handle_refined_buffer(BufferNode* node,
bool fully_processed) {
if (fully_processed) {
assert(node->index() == buffer_size(),
"Buffer not fully consumed: index: " SIZE_FORMAT ", size: " SIZE_FORMAT,
node->index(), buffer_size());
deallocate_buffer(node);
} else {
assert(node->index() < buffer_size(), "Buffer fully consumed.");
// Buffer incompletely processed because there is a pending safepoint.
// Record partially processed buffer, to be finished later.
record_paused_buffer(node);
}
}
void G1DirtyCardQueueSet::handle_completed_buffer(BufferNode* new_node,
G1ConcurrentRefineStats* stats) {
enqueue_completed_buffer(new_node);
// No need for mutator refinement if number of cards is below limit.
if (Atomic::load(&_num_cards) <= Atomic::load(&_padded_max_cards)) {
return;
}
// Only Java threads perform mutator refinement.
if (!Thread::current()->is_Java_thread()) {
return;
}
BufferNode* node = get_completed_buffer();
if (node == NULL) return; // Didn't get a buffer to process.
// Refine cards in buffer.
uint worker_id = _free_ids.claim_par_id(); // temporarily claim an id
bool fully_processed = refine_buffer(node, worker_id, stats);
_free_ids.release_par_id(worker_id); // release the id
// Deal with buffer after releasing id, to let another thread use id.
handle_refined_buffer(node, fully_processed);
}
bool G1DirtyCardQueueSet::refine_completed_buffer_concurrently(uint worker_id,
size_t stop_at,
G1ConcurrentRefineStats* stats) {
// Not enough cards to trigger processing.
if (Atomic::load(&_num_cards) <= stop_at) return false;
BufferNode* node = get_completed_buffer();
if (node == NULL) return false; // Didn't get a buffer to process.
bool fully_processed = refine_buffer(node, worker_id, stats);
handle_refined_buffer(node, fully_processed);
return true;
}
void G1DirtyCardQueueSet::abandon_logs() {
assert_at_safepoint();
abandon_completed_buffers();
_detached_refinement_stats.reset();
// Since abandon is done only at safepoints, we can safely manipulate
// these queues.
struct AbandonThreadLogClosure : public ThreadClosure {
virtual void do_thread(Thread* t) {
G1DirtyCardQueue& dcq = G1ThreadLocalData::dirty_card_queue(t);
dcq.reset();
dcq.refinement_stats()->reset();
}
} closure;
Threads::threads_do(&closure);
G1BarrierSet::shared_dirty_card_queue().reset();
}
void G1DirtyCardQueueSet::concatenate_logs() {
// Iterate over all the threads, if we find a partial log add it to
// the global list of logs. Temporarily turn off the limit on the number
// of outstanding buffers.
assert_at_safepoint();
size_t old_limit = max_cards();
set_max_cards(MaxCardsUnlimited);
struct ConcatenateThreadLogClosure : public ThreadClosure {
virtual void do_thread(Thread* t) {
G1DirtyCardQueue& dcq = G1ThreadLocalData::dirty_card_queue(t);
if (!dcq.is_empty()) {
dcq.flush();
}
}
} closure;
Threads::threads_do(&closure);
G1BarrierSet::shared_dirty_card_queue().flush();
enqueue_all_paused_buffers();
verify_num_cards();
set_max_cards(old_limit);
}
G1ConcurrentRefineStats G1DirtyCardQueueSet::get_and_reset_refinement_stats() {
assert_at_safepoint();
// Since we're at a safepoint, there aren't any races with recording of
// detached refinement stats. In particular, there's no risk of double
// counting a thread that detaches after we've examined it but before
// we've processed the detached stats.
// Collect and reset stats for attached threads.
struct CollectStats : public ThreadClosure {
G1ConcurrentRefineStats _total_stats;
virtual void do_thread(Thread* t) {
G1DirtyCardQueue& dcq = G1ThreadLocalData::dirty_card_queue(t);
G1ConcurrentRefineStats& stats = *dcq.refinement_stats();
_total_stats += stats;
stats.reset();
}
} closure;
Threads::threads_do(&closure);
// Collect and reset stats from detached threads.
MutexLocker ml(G1DetachedRefinementStats_lock, Mutex::_no_safepoint_check_flag);
closure._total_stats += _detached_refinement_stats;
_detached_refinement_stats.reset();
return closure._total_stats;
}
void G1DirtyCardQueueSet::record_detached_refinement_stats(G1ConcurrentRefineStats* stats) {
MutexLocker ml(G1DetachedRefinementStats_lock, Mutex::_no_safepoint_check_flag);
_detached_refinement_stats += *stats;
stats->reset();
}
size_t G1DirtyCardQueueSet::max_cards() const {
return _max_cards;
}
void G1DirtyCardQueueSet::set_max_cards(size_t value) {
_max_cards = value;
Atomic::store(&_padded_max_cards, value);
}
void G1DirtyCardQueueSet::set_max_cards_padding(size_t padding) {
// Compute sum, clipping to max.
size_t limit = _max_cards + padding;
if (limit < padding) { // Check for overflow.
limit = MaxCardsUnlimited;
}
Atomic::store(&_padded_max_cards, limit);
}
void G1DirtyCardQueueSet::discard_max_cards_padding() {
// Being racy here is okay, since all threads store the same value.
if (_max_cards != Atomic::load(&_padded_max_cards)) {
Atomic::store(&_padded_max_cards, _max_cards);
}
}