jdk-24/hotspot/src/share/vm/gc/serial/tenuredGeneration.cpp
Bengt Rutisson ffeb0bdad0 8145092: Use Unified Logging for the GC logging
JEP-271. VM changes contributed by brutisso, test changes contributed by david.

Co-authored-by: David Lindholm <david.lindholm@oralce.com>
Reviewed-by: sjohanss, david, brutisso
2015-12-10 14:57:55 +01:00

289 lines
10 KiB
C++

/*
* Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc/serial/genMarkSweep.hpp"
#include "gc/serial/tenuredGeneration.inline.hpp"
#include "gc/shared/blockOffsetTable.inline.hpp"
#include "gc/shared/cardGeneration.inline.hpp"
#include "gc/shared/collectorCounters.hpp"
#include "gc/shared/gcTimer.hpp"
#include "gc/shared/genOopClosures.inline.hpp"
#include "gc/shared/generationSpec.hpp"
#include "gc/shared/space.hpp"
#include "logging/log.hpp"
#include "memory/allocation.inline.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/java.hpp"
#include "utilities/macros.hpp"
#if INCLUDE_ALL_GCS
#include "gc/cms/parOopClosures.hpp"
#endif
TenuredGeneration::TenuredGeneration(ReservedSpace rs,
size_t initial_byte_size,
CardTableRS* remset) :
CardGeneration(rs, initial_byte_size, remset)
{
HeapWord* bottom = (HeapWord*) _virtual_space.low();
HeapWord* end = (HeapWord*) _virtual_space.high();
_the_space = new TenuredSpace(_bts, MemRegion(bottom, end));
_the_space->reset_saved_mark();
_shrink_factor = 0;
_capacity_at_prologue = 0;
_gc_stats = new GCStats();
// initialize performance counters
const char* gen_name = "old";
GenCollectorPolicy* gcp = GenCollectedHeap::heap()->gen_policy();
// Generation Counters -- generation 1, 1 subspace
_gen_counters = new GenerationCounters(gen_name, 1, 1,
gcp->min_old_size(), gcp->max_old_size(), &_virtual_space);
_gc_counters = new CollectorCounters("MSC", 1);
_space_counters = new CSpaceCounters(gen_name, 0,
_virtual_space.reserved_size(),
_the_space, _gen_counters);
}
void TenuredGeneration::gc_prologue(bool full) {
_capacity_at_prologue = capacity();
_used_at_prologue = used();
}
bool TenuredGeneration::should_collect(bool full,
size_t size,
bool is_tlab) {
// This should be one big conditional or (||), but I want to be able to tell
// why it returns what it returns (without re-evaluating the conditionals
// in case they aren't idempotent), so I'm doing it this way.
// DeMorgan says it's okay.
if (full) {
log_trace(gc)("TenuredGeneration::should_collect: because full");
return true;
}
if (should_allocate(size, is_tlab)) {
log_trace(gc)("TenuredGeneration::should_collect: because should_allocate(" SIZE_FORMAT ")", size);
return true;
}
// If we don't have very much free space.
// XXX: 10000 should be a percentage of the capacity!!!
if (free() < 10000) {
log_trace(gc)("TenuredGeneration::should_collect: because free(): " SIZE_FORMAT, free());
return true;
}
// If we had to expand to accommodate promotions from the young generation
if (_capacity_at_prologue < capacity()) {
log_trace(gc)("TenuredGeneration::should_collect: because_capacity_at_prologue: " SIZE_FORMAT " < capacity(): " SIZE_FORMAT,
_capacity_at_prologue, capacity());
return true;
}
return false;
}
void TenuredGeneration::compute_new_size() {
assert_locked_or_safepoint(Heap_lock);
// Compute some numbers about the state of the heap.
const size_t used_after_gc = used();
const size_t capacity_after_gc = capacity();
CardGeneration::compute_new_size();
assert(used() == used_after_gc && used_after_gc <= capacity(),
"used: " SIZE_FORMAT " used_after_gc: " SIZE_FORMAT
" capacity: " SIZE_FORMAT, used(), used_after_gc, capacity());
}
void TenuredGeneration::update_gc_stats(Generation* current_generation,
bool full) {
// If the young generation has been collected, gather any statistics
// that are of interest at this point.
bool current_is_young = GenCollectedHeap::heap()->is_young_gen(current_generation);
if (!full && current_is_young) {
// Calculate size of data promoted from the young generation
// before doing the collection.
size_t used_before_gc = used();
// If the young gen collection was skipped, then the
// number of promoted bytes will be 0 and adding it to the
// average will incorrectly lessen the average. It is, however,
// also possible that no promotion was needed.
if (used_before_gc >= _used_at_prologue) {
size_t promoted_in_bytes = used_before_gc - _used_at_prologue;
gc_stats()->avg_promoted()->sample(promoted_in_bytes);
}
}
}
void TenuredGeneration::update_counters() {
if (UsePerfData) {
_space_counters->update_all();
_gen_counters->update_all();
}
}
bool TenuredGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
size_t available = max_contiguous_available();
size_t av_promo = (size_t)gc_stats()->avg_promoted()->padded_average();
bool res = (available >= av_promo) || (available >= max_promotion_in_bytes);
log_trace(gc)("Tenured: promo attempt is%s safe: available(" SIZE_FORMAT ") %s av_promo(" SIZE_FORMAT "), max_promo(" SIZE_FORMAT ")",
res? "":" not", available, res? ">=":"<", av_promo, max_promotion_in_bytes);
return res;
}
void TenuredGeneration::collect(bool full,
bool clear_all_soft_refs,
size_t size,
bool is_tlab) {
GenCollectedHeap* gch = GenCollectedHeap::heap();
// Temporarily expand the span of our ref processor, so
// refs discovery is over the entire heap, not just this generation
ReferenceProcessorSpanMutator
x(ref_processor(), gch->reserved_region());
STWGCTimer* gc_timer = GenMarkSweep::gc_timer();
gc_timer->register_gc_start();
SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer();
gc_tracer->report_gc_start(gch->gc_cause(), gc_timer->gc_start());
GenMarkSweep::invoke_at_safepoint(ref_processor(), clear_all_soft_refs);
gc_timer->register_gc_end();
gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
}
HeapWord*
TenuredGeneration::expand_and_allocate(size_t word_size,
bool is_tlab,
bool parallel) {
assert(!is_tlab, "TenuredGeneration does not support TLAB allocation");
if (parallel) {
MutexLocker x(ParGCRareEvent_lock);
HeapWord* result = NULL;
size_t byte_size = word_size * HeapWordSize;
while (true) {
expand(byte_size, _min_heap_delta_bytes);
if (GCExpandToAllocateDelayMillis > 0) {
os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
}
result = _the_space->par_allocate(word_size);
if ( result != NULL) {
return result;
} else {
// If there's not enough expansion space available, give up.
if (_virtual_space.uncommitted_size() < byte_size) {
return NULL;
}
// else try again
}
}
} else {
expand(word_size*HeapWordSize, _min_heap_delta_bytes);
return _the_space->allocate(word_size);
}
}
bool TenuredGeneration::expand(size_t bytes, size_t expand_bytes) {
GCMutexLocker x(ExpandHeap_lock);
return CardGeneration::expand(bytes, expand_bytes);
}
size_t TenuredGeneration::unsafe_max_alloc_nogc() const {
return _the_space->free();
}
size_t TenuredGeneration::contiguous_available() const {
return _the_space->free() + _virtual_space.uncommitted_size();
}
void TenuredGeneration::assert_correct_size_change_locking() {
assert_locked_or_safepoint(ExpandHeap_lock);
}
// Currently nothing to do.
void TenuredGeneration::prepare_for_verify() {}
void TenuredGeneration::object_iterate(ObjectClosure* blk) {
_the_space->object_iterate(blk);
}
void TenuredGeneration::save_marks() {
_the_space->set_saved_mark();
}
void TenuredGeneration::reset_saved_marks() {
_the_space->reset_saved_mark();
}
bool TenuredGeneration::no_allocs_since_save_marks() {
return _the_space->saved_mark_at_top();
}
#define TenuredGen_SINCE_SAVE_MARKS_ITERATE_DEFN(OopClosureType, nv_suffix) \
\
void TenuredGeneration:: \
oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk) { \
blk->set_generation(this); \
_the_space->oop_since_save_marks_iterate##nv_suffix(blk); \
blk->reset_generation(); \
save_marks(); \
}
ALL_SINCE_SAVE_MARKS_CLOSURES(TenuredGen_SINCE_SAVE_MARKS_ITERATE_DEFN)
#undef TenuredGen_SINCE_SAVE_MARKS_ITERATE_DEFN
void TenuredGeneration::gc_epilogue(bool full) {
// update the generation and space performance counters
update_counters();
if (ZapUnusedHeapArea) {
_the_space->check_mangled_unused_area_complete();
}
}
void TenuredGeneration::record_spaces_top() {
assert(ZapUnusedHeapArea, "Not mangling unused space");
_the_space->set_top_for_allocations();
}
void TenuredGeneration::verify() {
_the_space->verify();
}
void TenuredGeneration::print_on(outputStream* st) const {
Generation::print_on(st);
st->print(" the");
_the_space->print_on(st);
}