5be1924e89
Reviewed-by: twisti, never, iveresov
573 lines
22 KiB
C++
573 lines
22 KiB
C++
/*
|
|
* Copyright (c) 2010, 2015, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "code/codeCache.hpp"
|
|
#include "compiler/compileTask.hpp"
|
|
#include "runtime/advancedThresholdPolicy.hpp"
|
|
#include "runtime/simpleThresholdPolicy.inline.hpp"
|
|
|
|
#ifdef TIERED
|
|
// Print an event.
|
|
void AdvancedThresholdPolicy::print_specific(EventType type, methodHandle mh, methodHandle imh,
|
|
int bci, CompLevel level) {
|
|
tty->print(" rate=");
|
|
if (mh->prev_time() == 0) tty->print("n/a");
|
|
else tty->print("%f", mh->rate());
|
|
|
|
tty->print(" k=%.2lf,%.2lf", threshold_scale(CompLevel_full_profile, Tier3LoadFeedback),
|
|
threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback));
|
|
|
|
}
|
|
|
|
void AdvancedThresholdPolicy::initialize() {
|
|
// Turn on ergonomic compiler count selection
|
|
if (FLAG_IS_DEFAULT(CICompilerCountPerCPU) && FLAG_IS_DEFAULT(CICompilerCount)) {
|
|
FLAG_SET_DEFAULT(CICompilerCountPerCPU, true);
|
|
}
|
|
int count = CICompilerCount;
|
|
if (CICompilerCountPerCPU) {
|
|
// Simple log n seems to grow too slowly for tiered, try something faster: log n * log log n
|
|
int log_cpu = log2_intptr(os::active_processor_count());
|
|
int loglog_cpu = log2_intptr(MAX2(log_cpu, 1));
|
|
count = MAX2(log_cpu * loglog_cpu, 1) * 3 / 2;
|
|
}
|
|
|
|
set_c1_count(MAX2(count / 3, 1));
|
|
set_c2_count(MAX2(count - c1_count(), 1));
|
|
FLAG_SET_ERGO(intx, CICompilerCount, c1_count() + c2_count());
|
|
|
|
// Some inlining tuning
|
|
#ifdef X86
|
|
if (FLAG_IS_DEFAULT(InlineSmallCode)) {
|
|
FLAG_SET_DEFAULT(InlineSmallCode, 2000);
|
|
}
|
|
#endif
|
|
|
|
#if defined SPARC || defined AARCH64
|
|
if (FLAG_IS_DEFAULT(InlineSmallCode)) {
|
|
FLAG_SET_DEFAULT(InlineSmallCode, 2500);
|
|
}
|
|
#endif
|
|
|
|
set_increase_threshold_at_ratio();
|
|
set_start_time(os::javaTimeMillis());
|
|
}
|
|
|
|
// update_rate() is called from select_task() while holding a compile queue lock.
|
|
void AdvancedThresholdPolicy::update_rate(jlong t, Method* m) {
|
|
// Skip update if counters are absent.
|
|
// Can't allocate them since we are holding compile queue lock.
|
|
if (m->method_counters() == NULL) return;
|
|
|
|
if (is_old(m)) {
|
|
// We don't remove old methods from the queue,
|
|
// so we can just zero the rate.
|
|
m->set_rate(0);
|
|
return;
|
|
}
|
|
|
|
// We don't update the rate if we've just came out of a safepoint.
|
|
// delta_s is the time since last safepoint in milliseconds.
|
|
jlong delta_s = t - SafepointSynchronize::end_of_last_safepoint();
|
|
jlong delta_t = t - (m->prev_time() != 0 ? m->prev_time() : start_time()); // milliseconds since the last measurement
|
|
// How many events were there since the last time?
|
|
int event_count = m->invocation_count() + m->backedge_count();
|
|
int delta_e = event_count - m->prev_event_count();
|
|
|
|
// We should be running for at least 1ms.
|
|
if (delta_s >= TieredRateUpdateMinTime) {
|
|
// And we must've taken the previous point at least 1ms before.
|
|
if (delta_t >= TieredRateUpdateMinTime && delta_e > 0) {
|
|
m->set_prev_time(t);
|
|
m->set_prev_event_count(event_count);
|
|
m->set_rate((float)delta_e / (float)delta_t); // Rate is events per millisecond
|
|
} else {
|
|
if (delta_t > TieredRateUpdateMaxTime && delta_e == 0) {
|
|
// If nothing happened for 25ms, zero the rate. Don't modify prev values.
|
|
m->set_rate(0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check if this method has been stale from a given number of milliseconds.
|
|
// See select_task().
|
|
bool AdvancedThresholdPolicy::is_stale(jlong t, jlong timeout, Method* m) {
|
|
jlong delta_s = t - SafepointSynchronize::end_of_last_safepoint();
|
|
jlong delta_t = t - m->prev_time();
|
|
if (delta_t > timeout && delta_s > timeout) {
|
|
int event_count = m->invocation_count() + m->backedge_count();
|
|
int delta_e = event_count - m->prev_event_count();
|
|
// Return true if there were no events.
|
|
return delta_e == 0;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// We don't remove old methods from the compile queue even if they have
|
|
// very low activity. See select_task().
|
|
bool AdvancedThresholdPolicy::is_old(Method* method) {
|
|
return method->invocation_count() > 50000 || method->backedge_count() > 500000;
|
|
}
|
|
|
|
double AdvancedThresholdPolicy::weight(Method* method) {
|
|
return (double)(method->rate() + 1) *
|
|
(method->invocation_count() + 1) * (method->backedge_count() + 1);
|
|
}
|
|
|
|
// Apply heuristics and return true if x should be compiled before y
|
|
bool AdvancedThresholdPolicy::compare_methods(Method* x, Method* y) {
|
|
if (x->highest_comp_level() > y->highest_comp_level()) {
|
|
// recompilation after deopt
|
|
return true;
|
|
} else
|
|
if (x->highest_comp_level() == y->highest_comp_level()) {
|
|
if (weight(x) > weight(y)) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Is method profiled enough?
|
|
bool AdvancedThresholdPolicy::is_method_profiled(Method* method) {
|
|
MethodData* mdo = method->method_data();
|
|
if (mdo != NULL) {
|
|
int i = mdo->invocation_count_delta();
|
|
int b = mdo->backedge_count_delta();
|
|
return call_predicate_helper<CompLevel_full_profile>(i, b, 1, method);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Called with the queue locked and with at least one element
|
|
CompileTask* AdvancedThresholdPolicy::select_task(CompileQueue* compile_queue) {
|
|
#if INCLUDE_JVMCI
|
|
CompileTask *max_blocking_task = NULL;
|
|
#endif
|
|
CompileTask *max_task = NULL;
|
|
Method* max_method = NULL;
|
|
jlong t = os::javaTimeMillis();
|
|
// Iterate through the queue and find a method with a maximum rate.
|
|
for (CompileTask* task = compile_queue->first(); task != NULL;) {
|
|
CompileTask* next_task = task->next();
|
|
Method* method = task->method();
|
|
update_rate(t, method);
|
|
if (max_task == NULL) {
|
|
max_task = task;
|
|
max_method = method;
|
|
} else {
|
|
// If a method has been stale for some time, remove it from the queue.
|
|
if (is_stale(t, TieredCompileTaskTimeout, method) && !is_old(method)) {
|
|
if (PrintTieredEvents) {
|
|
print_event(REMOVE_FROM_QUEUE, method, method, task->osr_bci(), (CompLevel)task->comp_level());
|
|
}
|
|
task->log_task_dequeued("stale");
|
|
compile_queue->remove_and_mark_stale(task);
|
|
method->clear_queued_for_compilation();
|
|
task = next_task;
|
|
continue;
|
|
}
|
|
|
|
// Select a method with a higher rate
|
|
if (compare_methods(method, max_method)) {
|
|
max_task = task;
|
|
max_method = method;
|
|
}
|
|
}
|
|
#if INCLUDE_JVMCI
|
|
if (UseJVMCICompiler && task->is_blocking()) {
|
|
if (max_blocking_task == NULL || compare_methods(method, max_blocking_task->method())) {
|
|
max_blocking_task = task;
|
|
}
|
|
}
|
|
#endif
|
|
task = next_task;
|
|
}
|
|
|
|
#if INCLUDE_JVMCI
|
|
if (UseJVMCICompiler) {
|
|
if (max_blocking_task != NULL) {
|
|
// In blocking compilation mode, the CompileBroker will make
|
|
// compilations submitted by a JVMCI compiler thread non-blocking. These
|
|
// compilations should be scheduled after all blocking compilations
|
|
// to service non-compiler related compilations sooner and reduce the
|
|
// chance of such compilations timing out.
|
|
max_task = max_blocking_task;
|
|
max_method = max_task->method();
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if (max_task->comp_level() == CompLevel_full_profile && TieredStopAtLevel > CompLevel_full_profile
|
|
&& is_method_profiled(max_method)) {
|
|
max_task->set_comp_level(CompLevel_limited_profile);
|
|
if (PrintTieredEvents) {
|
|
print_event(UPDATE_IN_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level());
|
|
}
|
|
}
|
|
|
|
return max_task;
|
|
}
|
|
|
|
double AdvancedThresholdPolicy::threshold_scale(CompLevel level, int feedback_k) {
|
|
double queue_size = CompileBroker::queue_size(level);
|
|
int comp_count = compiler_count(level);
|
|
double k = queue_size / (feedback_k * comp_count) + 1;
|
|
|
|
// Increase C1 compile threshold when the code cache is filled more
|
|
// than specified by IncreaseFirstTierCompileThresholdAt percentage.
|
|
// The main intention is to keep enough free space for C2 compiled code
|
|
// to achieve peak performance if the code cache is under stress.
|
|
if ((TieredStopAtLevel == CompLevel_full_optimization) && (level != CompLevel_full_optimization)) {
|
|
double current_reverse_free_ratio = CodeCache::reverse_free_ratio(CodeCache::get_code_blob_type(level));
|
|
if (current_reverse_free_ratio > _increase_threshold_at_ratio) {
|
|
k *= exp(current_reverse_free_ratio - _increase_threshold_at_ratio);
|
|
}
|
|
}
|
|
return k;
|
|
}
|
|
|
|
// Call and loop predicates determine whether a transition to a higher
|
|
// compilation level should be performed (pointers to predicate functions
|
|
// are passed to common()).
|
|
// Tier?LoadFeedback is basically a coefficient that determines of
|
|
// how many methods per compiler thread can be in the queue before
|
|
// the threshold values double.
|
|
bool AdvancedThresholdPolicy::loop_predicate(int i, int b, CompLevel cur_level, Method* method) {
|
|
switch(cur_level) {
|
|
case CompLevel_none:
|
|
case CompLevel_limited_profile: {
|
|
double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
|
|
return loop_predicate_helper<CompLevel_none>(i, b, k, method);
|
|
}
|
|
case CompLevel_full_profile: {
|
|
double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
|
|
return loop_predicate_helper<CompLevel_full_profile>(i, b, k, method);
|
|
}
|
|
default:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
bool AdvancedThresholdPolicy::call_predicate(int i, int b, CompLevel cur_level, Method* method) {
|
|
switch(cur_level) {
|
|
case CompLevel_none:
|
|
case CompLevel_limited_profile: {
|
|
double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
|
|
return call_predicate_helper<CompLevel_none>(i, b, k, method);
|
|
}
|
|
case CompLevel_full_profile: {
|
|
double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
|
|
return call_predicate_helper<CompLevel_full_profile>(i, b, k, method);
|
|
}
|
|
default:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// If a method is old enough and is still in the interpreter we would want to
|
|
// start profiling without waiting for the compiled method to arrive.
|
|
// We also take the load on compilers into the account.
|
|
bool AdvancedThresholdPolicy::should_create_mdo(Method* method, CompLevel cur_level) {
|
|
if (cur_level == CompLevel_none &&
|
|
CompileBroker::queue_size(CompLevel_full_optimization) <=
|
|
Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
|
|
int i = method->invocation_count();
|
|
int b = method->backedge_count();
|
|
double k = Tier0ProfilingStartPercentage / 100.0;
|
|
return call_predicate_helper<CompLevel_none>(i, b, k, method) || loop_predicate_helper<CompLevel_none>(i, b, k, method);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Inlining control: if we're compiling a profiled method with C1 and the callee
|
|
// is known to have OSRed in a C2 version, don't inline it.
|
|
bool AdvancedThresholdPolicy::should_not_inline(ciEnv* env, ciMethod* callee) {
|
|
CompLevel comp_level = (CompLevel)env->comp_level();
|
|
if (comp_level == CompLevel_full_profile ||
|
|
comp_level == CompLevel_limited_profile) {
|
|
return callee->highest_osr_comp_level() == CompLevel_full_optimization;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Create MDO if necessary.
|
|
void AdvancedThresholdPolicy::create_mdo(methodHandle mh, JavaThread* THREAD) {
|
|
if (mh->is_native() ||
|
|
mh->is_abstract() ||
|
|
mh->is_accessor() ||
|
|
mh->is_constant_getter()) {
|
|
return;
|
|
}
|
|
if (mh->method_data() == NULL) {
|
|
Method::build_interpreter_method_data(mh, CHECK_AND_CLEAR);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Method states:
|
|
* 0 - interpreter (CompLevel_none)
|
|
* 1 - pure C1 (CompLevel_simple)
|
|
* 2 - C1 with invocation and backedge counting (CompLevel_limited_profile)
|
|
* 3 - C1 with full profiling (CompLevel_full_profile)
|
|
* 4 - C2 (CompLevel_full_optimization)
|
|
*
|
|
* Common state transition patterns:
|
|
* a. 0 -> 3 -> 4.
|
|
* The most common path. But note that even in this straightforward case
|
|
* profiling can start at level 0 and finish at level 3.
|
|
*
|
|
* b. 0 -> 2 -> 3 -> 4.
|
|
* This case occurs when the load on C2 is deemed too high. So, instead of transitioning
|
|
* into state 3 directly and over-profiling while a method is in the C2 queue we transition to
|
|
* level 2 and wait until the load on C2 decreases. This path is disabled for OSRs.
|
|
*
|
|
* c. 0 -> (3->2) -> 4.
|
|
* In this case we enqueue a method for compilation at level 3, but the C1 queue is long enough
|
|
* to enable the profiling to fully occur at level 0. In this case we change the compilation level
|
|
* of the method to 2 while the request is still in-queue, because it'll allow it to run much faster
|
|
* without full profiling while c2 is compiling.
|
|
*
|
|
* d. 0 -> 3 -> 1 or 0 -> 2 -> 1.
|
|
* After a method was once compiled with C1 it can be identified as trivial and be compiled to
|
|
* level 1. These transition can also occur if a method can't be compiled with C2 but can with C1.
|
|
*
|
|
* e. 0 -> 4.
|
|
* This can happen if a method fails C1 compilation (it will still be profiled in the interpreter)
|
|
* or because of a deopt that didn't require reprofiling (compilation won't happen in this case because
|
|
* the compiled version already exists).
|
|
*
|
|
* Note that since state 0 can be reached from any other state via deoptimization different loops
|
|
* are possible.
|
|
*
|
|
*/
|
|
|
|
// Common transition function. Given a predicate determines if a method should transition to another level.
|
|
CompLevel AdvancedThresholdPolicy::common(Predicate p, Method* method, CompLevel cur_level, bool disable_feedback) {
|
|
CompLevel next_level = cur_level;
|
|
int i = method->invocation_count();
|
|
int b = method->backedge_count();
|
|
|
|
if (is_trivial(method)) {
|
|
next_level = CompLevel_simple;
|
|
} else {
|
|
switch(cur_level) {
|
|
case CompLevel_none:
|
|
// If we were at full profile level, would we switch to full opt?
|
|
if (common(p, method, CompLevel_full_profile, disable_feedback) == CompLevel_full_optimization) {
|
|
next_level = CompLevel_full_optimization;
|
|
} else if ((this->*p)(i, b, cur_level, method)) {
|
|
#if INCLUDE_JVMCI
|
|
if (UseJVMCICompiler) {
|
|
// Since JVMCI takes a while to warm up, its queue inevitably backs up during
|
|
// early VM execution.
|
|
next_level = CompLevel_full_profile;
|
|
break;
|
|
}
|
|
#endif
|
|
// C1-generated fully profiled code is about 30% slower than the limited profile
|
|
// code that has only invocation and backedge counters. The observation is that
|
|
// if C2 queue is large enough we can spend too much time in the fully profiled code
|
|
// while waiting for C2 to pick the method from the queue. To alleviate this problem
|
|
// we introduce a feedback on the C2 queue size. If the C2 queue is sufficiently long
|
|
// we choose to compile a limited profiled version and then recompile with full profiling
|
|
// when the load on C2 goes down.
|
|
if (!disable_feedback && CompileBroker::queue_size(CompLevel_full_optimization) >
|
|
Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
|
|
next_level = CompLevel_limited_profile;
|
|
} else {
|
|
next_level = CompLevel_full_profile;
|
|
}
|
|
}
|
|
break;
|
|
case CompLevel_limited_profile:
|
|
if (is_method_profiled(method)) {
|
|
// Special case: we got here because this method was fully profiled in the interpreter.
|
|
next_level = CompLevel_full_optimization;
|
|
} else {
|
|
MethodData* mdo = method->method_data();
|
|
if (mdo != NULL) {
|
|
if (mdo->would_profile()) {
|
|
if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
|
|
Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
|
|
(this->*p)(i, b, cur_level, method))) {
|
|
next_level = CompLevel_full_profile;
|
|
}
|
|
} else {
|
|
next_level = CompLevel_full_optimization;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case CompLevel_full_profile:
|
|
{
|
|
MethodData* mdo = method->method_data();
|
|
if (mdo != NULL) {
|
|
if (mdo->would_profile()) {
|
|
int mdo_i = mdo->invocation_count_delta();
|
|
int mdo_b = mdo->backedge_count_delta();
|
|
if ((this->*p)(mdo_i, mdo_b, cur_level, method)) {
|
|
next_level = CompLevel_full_optimization;
|
|
}
|
|
} else {
|
|
next_level = CompLevel_full_optimization;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
return MIN2(next_level, (CompLevel)TieredStopAtLevel);
|
|
}
|
|
|
|
// Determine if a method should be compiled with a normal entry point at a different level.
|
|
CompLevel AdvancedThresholdPolicy::call_event(Method* method, CompLevel cur_level) {
|
|
CompLevel osr_level = MIN2((CompLevel) method->highest_osr_comp_level(),
|
|
common(&AdvancedThresholdPolicy::loop_predicate, method, cur_level, true));
|
|
CompLevel next_level = common(&AdvancedThresholdPolicy::call_predicate, method, cur_level);
|
|
|
|
// If OSR method level is greater than the regular method level, the levels should be
|
|
// equalized by raising the regular method level in order to avoid OSRs during each
|
|
// invocation of the method.
|
|
if (osr_level == CompLevel_full_optimization && cur_level == CompLevel_full_profile) {
|
|
MethodData* mdo = method->method_data();
|
|
guarantee(mdo != NULL, "MDO should not be NULL");
|
|
if (mdo->invocation_count() >= 1) {
|
|
next_level = CompLevel_full_optimization;
|
|
}
|
|
} else {
|
|
next_level = MAX2(osr_level, next_level);
|
|
}
|
|
return next_level;
|
|
}
|
|
|
|
// Determine if we should do an OSR compilation of a given method.
|
|
CompLevel AdvancedThresholdPolicy::loop_event(Method* method, CompLevel cur_level) {
|
|
CompLevel next_level = common(&AdvancedThresholdPolicy::loop_predicate, method, cur_level, true);
|
|
if (cur_level == CompLevel_none) {
|
|
// If there is a live OSR method that means that we deopted to the interpreter
|
|
// for the transition.
|
|
CompLevel osr_level = MIN2((CompLevel)method->highest_osr_comp_level(), next_level);
|
|
if (osr_level > CompLevel_none) {
|
|
return osr_level;
|
|
}
|
|
}
|
|
return next_level;
|
|
}
|
|
|
|
// Update the rate and submit compile
|
|
void AdvancedThresholdPolicy::submit_compile(const methodHandle& mh, int bci, CompLevel level, JavaThread* thread) {
|
|
int hot_count = (bci == InvocationEntryBci) ? mh->invocation_count() : mh->backedge_count();
|
|
update_rate(os::javaTimeMillis(), mh());
|
|
CompileBroker::compile_method(mh, bci, level, mh, hot_count, "tiered", thread);
|
|
}
|
|
|
|
// Handle the invocation event.
|
|
void AdvancedThresholdPolicy::method_invocation_event(const methodHandle& mh, const methodHandle& imh,
|
|
CompLevel level, nmethod* nm, JavaThread* thread) {
|
|
if (should_create_mdo(mh(), level)) {
|
|
create_mdo(mh, thread);
|
|
}
|
|
if (is_compilation_enabled() && !CompileBroker::compilation_is_in_queue(mh)) {
|
|
CompLevel next_level = call_event(mh(), level);
|
|
if (next_level != level) {
|
|
compile(mh, InvocationEntryBci, next_level, thread);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Handle the back branch event. Notice that we can compile the method
|
|
// with a regular entry from here.
|
|
void AdvancedThresholdPolicy::method_back_branch_event(const methodHandle& mh, const methodHandle& imh,
|
|
int bci, CompLevel level, nmethod* nm, JavaThread* thread) {
|
|
if (should_create_mdo(mh(), level)) {
|
|
create_mdo(mh, thread);
|
|
}
|
|
// Check if MDO should be created for the inlined method
|
|
if (should_create_mdo(imh(), level)) {
|
|
create_mdo(imh, thread);
|
|
}
|
|
|
|
if (is_compilation_enabled()) {
|
|
CompLevel next_osr_level = loop_event(imh(), level);
|
|
CompLevel max_osr_level = (CompLevel)imh->highest_osr_comp_level();
|
|
// At the very least compile the OSR version
|
|
if (!CompileBroker::compilation_is_in_queue(imh) && (next_osr_level != level)) {
|
|
compile(imh, bci, next_osr_level, thread);
|
|
}
|
|
|
|
// Use loop event as an opportunity to also check if there's been
|
|
// enough calls.
|
|
CompLevel cur_level, next_level;
|
|
if (mh() != imh()) { // If there is an enclosing method
|
|
guarantee(nm != NULL, "Should have nmethod here");
|
|
cur_level = comp_level(mh());
|
|
next_level = call_event(mh(), cur_level);
|
|
|
|
if (max_osr_level == CompLevel_full_optimization) {
|
|
// The inlinee OSRed to full opt, we need to modify the enclosing method to avoid deopts
|
|
bool make_not_entrant = false;
|
|
if (nm->is_osr_method()) {
|
|
// This is an osr method, just make it not entrant and recompile later if needed
|
|
make_not_entrant = true;
|
|
} else {
|
|
if (next_level != CompLevel_full_optimization) {
|
|
// next_level is not full opt, so we need to recompile the
|
|
// enclosing method without the inlinee
|
|
cur_level = CompLevel_none;
|
|
make_not_entrant = true;
|
|
}
|
|
}
|
|
if (make_not_entrant) {
|
|
if (PrintTieredEvents) {
|
|
int osr_bci = nm->is_osr_method() ? nm->osr_entry_bci() : InvocationEntryBci;
|
|
print_event(MAKE_NOT_ENTRANT, mh(), mh(), osr_bci, level);
|
|
}
|
|
nm->make_not_entrant();
|
|
}
|
|
}
|
|
if (!CompileBroker::compilation_is_in_queue(mh)) {
|
|
// Fix up next_level if necessary to avoid deopts
|
|
if (next_level == CompLevel_limited_profile && max_osr_level == CompLevel_full_profile) {
|
|
next_level = CompLevel_full_profile;
|
|
}
|
|
if (cur_level != next_level) {
|
|
compile(mh, InvocationEntryBci, next_level, thread);
|
|
}
|
|
}
|
|
} else {
|
|
cur_level = comp_level(imh());
|
|
next_level = call_event(imh(), cur_level);
|
|
if (!CompileBroker::compilation_is_in_queue(imh) && (next_level != cur_level)) {
|
|
compile(imh, InvocationEntryBci, next_level, thread);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif // TIERED
|