jdk-24/test/hotspot/jtreg/compiler/vectorization/TestRoundVectorDoubleRandom.java
Hamlin Li bacd046062 8321010: RISC-V: C2 RoundVF
8321011: RISC-V: C2 RoundVD

Reviewed-by: rehn, luhenry
2024-09-13 08:05:19 +00:00

230 lines
8.2 KiB
Java

/*
* Copyright (c) 2024, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2024, Rivos Inc. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/**
* @test
* @key randomness
* @bug 8321011
* @summary Test vector intrinsic for Math.round(double) with random input in 64 bits range, verify IR at the same time.
*
* @library /test/lib /
* @modules java.base/jdk.internal.math
* @requires os.arch == "riscv64" & vm.cpu.features ~= ".*rvv.*"
* @run main compiler.vectorization.TestRoundVectorDoubleRandom
*/
package compiler.vectorization;
import java.util.Random;
import static compiler.lib.golden.GoldenRound.golden_round;
import compiler.lib.ir_framework.IR;
import compiler.lib.ir_framework.IRNode;
import compiler.lib.ir_framework.Run;
import compiler.lib.ir_framework.RunInfo;
import compiler.lib.ir_framework.Test;
import compiler.lib.ir_framework.TestFramework;
import compiler.lib.ir_framework.Warmup;
public class TestRoundVectorDoubleRandom {
private static final Random rand = new Random();
private static final int ITERS = 11000;
private static final int ARRLEN = rand.nextInt(4096-997) + 997;
private static final double ADD_INIT = -7500.;
private static final double[] input = new double[ARRLEN];
private static final long [] res = new long[ARRLEN];
public static void main(String args[]) {
TestFramework.runWithFlags("-XX:-TieredCompilation", "-XX:CompileThresholdScaling=0.3");
TestFramework.runWithFlags("-XX:-TieredCompilation", "-XX:CompileThresholdScaling=0.3", "-XX:MaxVectorSize=8");
TestFramework.runWithFlags("-XX:-TieredCompilation", "-XX:CompileThresholdScaling=0.3", "-XX:MaxVectorSize=16");
TestFramework.runWithFlags("-XX:-TieredCompilation", "-XX:CompileThresholdScaling=0.3", "-XX:MaxVectorSize=32");
}
@Test
@IR(counts = {IRNode.ROUND_VD, "> 0"},
applyIf = {"MaxVectorSize", ">= 64"})
static void test_round(long[] a0, double[] a1) {
for (int i = 0; i < a0.length; i+=1) {
a0[i] = Math.round(a1[i]);
}
}
@Run(test = "test_round")
@Warmup(ITERS)
static void test_rounds(RunInfo runInfo) {
// Initialize
for (int i = 0; i < ARRLEN; i++) {
double val = ADD_INIT+(double)i;
input[i] = val;
}
test_round(res, input);
// skip test/verify when warming up
if (runInfo.isWarmUp()) {
return;
}
int errn = 0;
// a double precise float point is composed of 3 parts: sign/exponent/signicand
// exponent part of a float value
final int exponentShift = 52;
final int exponentWidth = 11;
final int exponentBound = 1 << exponentWidth;
// significant part of a float value
final int signicandWidth = exponentShift;
final long signicandBound = 1L << signicandWidth;
final int signicandNum = 256;
// prepare for data of significand part
long signicandValues[] = new long[signicandNum];
int signicandIdx = 0;
for (; signicandIdx < signicandWidth; signicandIdx++) {
signicandValues[signicandIdx] = 1L << signicandIdx;
}
for (; signicandIdx < signicandNum; signicandIdx++) {
signicandValues[signicandIdx] = rand.nextLong(signicandBound);
}
signicandValues[rand.nextInt(signicandNum)] = 0;
// generate input arrays for testing, then run tests & verify results
// generate input arrays by combining different parts
for (long sv : signicandValues) {
// generate test input by combining different parts:
// previously generated significand values,
// random value in exponent range,
// both positive and negative of previous combined values (exponent+significand)
final int exponentStart = rand.nextInt(9);
final int exponentStep = (1 << 3) + rand.nextInt(3);
// Here, we could have iterated the whole range of exponent values, but it would
// take more time to run the test, so just randomly choose some of exponent values.
int ev = exponentStart;
int inputIdx = 0;
for (; ev < exponentBound; ev += exponentStep) {
inputIdx = ev/exponentStep;
// combine exponent and significand
long bits = ((long)ev << exponentShift) + sv;
// combine sign(+/-) with exponent and significand
// positive values
input[inputIdx*2] = Double.longBitsToDouble(bits);
// negative values
bits = bits | (1L << 63);
input[inputIdx*2+1] = Double.longBitsToDouble(bits);
}
// add specific test cases where it looks like in binary format:
// s111 1111 1111 xxxx xxxx xxxx xxxx xxxx ...
// these are for the NaN and Inf.
inputIdx = inputIdx*2+2;
long bits = (1L << exponentWidth) - 1L;
bits <<= exponentShift;
input[inputIdx++] = Double.longBitsToDouble(bits);
bits = bits | (1L << 63);
input[inputIdx] = Double.longBitsToDouble(bits);
// run tests
test_round(res, input);
// verify results
ev = exponentStart;
inputIdx = ev/exponentStep;
for (; ev < exponentBound; ev += exponentStep) {
for (int sign = 0; sign < 2; sign++) {
int idx = inputIdx * 2 + sign;
if (res[idx] != golden_round(input[idx])) {
errn++;
System.err.println("round error, input: " + input[idx] +
", res: " + res[idx] + "expected: " + golden_round(input[idx]) +
", input hex: " + Double.doubleToLongBits(input[idx]) +
", fi: " + sv + ", ei: " + ev + ", sign: " + sign);
}
}
}
}
// generate pure random input arrays, which does not depend on significand/exponent values
for(int i = 0; i < 128; i++) {
for (int j = 0; j < ARRLEN; j++) {
input[j] = rand.nextDouble();
}
// run tests
test_round(res, input);
// verify results
for (int j = 0; j < ARRLEN; j++) {
if (res[j] != golden_round(input[j])) {
errn++;
System.err.println("round error, input: " + input[j] +
", res: " + res[j] + "expected: " + golden_round(input[j]) +
", input hex: " + Double.doubleToLongBits(input[j]));
}
}
}
// test cases for NaN, Inf, subnormal, and so on
{
Double[] dv = new Double[] {
+0.0,
-0.0,
Double.MAX_VALUE,
Double.MIN_VALUE,
Double.NEGATIVE_INFINITY,
Double.POSITIVE_INFINITY,
Double.NaN,
Double.longBitsToDouble(0x7ff0000000000001L), // another NaN
Double.MIN_NORMAL,
0x0.fffffffffffffp-1022, // Maximum Subnormal Value
1.5,
100.5,
10000.5,
-1.5,
-100.5,
-10000.5
};
for (int j = 0; j < ARRLEN; j++) {
input[j] = dv[rand.nextInt(dv.length)];
}
// run tests
test_round(res, input);
// verify results
for (int j = 0; j < ARRLEN; j++) {
if (res[j] != golden_round(input[j])) {
errn++;
System.err.println("round error, input: " + input[j] +
", res: " + res[j] + "expected: " + golden_round(input[j]) +
", input hex: " + Double.doubleToLongBits(input[j]));
}
}
}
if (errn > 0) {
throw new RuntimeException("There are some round error detected!");
}
}
}