jdk-24/test/jdk/sun/security/ssl/SSLEngineImpl/SSLEngineDeadlock.java
2023-05-09 14:25:40 +00:00

284 lines
9.6 KiB
Java

/*
* Copyright (c) 2007, 2023, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
// SunJSSE does not support dynamic system properties, no way to re-use
// system properties in samevm/agentvm mode.
/*
* @test
* @bug 6492872
* @summary Deadlock in SSLEngine
* @library /javax/net/ssl/templates
* @run main/othervm SSLEngineDeadlock
* @author Brad R. Wetmore
*/
/**
* A SSLEngine usage example which simplifies the presentation
* by removing the I/O and multi-threading concerns.
*
* The test creates two SSLEngines, simulating a client and server.
* The "transport" layer consists two byte buffers: think of them
* as directly connected pipes.
*
* Note, this is a *very* simple example: real code will be much more
* involved. For example, different threading and I/O models could be
* used, transport mechanisms could close unexpectedly, and so on.
*
* When this application runs, notice that several messages
* (wrap/unwrap) pass before any application data is consumed or
* produced. (For more information, please see the SSL/TLS
* specifications.) There may several steps for a successful handshake,
* so it's typical to see the following series of operations:
*
* client server message
* ====== ====== =======
* wrap() ... ClientHello
* ... unwrap() ClientHello
* ... wrap() ServerHello/Certificate
* unwrap() ... ServerHello/Certificate
* wrap() ... ClientKeyExchange
* wrap() ... ChangeCipherSpec
* wrap() ... Finished
* ... unwrap() ClientKeyExchange
* ... unwrap() ChangeCipherSpec
* ... unwrap() Finished
* ... wrap() ChangeCipherSpec
* ... wrap() Finished
* unwrap() ... ChangeCipherSpec
* unwrap() ... Finished
*/
import javax.net.ssl.*;
import javax.net.ssl.SSLEngineResult.*;
import java.lang.management.*;
public class SSLEngineDeadlock extends SSLEngineTemplate {
/*
* Enables logging of the SSLEngine operations.
*/
private static boolean logging = false;
/*
* Enables the JSSE system debugging system property:
*
* -Djavax.net.debug=all
*
* This gives a lot of low-level information about operations underway,
* including specific handshake messages, and might be best examined
* after gaining some familiarity with this application.
*/
private static boolean debug = false;
private volatile boolean testDone = false;
/*
* Main entry point for this test.
*/
public static void main(String args[]) throws Exception {
if (debug) {
System.setProperty("javax.net.debug", "all");
}
// Turn off logging, and only output the test iteration to keep
// the noise down.
for (int i = 1; i <= 200; i++) {
if ((i % 5) == 0) {
System.out.println("Test #: " + i);
}
SSLEngineDeadlock test = new SSLEngineDeadlock();
test.runTest();
detectDeadLock();
}
System.out.println("Test Passed.");
}
/*
* Create an initialized SSLContext to use for these tests.
*/
public SSLEngineDeadlock() throws Exception {
super();
}
/*
* Create a thread which simply spins on tasks. This will hopefully
* trigger a deadlock between the wrap/unwrap and the tasks. On our
* slow, single-CPU build machine (sol8), it was very repeatable.
*/
private void doTask() {
Runnable task;
while (!testDone) {
if ((task = clientEngine.getDelegatedTask()) != null) {
task.run();
}
if ((task = serverEngine.getDelegatedTask()) != null) {
task.run();
}
}
}
/*
* Run the test.
*
* Sit in a tight loop, both engines calling wrap/unwrap regardless
* of whether data is available or not. We do this until both engines
* report back they are closed.
*
* The main loop handles all of the I/O phases of the SSLEngine's
* lifetime:
*
* initial handshaking
* application data transfer
* engine closing
*
* One could easily separate these phases into separate
* sections of code.
*/
private void runTest() throws Exception {
boolean dataDone = false;
SSLEngineResult clientResult; // results from client's last operation
SSLEngineResult serverResult; // results from server's last operation
new Thread("SSLEngine Task Dispatcher") {
public void run() {
try {
doTask();
} catch (Exception e) {
System.err.println("Task thread died...test will hang");
}
}
}.start();
/*
* Examining the SSLEngineResults could be much more involved,
* and may alter the overall flow of the application.
*
* For example, if we received a BUFFER_OVERFLOW when trying
* to write to the output pipe, we could reallocate a larger
* pipe, but instead we wait for the peer to drain it.
*/
while (!isEngineClosed(clientEngine) ||
!isEngineClosed(serverEngine)) {
log("================");
clientResult = clientEngine.wrap(clientOut, cTOs);
log("client wrap: ", clientResult);
serverResult = serverEngine.wrap(serverOut, sTOc);
log("server wrap: ", serverResult);
cTOs.flip();
sTOc.flip();
log("----");
clientResult = clientEngine.unwrap(sTOc, clientIn);
log("client unwrap: ", clientResult);
serverResult = serverEngine.unwrap(cTOs, serverIn);
log("server unwrap: ", serverResult);
cTOs.compact();
sTOc.compact();
/*
* After we've transfered all application data between the client
* and server, we close the clientEngine's outbound stream.
* This generates a close_notify handshake message, which the
* server engine receives and responds by closing itself.
*/
if (!dataDone && (clientOut.limit() == serverIn.position()) &&
(serverOut.limit() == clientIn.position())) {
/*
* A sanity check to ensure we got what was sent.
*/
checkTransfer(serverOut, clientIn);
checkTransfer(clientOut, serverIn);
log("\tClosing clientEngine's *OUTBOUND*...");
clientEngine.closeOutbound();
serverEngine.closeOutbound();
dataDone = true;
}
}
testDone = true;
}
private static boolean isEngineClosed(SSLEngine engine) {
return (engine.isOutboundDone() && engine.isInboundDone());
}
/*
* Detect dead lock
*/
private static void detectDeadLock() throws Exception {
ThreadMXBean threadBean = ManagementFactory.getThreadMXBean();
long[] threadIds = threadBean.findDeadlockedThreads();
if (threadIds != null && threadIds.length != 0) {
for (long id : threadIds) {
ThreadInfo info =
threadBean.getThreadInfo(id, Integer.MAX_VALUE);
System.out.println("Deadlocked ThreadInfo: " + info);
}
throw new Exception("Found Deadlock!");
}
}
/*
* Logging code
*/
private static boolean resultOnce = true;
private static void log(String str, SSLEngineResult result) {
if (!logging) {
return;
}
if (resultOnce) {
resultOnce = false;
System.out.println("The format of the SSLEngineResult is: \n" +
"\t\"getStatus() / getHandshakeStatus()\" +\n" +
"\t\"bytesConsumed() / bytesProduced()\"\n");
}
HandshakeStatus hsStatus = result.getHandshakeStatus();
log(str +
result.getStatus() + "/" + hsStatus + ", " +
result.bytesConsumed() + "/" + result.bytesProduced() +
" bytes");
if (hsStatus == HandshakeStatus.FINISHED) {
log("\t...ready for application data");
}
}
private static void log(String str) {
if (logging) {
System.out.println(str);
}
}
}