Tobias Hartmann 11eb4553c9 8040213: C2 does not put all modified nodes on IGVN worklist
Verification code is added that checks if modified nodes are put on the IGVN worklist and modified nodes are processed by 'PhaseIterGVN::transform_old()'

Reviewed-by: kvn, jrose
2014-07-25 10:06:17 +02:00

1596 lines
57 KiB
C++

/*
* Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_OPTO_NODE_HPP
#define SHARE_VM_OPTO_NODE_HPP
#include "libadt/vectset.hpp"
#include "opto/compile.hpp"
#include "opto/type.hpp"
// Portions of code courtesy of Clifford Click
// Optimization - Graph Style
class AbstractLockNode;
class AddNode;
class AddPNode;
class AliasInfo;
class AllocateArrayNode;
class AllocateNode;
class Block;
class BoolNode;
class BoxLockNode;
class CMoveNode;
class CallDynamicJavaNode;
class CallJavaNode;
class CallLeafNode;
class CallNode;
class CallRuntimeNode;
class CallStaticJavaNode;
class CatchNode;
class CatchProjNode;
class CheckCastPPNode;
class ClearArrayNode;
class CmpNode;
class CodeBuffer;
class ConstraintCastNode;
class ConNode;
class CountedLoopNode;
class CountedLoopEndNode;
class DecodeNarrowPtrNode;
class DecodeNNode;
class DecodeNKlassNode;
class EncodeNarrowPtrNode;
class EncodePNode;
class EncodePKlassNode;
class FastLockNode;
class FastUnlockNode;
class IfNode;
class IfFalseNode;
class IfTrueNode;
class InitializeNode;
class JVMState;
class JumpNode;
class JumpProjNode;
class LoadNode;
class LoadStoreNode;
class LockNode;
class LoopNode;
class MachBranchNode;
class MachCallDynamicJavaNode;
class MachCallJavaNode;
class MachCallLeafNode;
class MachCallNode;
class MachCallRuntimeNode;
class MachCallStaticJavaNode;
class MachConstantBaseNode;
class MachConstantNode;
class MachGotoNode;
class MachIfNode;
class MachNode;
class MachNullCheckNode;
class MachProjNode;
class MachReturnNode;
class MachSafePointNode;
class MachSpillCopyNode;
class MachTempNode;
class Matcher;
class MemBarNode;
class MemBarStoreStoreNode;
class MemNode;
class MergeMemNode;
class MulNode;
class MultiNode;
class MultiBranchNode;
class NeverBranchNode;
class Node;
class Node_Array;
class Node_List;
class Node_Stack;
class NullCheckNode;
class OopMap;
class ParmNode;
class PCTableNode;
class PhaseCCP;
class PhaseGVN;
class PhaseIterGVN;
class PhaseRegAlloc;
class PhaseTransform;
class PhaseValues;
class PhiNode;
class Pipeline;
class ProjNode;
class RegMask;
class RegionNode;
class RootNode;
class SafePointNode;
class SafePointScalarObjectNode;
class StartNode;
class State;
class StoreNode;
class SubNode;
class Type;
class TypeNode;
class UnlockNode;
class VectorNode;
class LoadVectorNode;
class StoreVectorNode;
class VectorSet;
typedef void (*NFunc)(Node&,void*);
extern "C" {
typedef int (*C_sort_func_t)(const void *, const void *);
}
// The type of all node counts and indexes.
// It must hold at least 16 bits, but must also be fast to load and store.
// This type, if less than 32 bits, could limit the number of possible nodes.
// (To make this type platform-specific, move to globalDefinitions_xxx.hpp.)
typedef unsigned int node_idx_t;
#ifndef OPTO_DU_ITERATOR_ASSERT
#ifdef ASSERT
#define OPTO_DU_ITERATOR_ASSERT 1
#else
#define OPTO_DU_ITERATOR_ASSERT 0
#endif
#endif //OPTO_DU_ITERATOR_ASSERT
#if OPTO_DU_ITERATOR_ASSERT
class DUIterator;
class DUIterator_Fast;
class DUIterator_Last;
#else
typedef uint DUIterator;
typedef Node** DUIterator_Fast;
typedef Node** DUIterator_Last;
#endif
// Node Sentinel
#define NodeSentinel (Node*)-1
// Unknown count frequency
#define COUNT_UNKNOWN (-1.0f)
//------------------------------Node-------------------------------------------
// Nodes define actions in the program. They create values, which have types.
// They are both vertices in a directed graph and program primitives. Nodes
// are labeled; the label is the "opcode", the primitive function in the lambda
// calculus sense that gives meaning to the Node. Node inputs are ordered (so
// that "a-b" is different from "b-a"). The inputs to a Node are the inputs to
// the Node's function. These inputs also define a Type equation for the Node.
// Solving these Type equations amounts to doing dataflow analysis.
// Control and data are uniformly represented in the graph. Finally, Nodes
// have a unique dense integer index which is used to index into side arrays
// whenever I have phase-specific information.
class Node {
friend class VMStructs;
// Lots of restrictions on cloning Nodes
Node(const Node&); // not defined; linker error to use these
Node &operator=(const Node &rhs);
public:
friend class Compile;
#if OPTO_DU_ITERATOR_ASSERT
friend class DUIterator_Common;
friend class DUIterator;
friend class DUIterator_Fast;
friend class DUIterator_Last;
#endif
// Because Nodes come and go, I define an Arena of Node structures to pull
// from. This should allow fast access to node creation & deletion. This
// field is a local cache of a value defined in some "program fragment" for
// which these Nodes are just a part of.
inline void* operator new(size_t x) throw() {
Compile* C = Compile::current();
Node* n = (Node*)C->node_arena()->Amalloc_D(x);
#ifdef ASSERT
n->_in = (Node**)n; // magic cookie for assertion check
#endif
return (void*)n;
}
// Delete is a NOP
void operator delete( void *ptr ) {}
// Fancy destructor; eagerly attempt to reclaim Node numberings and storage
void destruct();
// Create a new Node. Required is the number is of inputs required for
// semantic correctness.
Node( uint required );
// Create a new Node with given input edges.
// This version requires use of the "edge-count" new.
// E.g. new (C,3) FooNode( C, NULL, left, right );
Node( Node *n0 );
Node( Node *n0, Node *n1 );
Node( Node *n0, Node *n1, Node *n2 );
Node( Node *n0, Node *n1, Node *n2, Node *n3 );
Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 );
Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 );
Node( Node *n0, Node *n1, Node *n2, Node *n3,
Node *n4, Node *n5, Node *n6 );
// Clone an inherited Node given only the base Node type.
Node* clone() const;
// Clone a Node, immediately supplying one or two new edges.
// The first and second arguments, if non-null, replace in(1) and in(2),
// respectively.
Node* clone_with_data_edge(Node* in1, Node* in2 = NULL) const {
Node* nn = clone();
if (in1 != NULL) nn->set_req(1, in1);
if (in2 != NULL) nn->set_req(2, in2);
return nn;
}
private:
// Shared setup for the above constructors.
// Handles all interactions with Compile::current.
// Puts initial values in all Node fields except _idx.
// Returns the initial value for _idx, which cannot
// be initialized by assignment.
inline int Init(int req);
//----------------- input edge handling
protected:
friend class PhaseCFG; // Access to address of _in array elements
Node **_in; // Array of use-def references to Nodes
Node **_out; // Array of def-use references to Nodes
// Input edges are split into two categories. Required edges are required
// for semantic correctness; order is important and NULLs are allowed.
// Precedence edges are used to help determine execution order and are
// added, e.g., for scheduling purposes. They are unordered and not
// duplicated; they have no embedded NULLs. Edges from 0 to _cnt-1
// are required, from _cnt to _max-1 are precedence edges.
node_idx_t _cnt; // Total number of required Node inputs.
node_idx_t _max; // Actual length of input array.
// Output edges are an unordered list of def-use edges which exactly
// correspond to required input edges which point from other nodes
// to this one. Thus the count of the output edges is the number of
// users of this node.
node_idx_t _outcnt; // Total number of Node outputs.
node_idx_t _outmax; // Actual length of output array.
// Grow the actual input array to the next larger power-of-2 bigger than len.
void grow( uint len );
// Grow the output array to the next larger power-of-2 bigger than len.
void out_grow( uint len );
public:
// Each Node is assigned a unique small/dense number. This number is used
// to index into auxiliary arrays of data and bitvectors.
// It is declared const to defend against inadvertant assignment,
// since it is used by clients as a naked field.
const node_idx_t _idx;
// Get the (read-only) number of input edges
uint req() const { return _cnt; }
uint len() const { return _max; }
// Get the (read-only) number of output edges
uint outcnt() const { return _outcnt; }
#if OPTO_DU_ITERATOR_ASSERT
// Iterate over the out-edges of this node. Deletions are illegal.
inline DUIterator outs() const;
// Use this when the out array might have changed to suppress asserts.
inline DUIterator& refresh_out_pos(DUIterator& i) const;
// Does the node have an out at this position? (Used for iteration.)
inline bool has_out(DUIterator& i) const;
inline Node* out(DUIterator& i) const;
// Iterate over the out-edges of this node. All changes are illegal.
inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const;
inline Node* fast_out(DUIterator_Fast& i) const;
// Iterate over the out-edges of this node, deleting one at a time.
inline DUIterator_Last last_outs(DUIterator_Last& min) const;
inline Node* last_out(DUIterator_Last& i) const;
// The inline bodies of all these methods are after the iterator definitions.
#else
// Iterate over the out-edges of this node. Deletions are illegal.
// This iteration uses integral indexes, to decouple from array reallocations.
DUIterator outs() const { return 0; }
// Use this when the out array might have changed to suppress asserts.
DUIterator refresh_out_pos(DUIterator i) const { return i; }
// Reference to the i'th output Node. Error if out of bounds.
Node* out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; }
// Does the node have an out at this position? (Used for iteration.)
bool has_out(DUIterator i) const { return i < _outcnt; }
// Iterate over the out-edges of this node. All changes are illegal.
// This iteration uses a pointer internal to the out array.
DUIterator_Fast fast_outs(DUIterator_Fast& max) const {
Node** out = _out;
// Assign a limit pointer to the reference argument:
max = out + (ptrdiff_t)_outcnt;
// Return the base pointer:
return out;
}
Node* fast_out(DUIterator_Fast i) const { return *i; }
// Iterate over the out-edges of this node, deleting one at a time.
// This iteration uses a pointer internal to the out array.
DUIterator_Last last_outs(DUIterator_Last& min) const {
Node** out = _out;
// Assign a limit pointer to the reference argument:
min = out;
// Return the pointer to the start of the iteration:
return out + (ptrdiff_t)_outcnt - 1;
}
Node* last_out(DUIterator_Last i) const { return *i; }
#endif
// Reference to the i'th input Node. Error if out of bounds.
Node* in(uint i) const { assert(i < _max, err_msg_res("oob: i=%d, _max=%d", i, _max)); return _in[i]; }
// Reference to the i'th input Node. NULL if out of bounds.
Node* lookup(uint i) const { return ((i < _max) ? _in[i] : NULL); }
// Reference to the i'th output Node. Error if out of bounds.
// Use this accessor sparingly. We are going trying to use iterators instead.
Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; }
// Return the unique out edge.
Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; }
// Delete out edge at position 'i' by moving last out edge to position 'i'
void raw_del_out(uint i) {
assert(i < _outcnt,"oob");
assert(_outcnt > 0,"oob");
#if OPTO_DU_ITERATOR_ASSERT
// Record that a change happened here.
debug_only(_last_del = _out[i]; ++_del_tick);
#endif
_out[i] = _out[--_outcnt];
// Smash the old edge so it can't be used accidentally.
debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
}
#ifdef ASSERT
bool is_dead() const;
#define is_not_dead(n) ((n) == NULL || !VerifyIterativeGVN || !((n)->is_dead()))
#endif
// Check whether node has become unreachable
bool is_unreachable(PhaseIterGVN &igvn) const;
// Set a required input edge, also updates corresponding output edge
void add_req( Node *n ); // Append a NEW required input
void add_req( Node *n0, Node *n1 ) {
add_req(n0); add_req(n1); }
void add_req( Node *n0, Node *n1, Node *n2 ) {
add_req(n0); add_req(n1); add_req(n2); }
void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n).
void del_req( uint idx ); // Delete required edge & compact
void del_req_ordered( uint idx ); // Delete required edge & compact with preserved order
void ins_req( uint i, Node *n ); // Insert a NEW required input
void set_req( uint i, Node *n ) {
assert( is_not_dead(n), "can not use dead node");
assert( i < _cnt, err_msg_res("oob: i=%d, _cnt=%d", i, _cnt));
assert( !VerifyHashTableKeys || _hash_lock == 0,
"remove node from hash table before modifying it");
Node** p = &_in[i]; // cache this._in, across the del_out call
if (*p != NULL) (*p)->del_out((Node *)this);
(*p) = n;
if (n != NULL) n->add_out((Node *)this);
Compile::current()->record_modified_node(this);
}
// Light version of set_req() to init inputs after node creation.
void init_req( uint i, Node *n ) {
assert( i == 0 && this == n ||
is_not_dead(n), "can not use dead node");
assert( i < _cnt, "oob");
assert( !VerifyHashTableKeys || _hash_lock == 0,
"remove node from hash table before modifying it");
assert( _in[i] == NULL, "sanity");
_in[i] = n;
if (n != NULL) n->add_out((Node *)this);
Compile::current()->record_modified_node(this);
}
// Find first occurrence of n among my edges:
int find_edge(Node* n);
int replace_edge(Node* old, Node* neww);
int replace_edges_in_range(Node* old, Node* neww, int start, int end);
// NULL out all inputs to eliminate incoming Def-Use edges.
// Return the number of edges between 'n' and 'this'
int disconnect_inputs(Node *n, Compile *c);
// Quickly, return true if and only if I am Compile::current()->top().
bool is_top() const {
assert((this == (Node*) Compile::current()->top()) == (_out == NULL), "");
return (_out == NULL);
}
// Reaffirm invariants for is_top. (Only from Compile::set_cached_top_node.)
void setup_is_top();
// Strip away casting. (It is depth-limited.)
Node* uncast() const;
// Return whether two Nodes are equivalent, after stripping casting.
bool eqv_uncast(const Node* n) const {
return (this->uncast() == n->uncast());
}
private:
static Node* uncast_helper(const Node* n);
// Add an output edge to the end of the list
void add_out( Node *n ) {
if (is_top()) return;
if( _outcnt == _outmax ) out_grow(_outcnt);
_out[_outcnt++] = n;
}
// Delete an output edge
void del_out( Node *n ) {
if (is_top()) return;
Node** outp = &_out[_outcnt];
// Find and remove n
do {
assert(outp > _out, "Missing Def-Use edge");
} while (*--outp != n);
*outp = _out[--_outcnt];
// Smash the old edge so it can't be used accidentally.
debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
// Record that a change happened here.
#if OPTO_DU_ITERATOR_ASSERT
debug_only(_last_del = n; ++_del_tick);
#endif
}
public:
// Globally replace this node by a given new node, updating all uses.
void replace_by(Node* new_node);
// Globally replace this node by a given new node, updating all uses
// and cutting input edges of old node.
void subsume_by(Node* new_node, Compile* c) {
replace_by(new_node);
disconnect_inputs(NULL, c);
}
void set_req_X( uint i, Node *n, PhaseIterGVN *igvn );
// Find the one non-null required input. RegionNode only
Node *nonnull_req() const;
// Add or remove precedence edges
void add_prec( Node *n );
void rm_prec( uint i );
void set_prec( uint i, Node *n ) {
assert( is_not_dead(n), "can not use dead node");
assert( i >= _cnt, "not a precedence edge");
if (_in[i] != NULL) _in[i]->del_out((Node *)this);
_in[i] = n;
if (n != NULL) n->add_out((Node *)this);
}
// Set this node's index, used by cisc_version to replace current node
void set_idx(uint new_idx) {
const node_idx_t* ref = &_idx;
*(node_idx_t*)ref = new_idx;
}
// Swap input edge order. (Edge indexes i1 and i2 are usually 1 and 2.)
void swap_edges(uint i1, uint i2) {
debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
// Def-Use info is unchanged
Node* n1 = in(i1);
Node* n2 = in(i2);
_in[i1] = n2;
_in[i2] = n1;
// If this node is in the hash table, make sure it doesn't need a rehash.
assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code");
}
// Iterators over input Nodes for a Node X are written as:
// for( i = 0; i < X.req(); i++ ) ... X[i] ...
// NOTE: Required edges can contain embedded NULL pointers.
//----------------- Other Node Properties
// Generate class id for some ideal nodes to avoid virtual query
// methods is_<Node>().
// Class id is the set of bits corresponded to the node class and all its
// super classes so that queries for super classes are also valid.
// Subclasses of the same super class have different assigned bit
// (the third parameter in the macro DEFINE_CLASS_ID).
// Classes with deeper hierarchy are declared first.
// Classes with the same hierarchy depth are sorted by usage frequency.
//
// The query method masks the bits to cut off bits of subclasses
// and then compare the result with the class id
// (see the macro DEFINE_CLASS_QUERY below).
//
// Class_MachCall=30, ClassMask_MachCall=31
// 12 8 4 0
// 0 0 0 0 0 0 0 0 1 1 1 1 0
// | | | |
// | | | Bit_Mach=2
// | | Bit_MachReturn=4
// | Bit_MachSafePoint=8
// Bit_MachCall=16
//
// Class_CountedLoop=56, ClassMask_CountedLoop=63
// 12 8 4 0
// 0 0 0 0 0 0 0 1 1 1 0 0 0
// | | |
// | | Bit_Region=8
// | Bit_Loop=16
// Bit_CountedLoop=32
#define DEFINE_CLASS_ID(cl, supcl, subn) \
Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \
Class_##cl = Class_##supcl + Bit_##cl , \
ClassMask_##cl = ((Bit_##cl << 1) - 1) ,
// This enum is used only for C2 ideal and mach nodes with is_<node>() methods
// so that it's values fits into 16 bits.
enum NodeClasses {
Bit_Node = 0x0000,
Class_Node = 0x0000,
ClassMask_Node = 0xFFFF,
DEFINE_CLASS_ID(Multi, Node, 0)
DEFINE_CLASS_ID(SafePoint, Multi, 0)
DEFINE_CLASS_ID(Call, SafePoint, 0)
DEFINE_CLASS_ID(CallJava, Call, 0)
DEFINE_CLASS_ID(CallStaticJava, CallJava, 0)
DEFINE_CLASS_ID(CallDynamicJava, CallJava, 1)
DEFINE_CLASS_ID(CallRuntime, Call, 1)
DEFINE_CLASS_ID(CallLeaf, CallRuntime, 0)
DEFINE_CLASS_ID(Allocate, Call, 2)
DEFINE_CLASS_ID(AllocateArray, Allocate, 0)
DEFINE_CLASS_ID(AbstractLock, Call, 3)
DEFINE_CLASS_ID(Lock, AbstractLock, 0)
DEFINE_CLASS_ID(Unlock, AbstractLock, 1)
DEFINE_CLASS_ID(MultiBranch, Multi, 1)
DEFINE_CLASS_ID(PCTable, MultiBranch, 0)
DEFINE_CLASS_ID(Catch, PCTable, 0)
DEFINE_CLASS_ID(Jump, PCTable, 1)
DEFINE_CLASS_ID(If, MultiBranch, 1)
DEFINE_CLASS_ID(CountedLoopEnd, If, 0)
DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2)
DEFINE_CLASS_ID(Start, Multi, 2)
DEFINE_CLASS_ID(MemBar, Multi, 3)
DEFINE_CLASS_ID(Initialize, MemBar, 0)
DEFINE_CLASS_ID(MemBarStoreStore, MemBar, 1)
DEFINE_CLASS_ID(Mach, Node, 1)
DEFINE_CLASS_ID(MachReturn, Mach, 0)
DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0)
DEFINE_CLASS_ID(MachCall, MachSafePoint, 0)
DEFINE_CLASS_ID(MachCallJava, MachCall, 0)
DEFINE_CLASS_ID(MachCallStaticJava, MachCallJava, 0)
DEFINE_CLASS_ID(MachCallDynamicJava, MachCallJava, 1)
DEFINE_CLASS_ID(MachCallRuntime, MachCall, 1)
DEFINE_CLASS_ID(MachCallLeaf, MachCallRuntime, 0)
DEFINE_CLASS_ID(MachBranch, Mach, 1)
DEFINE_CLASS_ID(MachIf, MachBranch, 0)
DEFINE_CLASS_ID(MachGoto, MachBranch, 1)
DEFINE_CLASS_ID(MachNullCheck, MachBranch, 2)
DEFINE_CLASS_ID(MachSpillCopy, Mach, 2)
DEFINE_CLASS_ID(MachTemp, Mach, 3)
DEFINE_CLASS_ID(MachConstantBase, Mach, 4)
DEFINE_CLASS_ID(MachConstant, Mach, 5)
DEFINE_CLASS_ID(Type, Node, 2)
DEFINE_CLASS_ID(Phi, Type, 0)
DEFINE_CLASS_ID(ConstraintCast, Type, 1)
DEFINE_CLASS_ID(CheckCastPP, Type, 2)
DEFINE_CLASS_ID(CMove, Type, 3)
DEFINE_CLASS_ID(SafePointScalarObject, Type, 4)
DEFINE_CLASS_ID(DecodeNarrowPtr, Type, 5)
DEFINE_CLASS_ID(DecodeN, DecodeNarrowPtr, 0)
DEFINE_CLASS_ID(DecodeNKlass, DecodeNarrowPtr, 1)
DEFINE_CLASS_ID(EncodeNarrowPtr, Type, 6)
DEFINE_CLASS_ID(EncodeP, EncodeNarrowPtr, 0)
DEFINE_CLASS_ID(EncodePKlass, EncodeNarrowPtr, 1)
DEFINE_CLASS_ID(Proj, Node, 3)
DEFINE_CLASS_ID(CatchProj, Proj, 0)
DEFINE_CLASS_ID(JumpProj, Proj, 1)
DEFINE_CLASS_ID(IfTrue, Proj, 2)
DEFINE_CLASS_ID(IfFalse, Proj, 3)
DEFINE_CLASS_ID(Parm, Proj, 4)
DEFINE_CLASS_ID(MachProj, Proj, 5)
DEFINE_CLASS_ID(Mem, Node, 4)
DEFINE_CLASS_ID(Load, Mem, 0)
DEFINE_CLASS_ID(LoadVector, Load, 0)
DEFINE_CLASS_ID(Store, Mem, 1)
DEFINE_CLASS_ID(StoreVector, Store, 0)
DEFINE_CLASS_ID(LoadStore, Mem, 2)
DEFINE_CLASS_ID(Region, Node, 5)
DEFINE_CLASS_ID(Loop, Region, 0)
DEFINE_CLASS_ID(Root, Loop, 0)
DEFINE_CLASS_ID(CountedLoop, Loop, 1)
DEFINE_CLASS_ID(Sub, Node, 6)
DEFINE_CLASS_ID(Cmp, Sub, 0)
DEFINE_CLASS_ID(FastLock, Cmp, 0)
DEFINE_CLASS_ID(FastUnlock, Cmp, 1)
DEFINE_CLASS_ID(MergeMem, Node, 7)
DEFINE_CLASS_ID(Bool, Node, 8)
DEFINE_CLASS_ID(AddP, Node, 9)
DEFINE_CLASS_ID(BoxLock, Node, 10)
DEFINE_CLASS_ID(Add, Node, 11)
DEFINE_CLASS_ID(Mul, Node, 12)
DEFINE_CLASS_ID(Vector, Node, 13)
DEFINE_CLASS_ID(ClearArray, Node, 14)
_max_classes = ClassMask_ClearArray
};
#undef DEFINE_CLASS_ID
// Flags are sorted by usage frequency.
enum NodeFlags {
Flag_is_Copy = 0x01, // should be first bit to avoid shift
Flag_rematerialize = Flag_is_Copy << 1,
Flag_needs_anti_dependence_check = Flag_rematerialize << 1,
Flag_is_macro = Flag_needs_anti_dependence_check << 1,
Flag_is_Con = Flag_is_macro << 1,
Flag_is_cisc_alternate = Flag_is_Con << 1,
Flag_is_dead_loop_safe = Flag_is_cisc_alternate << 1,
Flag_may_be_short_branch = Flag_is_dead_loop_safe << 1,
Flag_avoid_back_to_back_before = Flag_may_be_short_branch << 1,
Flag_avoid_back_to_back_after = Flag_avoid_back_to_back_before << 1,
Flag_has_call = Flag_avoid_back_to_back_after << 1,
Flag_is_expensive = Flag_has_call << 1,
_max_flags = (Flag_is_expensive << 1) - 1 // allow flags combination
};
private:
jushort _class_id;
jushort _flags;
protected:
// These methods should be called from constructors only.
void init_class_id(jushort c) {
assert(c <= _max_classes, "invalid node class");
_class_id = c; // cast out const
}
void init_flags(jushort fl) {
assert(fl <= _max_flags, "invalid node flag");
_flags |= fl;
}
void clear_flag(jushort fl) {
assert(fl <= _max_flags, "invalid node flag");
_flags &= ~fl;
}
public:
const jushort class_id() const { return _class_id; }
const jushort flags() const { return _flags; }
// Return a dense integer opcode number
virtual int Opcode() const;
// Virtual inherited Node size
virtual uint size_of() const;
// Other interesting Node properties
#define DEFINE_CLASS_QUERY(type) \
bool is_##type() const { \
return ((_class_id & ClassMask_##type) == Class_##type); \
} \
type##Node *as_##type() const { \
assert(is_##type(), "invalid node class"); \
return (type##Node*)this; \
} \
type##Node* isa_##type() const { \
return (is_##type()) ? as_##type() : NULL; \
}
DEFINE_CLASS_QUERY(AbstractLock)
DEFINE_CLASS_QUERY(Add)
DEFINE_CLASS_QUERY(AddP)
DEFINE_CLASS_QUERY(Allocate)
DEFINE_CLASS_QUERY(AllocateArray)
DEFINE_CLASS_QUERY(Bool)
DEFINE_CLASS_QUERY(BoxLock)
DEFINE_CLASS_QUERY(Call)
DEFINE_CLASS_QUERY(CallDynamicJava)
DEFINE_CLASS_QUERY(CallJava)
DEFINE_CLASS_QUERY(CallLeaf)
DEFINE_CLASS_QUERY(CallRuntime)
DEFINE_CLASS_QUERY(CallStaticJava)
DEFINE_CLASS_QUERY(Catch)
DEFINE_CLASS_QUERY(CatchProj)
DEFINE_CLASS_QUERY(CheckCastPP)
DEFINE_CLASS_QUERY(ConstraintCast)
DEFINE_CLASS_QUERY(ClearArray)
DEFINE_CLASS_QUERY(CMove)
DEFINE_CLASS_QUERY(Cmp)
DEFINE_CLASS_QUERY(CountedLoop)
DEFINE_CLASS_QUERY(CountedLoopEnd)
DEFINE_CLASS_QUERY(DecodeNarrowPtr)
DEFINE_CLASS_QUERY(DecodeN)
DEFINE_CLASS_QUERY(DecodeNKlass)
DEFINE_CLASS_QUERY(EncodeNarrowPtr)
DEFINE_CLASS_QUERY(EncodeP)
DEFINE_CLASS_QUERY(EncodePKlass)
DEFINE_CLASS_QUERY(FastLock)
DEFINE_CLASS_QUERY(FastUnlock)
DEFINE_CLASS_QUERY(If)
DEFINE_CLASS_QUERY(IfFalse)
DEFINE_CLASS_QUERY(IfTrue)
DEFINE_CLASS_QUERY(Initialize)
DEFINE_CLASS_QUERY(Jump)
DEFINE_CLASS_QUERY(JumpProj)
DEFINE_CLASS_QUERY(Load)
DEFINE_CLASS_QUERY(LoadStore)
DEFINE_CLASS_QUERY(Lock)
DEFINE_CLASS_QUERY(Loop)
DEFINE_CLASS_QUERY(Mach)
DEFINE_CLASS_QUERY(MachBranch)
DEFINE_CLASS_QUERY(MachCall)
DEFINE_CLASS_QUERY(MachCallDynamicJava)
DEFINE_CLASS_QUERY(MachCallJava)
DEFINE_CLASS_QUERY(MachCallLeaf)
DEFINE_CLASS_QUERY(MachCallRuntime)
DEFINE_CLASS_QUERY(MachCallStaticJava)
DEFINE_CLASS_QUERY(MachConstantBase)
DEFINE_CLASS_QUERY(MachConstant)
DEFINE_CLASS_QUERY(MachGoto)
DEFINE_CLASS_QUERY(MachIf)
DEFINE_CLASS_QUERY(MachNullCheck)
DEFINE_CLASS_QUERY(MachProj)
DEFINE_CLASS_QUERY(MachReturn)
DEFINE_CLASS_QUERY(MachSafePoint)
DEFINE_CLASS_QUERY(MachSpillCopy)
DEFINE_CLASS_QUERY(MachTemp)
DEFINE_CLASS_QUERY(Mem)
DEFINE_CLASS_QUERY(MemBar)
DEFINE_CLASS_QUERY(MemBarStoreStore)
DEFINE_CLASS_QUERY(MergeMem)
DEFINE_CLASS_QUERY(Mul)
DEFINE_CLASS_QUERY(Multi)
DEFINE_CLASS_QUERY(MultiBranch)
DEFINE_CLASS_QUERY(Parm)
DEFINE_CLASS_QUERY(PCTable)
DEFINE_CLASS_QUERY(Phi)
DEFINE_CLASS_QUERY(Proj)
DEFINE_CLASS_QUERY(Region)
DEFINE_CLASS_QUERY(Root)
DEFINE_CLASS_QUERY(SafePoint)
DEFINE_CLASS_QUERY(SafePointScalarObject)
DEFINE_CLASS_QUERY(Start)
DEFINE_CLASS_QUERY(Store)
DEFINE_CLASS_QUERY(Sub)
DEFINE_CLASS_QUERY(Type)
DEFINE_CLASS_QUERY(Vector)
DEFINE_CLASS_QUERY(LoadVector)
DEFINE_CLASS_QUERY(StoreVector)
DEFINE_CLASS_QUERY(Unlock)
#undef DEFINE_CLASS_QUERY
// duplicate of is_MachSpillCopy()
bool is_SpillCopy () const {
return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy);
}
bool is_Con () const { return (_flags & Flag_is_Con) != 0; }
// The data node which is safe to leave in dead loop during IGVN optimization.
bool is_dead_loop_safe() const {
return is_Phi() || (is_Proj() && in(0) == NULL) ||
((_flags & (Flag_is_dead_loop_safe | Flag_is_Con)) != 0 &&
(!is_Proj() || !in(0)->is_Allocate()));
}
// is_Copy() returns copied edge index (0 or 1)
uint is_Copy() const { return (_flags & Flag_is_Copy); }
virtual bool is_CFG() const { return false; }
// If this node is control-dependent on a test, can it be
// rerouted to a dominating equivalent test? This is usually
// true of non-CFG nodes, but can be false for operations which
// depend for their correct sequencing on more than one test.
// (In that case, hoisting to a dominating test may silently
// skip some other important test.)
virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; };
// When building basic blocks, I need to have a notion of block beginning
// Nodes, next block selector Nodes (block enders), and next block
// projections. These calls need to work on their machine equivalents. The
// Ideal beginning Nodes are RootNode, RegionNode and StartNode.
bool is_block_start() const {
if ( is_Region() )
return this == (const Node*)in(0);
else
return is_Start();
}
// The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root,
// Goto and Return. This call also returns the block ending Node.
virtual const Node *is_block_proj() const;
// The node is a "macro" node which needs to be expanded before matching
bool is_macro() const { return (_flags & Flag_is_macro) != 0; }
// The node is expensive: the best control is set during loop opts
bool is_expensive() const { return (_flags & Flag_is_expensive) != 0 && in(0) != NULL; }
//----------------- Optimization
// Get the worst-case Type output for this Node.
virtual const class Type *bottom_type() const;
// If we find a better type for a node, try to record it permanently.
// Return true if this node actually changed.
// Be sure to do the hash_delete game in the "rehash" variant.
void raise_bottom_type(const Type* new_type);
// Get the address type with which this node uses and/or defs memory,
// or NULL if none. The address type is conservatively wide.
// Returns non-null for calls, membars, loads, stores, etc.
// Returns TypePtr::BOTTOM if the node touches memory "broadly".
virtual const class TypePtr *adr_type() const { return NULL; }
// Return an existing node which computes the same function as this node.
// The optimistic combined algorithm requires this to return a Node which
// is a small number of steps away (e.g., one of my inputs).
virtual Node *Identity( PhaseTransform *phase );
// Return the set of values this Node can take on at runtime.
virtual const Type *Value( PhaseTransform *phase ) const;
// Return a node which is more "ideal" than the current node.
// The invariants on this call are subtle. If in doubt, read the
// treatise in node.cpp above the default implemention AND TEST WITH
// +VerifyIterativeGVN!
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
// Some nodes have specific Ideal subgraph transformations only if they are
// unique users of specific nodes. Such nodes should be put on IGVN worklist
// for the transformations to happen.
bool has_special_unique_user() const;
// Skip Proj and CatchProj nodes chains. Check for Null and Top.
Node* find_exact_control(Node* ctrl);
// Check if 'this' node dominates or equal to 'sub'.
bool dominates(Node* sub, Node_List &nlist);
protected:
bool remove_dead_region(PhaseGVN *phase, bool can_reshape);
public:
// Idealize graph, using DU info. Done after constant propagation
virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );
// See if there is valid pipeline info
static const Pipeline *pipeline_class();
virtual const Pipeline *pipeline() const;
// Compute the latency from the def to this instruction of the ith input node
uint latency(uint i);
// Hash & compare functions, for pessimistic value numbering
// If the hash function returns the special sentinel value NO_HASH,
// the node is guaranteed never to compare equal to any other node.
// If we accidentally generate a hash with value NO_HASH the node
// won't go into the table and we'll lose a little optimization.
enum { NO_HASH = 0 };
virtual uint hash() const;
virtual uint cmp( const Node &n ) const;
// Operation appears to be iteratively computed (such as an induction variable)
// It is possible for this operation to return false for a loop-varying
// value, if it appears (by local graph inspection) to be computed by a simple conditional.
bool is_iteratively_computed();
// Determine if a node is Counted loop induction variable.
// The method is defined in loopnode.cpp.
const Node* is_loop_iv() const;
// Return a node with opcode "opc" and same inputs as "this" if one can
// be found; Otherwise return NULL;
Node* find_similar(int opc);
// Return the unique control out if only one. Null if none or more than one.
Node* unique_ctrl_out();
//----------------- Code Generation
// Ideal register class for Matching. Zero means unmatched instruction
// (these are cloned instead of converted to machine nodes).
virtual uint ideal_reg() const;
static const uint NotAMachineReg; // must be > max. machine register
// Do we Match on this edge index or not? Generally false for Control
// and true for everything else. Weird for calls & returns.
virtual uint match_edge(uint idx) const;
// Register class output is returned in
virtual const RegMask &out_RegMask() const;
// Register class input is expected in
virtual const RegMask &in_RegMask(uint) const;
// Should we clone rather than spill this instruction?
bool rematerialize() const;
// Return JVM State Object if this Node carries debug info, or NULL otherwise
virtual JVMState* jvms() const;
// Print as assembly
virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const;
// Emit bytes starting at parameter 'ptr'
// Bump 'ptr' by the number of output bytes
virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;
// Size of instruction in bytes
virtual uint size(PhaseRegAlloc *ra_) const;
// Convenience function to extract an integer constant from a node.
// If it is not an integer constant (either Con, CastII, or Mach),
// return value_if_unknown.
jint find_int_con(jint value_if_unknown) const {
const TypeInt* t = find_int_type();
return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
}
// Return the constant, knowing it is an integer constant already
jint get_int() const {
const TypeInt* t = find_int_type();
guarantee(t != NULL, "must be con");
return t->get_con();
}
// Here's where the work is done. Can produce non-constant int types too.
const TypeInt* find_int_type() const;
// Same thing for long (and intptr_t, via type.hpp):
jlong get_long() const {
const TypeLong* t = find_long_type();
guarantee(t != NULL, "must be con");
return t->get_con();
}
jlong find_long_con(jint value_if_unknown) const {
const TypeLong* t = find_long_type();
return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
}
const TypeLong* find_long_type() const;
const TypePtr* get_ptr_type() const;
// These guys are called by code generated by ADLC:
intptr_t get_ptr() const;
intptr_t get_narrowcon() const;
jdouble getd() const;
jfloat getf() const;
// Nodes which are pinned into basic blocks
virtual bool pinned() const { return false; }
// Nodes which use memory without consuming it, hence need antidependences
// More specifically, needs_anti_dependence_check returns true iff the node
// (a) does a load, and (b) does not perform a store (except perhaps to a
// stack slot or some other unaliased location).
bool needs_anti_dependence_check() const;
// Return which operand this instruction may cisc-spill. In other words,
// return operand position that can convert from reg to memory access
virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; }
bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; }
//----------------- Graph walking
public:
// Walk and apply member functions recursively.
// Supplied (this) pointer is root.
void walk(NFunc pre, NFunc post, void *env);
static void nop(Node &, void*); // Dummy empty function
static void packregion( Node &n, void* );
private:
void walk_(NFunc pre, NFunc post, void *env, VectorSet &visited);
//----------------- Printing, etc
public:
#ifndef PRODUCT
Node* find(int idx) const; // Search the graph for the given idx.
Node* find_ctrl(int idx) const; // Search control ancestors for the given idx.
void dump() const { dump("\n"); } // Print this node.
void dump(const char* suffix, outputStream *st = tty) const;// Print this node.
void dump(int depth) const; // Print this node, recursively to depth d
void dump_ctrl(int depth) const; // Print control nodes, to depth d
virtual void dump_req(outputStream *st = tty) const; // Print required-edge info
virtual void dump_prec(outputStream *st = tty) const; // Print precedence-edge info
virtual void dump_out(outputStream *st = tty) const; // Print the output edge info
virtual void dump_spec(outputStream *st) const {}; // Print per-node info
void verify_edges(Unique_Node_List &visited); // Verify bi-directional edges
void verify() const; // Check Def-Use info for my subgraph
static void verify_recur(const Node *n, int verify_depth, VectorSet &old_space, VectorSet &new_space);
// This call defines a class-unique string used to identify class instances
virtual const char *Name() const;
void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...)
// RegMask Print Functions
void dump_in_regmask(int idx) { in_RegMask(idx).dump(); }
void dump_out_regmask() { out_RegMask().dump(); }
static bool in_dump() { return Compile::current()->_in_dump_cnt > 0; }
void fast_dump() const {
tty->print("%4d: %-17s", _idx, Name());
for (uint i = 0; i < len(); i++)
if (in(i))
tty->print(" %4d", in(i)->_idx);
else
tty->print(" NULL");
tty->print("\n");
}
#endif
#ifdef ASSERT
void verify_construction();
bool verify_jvms(const JVMState* jvms) const;
int _debug_idx; // Unique value assigned to every node.
int debug_idx() const { return _debug_idx; }
void set_debug_idx( int debug_idx ) { _debug_idx = debug_idx; }
Node* _debug_orig; // Original version of this, if any.
Node* debug_orig() const { return _debug_orig; }
void set_debug_orig(Node* orig); // _debug_orig = orig
int _hash_lock; // Barrier to modifications of nodes in the hash table
void enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); }
void exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); }
static void init_NodeProperty();
#if OPTO_DU_ITERATOR_ASSERT
const Node* _last_del; // The last deleted node.
uint _del_tick; // Bumped when a deletion happens..
#endif
#endif
};
//-----------------------------------------------------------------------------
// Iterators over DU info, and associated Node functions.
#if OPTO_DU_ITERATOR_ASSERT
// Common code for assertion checking on DU iterators.
class DUIterator_Common VALUE_OBJ_CLASS_SPEC {
#ifdef ASSERT
protected:
bool _vdui; // cached value of VerifyDUIterators
const Node* _node; // the node containing the _out array
uint _outcnt; // cached node->_outcnt
uint _del_tick; // cached node->_del_tick
Node* _last; // last value produced by the iterator
void sample(const Node* node); // used by c'tor to set up for verifies
void verify(const Node* node, bool at_end_ok = false);
void verify_resync();
void reset(const DUIterator_Common& that);
// The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators
#define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } }
#else
#define I_VDUI_ONLY(i,x) { }
#endif //ASSERT
};
#define VDUI_ONLY(x) I_VDUI_ONLY(*this, x)
// Default DU iterator. Allows appends onto the out array.
// Allows deletion from the out array only at the current point.
// Usage:
// for (DUIterator i = x->outs(); x->has_out(i); i++) {
// Node* y = x->out(i);
// ...
// }
// Compiles in product mode to a unsigned integer index, which indexes
// onto a repeatedly reloaded base pointer of x->_out. The loop predicate
// also reloads x->_outcnt. If you delete, you must perform "--i" just
// before continuing the loop. You must delete only the last-produced
// edge. You must delete only a single copy of the last-produced edge,
// or else you must delete all copies at once (the first time the edge
// is produced by the iterator).
class DUIterator : public DUIterator_Common {
friend class Node;
// This is the index which provides the product-mode behavior.
// Whatever the product-mode version of the system does to the
// DUI index is done to this index. All other fields in
// this class are used only for assertion checking.
uint _idx;
#ifdef ASSERT
uint _refresh_tick; // Records the refresh activity.
void sample(const Node* node); // Initialize _refresh_tick etc.
void verify(const Node* node, bool at_end_ok = false);
void verify_increment(); // Verify an increment operation.
void verify_resync(); // Verify that we can back up over a deletion.
void verify_finish(); // Verify that the loop terminated properly.
void refresh(); // Resample verification info.
void reset(const DUIterator& that); // Resample after assignment.
#endif
DUIterator(const Node* node, int dummy_to_avoid_conversion)
{ _idx = 0; debug_only(sample(node)); }
public:
// initialize to garbage; clear _vdui to disable asserts
DUIterator()
{ /*initialize to garbage*/ debug_only(_vdui = false); }
void operator++(int dummy_to_specify_postfix_op)
{ _idx++; VDUI_ONLY(verify_increment()); }
void operator--()
{ VDUI_ONLY(verify_resync()); --_idx; }
~DUIterator()
{ VDUI_ONLY(verify_finish()); }
void operator=(const DUIterator& that)
{ _idx = that._idx; debug_only(reset(that)); }
};
DUIterator Node::outs() const
{ return DUIterator(this, 0); }
DUIterator& Node::refresh_out_pos(DUIterator& i) const
{ I_VDUI_ONLY(i, i.refresh()); return i; }
bool Node::has_out(DUIterator& i) const
{ I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; }
Node* Node::out(DUIterator& i) const
{ I_VDUI_ONLY(i, i.verify(this)); return debug_only(i._last=) _out[i._idx]; }
// Faster DU iterator. Disallows insertions into the out array.
// Allows deletion from the out array only at the current point.
// Usage:
// for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) {
// Node* y = x->fast_out(i);
// ...
// }
// Compiles in product mode to raw Node** pointer arithmetic, with
// no reloading of pointers from the original node x. If you delete,
// you must perform "--i; --imax" just before continuing the loop.
// If you delete multiple copies of the same edge, you must decrement
// imax, but not i, multiple times: "--i, imax -= num_edges".
class DUIterator_Fast : public DUIterator_Common {
friend class Node;
friend class DUIterator_Last;
// This is the pointer which provides the product-mode behavior.
// Whatever the product-mode version of the system does to the
// DUI pointer is done to this pointer. All other fields in
// this class are used only for assertion checking.
Node** _outp;
#ifdef ASSERT
void verify(const Node* node, bool at_end_ok = false);
void verify_limit();
void verify_resync();
void verify_relimit(uint n);
void reset(const DUIterator_Fast& that);
#endif
// Note: offset must be signed, since -1 is sometimes passed
DUIterator_Fast(const Node* node, ptrdiff_t offset)
{ _outp = node->_out + offset; debug_only(sample(node)); }
public:
// initialize to garbage; clear _vdui to disable asserts
DUIterator_Fast()
{ /*initialize to garbage*/ debug_only(_vdui = false); }
void operator++(int dummy_to_specify_postfix_op)
{ _outp++; VDUI_ONLY(verify(_node, true)); }
void operator--()
{ VDUI_ONLY(verify_resync()); --_outp; }
void operator-=(uint n) // applied to the limit only
{ _outp -= n; VDUI_ONLY(verify_relimit(n)); }
bool operator<(DUIterator_Fast& limit) {
I_VDUI_ONLY(*this, this->verify(_node, true));
I_VDUI_ONLY(limit, limit.verify_limit());
return _outp < limit._outp;
}
void operator=(const DUIterator_Fast& that)
{ _outp = that._outp; debug_only(reset(that)); }
};
DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const {
// Assign a limit pointer to the reference argument:
imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt);
// Return the base pointer:
return DUIterator_Fast(this, 0);
}
Node* Node::fast_out(DUIterator_Fast& i) const {
I_VDUI_ONLY(i, i.verify(this));
return debug_only(i._last=) *i._outp;
}
// Faster DU iterator. Requires each successive edge to be removed.
// Does not allow insertion of any edges.
// Usage:
// for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) {
// Node* y = x->last_out(i);
// ...
// }
// Compiles in product mode to raw Node** pointer arithmetic, with
// no reloading of pointers from the original node x.
class DUIterator_Last : private DUIterator_Fast {
friend class Node;
#ifdef ASSERT
void verify(const Node* node, bool at_end_ok = false);
void verify_limit();
void verify_step(uint num_edges);
#endif
// Note: offset must be signed, since -1 is sometimes passed
DUIterator_Last(const Node* node, ptrdiff_t offset)
: DUIterator_Fast(node, offset) { }
void operator++(int dummy_to_specify_postfix_op) {} // do not use
void operator<(int) {} // do not use
public:
DUIterator_Last() { }
// initialize to garbage
void operator--()
{ _outp--; VDUI_ONLY(verify_step(1)); }
void operator-=(uint n)
{ _outp -= n; VDUI_ONLY(verify_step(n)); }
bool operator>=(DUIterator_Last& limit) {
I_VDUI_ONLY(*this, this->verify(_node, true));
I_VDUI_ONLY(limit, limit.verify_limit());
return _outp >= limit._outp;
}
void operator=(const DUIterator_Last& that)
{ DUIterator_Fast::operator=(that); }
};
DUIterator_Last Node::last_outs(DUIterator_Last& imin) const {
// Assign a limit pointer to the reference argument:
imin = DUIterator_Last(this, 0);
// Return the initial pointer:
return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1);
}
Node* Node::last_out(DUIterator_Last& i) const {
I_VDUI_ONLY(i, i.verify(this));
return debug_only(i._last=) *i._outp;
}
#endif //OPTO_DU_ITERATOR_ASSERT
#undef I_VDUI_ONLY
#undef VDUI_ONLY
// An Iterator that truly follows the iterator pattern. Doesn't
// support deletion but could be made to.
//
// for (SimpleDUIterator i(n); i.has_next(); i.next()) {
// Node* m = i.get();
//
class SimpleDUIterator : public StackObj {
private:
Node* node;
DUIterator_Fast i;
DUIterator_Fast imax;
public:
SimpleDUIterator(Node* n): node(n), i(n->fast_outs(imax)) {}
bool has_next() { return i < imax; }
void next() { i++; }
Node* get() { return node->fast_out(i); }
};
//-----------------------------------------------------------------------------
// Map dense integer indices to Nodes. Uses classic doubling-array trick.
// Abstractly provides an infinite array of Node*'s, initialized to NULL.
// Note that the constructor just zeros things, and since I use Arena
// allocation I do not need a destructor to reclaim storage.
class Node_Array : public ResourceObj {
friend class VMStructs;
protected:
Arena *_a; // Arena to allocate in
uint _max;
Node **_nodes;
void grow( uint i ); // Grow array node to fit
public:
Node_Array(Arena *a) : _a(a), _max(OptoNodeListSize) {
_nodes = NEW_ARENA_ARRAY( a, Node *, OptoNodeListSize );
for( int i = 0; i < OptoNodeListSize; i++ ) {
_nodes[i] = NULL;
}
}
Node_Array(Node_Array *na) : _a(na->_a), _max(na->_max), _nodes(na->_nodes) {}
Node *operator[] ( uint i ) const // Lookup, or NULL for not mapped
{ return (i<_max) ? _nodes[i] : (Node*)NULL; }
Node *at( uint i ) const { assert(i<_max,"oob"); return _nodes[i]; }
Node **adr() { return _nodes; }
// Extend the mapping: index i maps to Node *n.
void map( uint i, Node *n ) { if( i>=_max ) grow(i); _nodes[i] = n; }
void insert( uint i, Node *n );
void remove( uint i ); // Remove, preserving order
void sort( C_sort_func_t func);
void reset( Arena *new_a ); // Zap mapping to empty; reclaim storage
void clear(); // Set all entries to NULL, keep storage
uint Size() const { return _max; }
void dump() const;
};
class Node_List : public Node_Array {
friend class VMStructs;
uint _cnt;
public:
Node_List() : Node_Array(Thread::current()->resource_area()), _cnt(0) {}
Node_List(Arena *a) : Node_Array(a), _cnt(0) {}
bool contains(const Node* n) const {
for (uint e = 0; e < size(); e++) {
if (at(e) == n) return true;
}
return false;
}
void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; }
void remove( uint i ) { Node_Array::remove(i); _cnt--; }
void push( Node *b ) { map(_cnt++,b); }
void yank( Node *n ); // Find and remove
Node *pop() { return _nodes[--_cnt]; }
Node *rpop() { Node *b = _nodes[0]; _nodes[0]=_nodes[--_cnt]; return b;}
void clear() { _cnt = 0; Node_Array::clear(); } // retain storage
uint size() const { return _cnt; }
void dump() const;
};
//------------------------------Unique_Node_List-------------------------------
class Unique_Node_List : public Node_List {
friend class VMStructs;
VectorSet _in_worklist;
uint _clock_index; // Index in list where to pop from next
public:
Unique_Node_List() : Node_List(), _in_worklist(Thread::current()->resource_area()), _clock_index(0) {}
Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {}
void remove( Node *n );
bool member( Node *n ) { return _in_worklist.test(n->_idx) != 0; }
VectorSet &member_set(){ return _in_worklist; }
void push( Node *b ) {
if( !_in_worklist.test_set(b->_idx) )
Node_List::push(b);
}
Node *pop() {
if( _clock_index >= size() ) _clock_index = 0;
Node *b = at(_clock_index);
map( _clock_index, Node_List::pop());
if (size() != 0) _clock_index++; // Always start from 0
_in_worklist >>= b->_idx;
return b;
}
Node *remove( uint i ) {
Node *b = Node_List::at(i);
_in_worklist >>= b->_idx;
map(i,Node_List::pop());
return b;
}
void yank( Node *n ) { _in_worklist >>= n->_idx; Node_List::yank(n); }
void clear() {
_in_worklist.Clear(); // Discards storage but grows automatically
Node_List::clear();
_clock_index = 0;
}
// Used after parsing to remove useless nodes before Iterative GVN
void remove_useless_nodes(VectorSet &useful);
#ifndef PRODUCT
void print_set() const { _in_worklist.print(); }
#endif
};
// Inline definition of Compile::record_for_igvn must be deferred to this point.
inline void Compile::record_for_igvn(Node* n) {
_for_igvn->push(n);
}
//------------------------------Node_Stack-------------------------------------
class Node_Stack {
friend class VMStructs;
protected:
struct INode {
Node *node; // Processed node
uint indx; // Index of next node's child
};
INode *_inode_top; // tos, stack grows up
INode *_inode_max; // End of _inodes == _inodes + _max
INode *_inodes; // Array storage for the stack
Arena *_a; // Arena to allocate in
void grow();
public:
Node_Stack(int size) {
size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
_a = Thread::current()->resource_area();
_inodes = NEW_ARENA_ARRAY( _a, INode, max );
_inode_max = _inodes + max;
_inode_top = _inodes - 1; // stack is empty
}
Node_Stack(Arena *a, int size) : _a(a) {
size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
_inodes = NEW_ARENA_ARRAY( _a, INode, max );
_inode_max = _inodes + max;
_inode_top = _inodes - 1; // stack is empty
}
void pop() {
assert(_inode_top >= _inodes, "node stack underflow");
--_inode_top;
}
void push(Node *n, uint i) {
++_inode_top;
if (_inode_top >= _inode_max) grow();
INode *top = _inode_top; // optimization
top->node = n;
top->indx = i;
}
Node *node() const {
return _inode_top->node;
}
Node* node_at(uint i) const {
assert(_inodes + i <= _inode_top, "in range");
return _inodes[i].node;
}
uint index() const {
return _inode_top->indx;
}
uint index_at(uint i) const {
assert(_inodes + i <= _inode_top, "in range");
return _inodes[i].indx;
}
void set_node(Node *n) {
_inode_top->node = n;
}
void set_index(uint i) {
_inode_top->indx = i;
}
uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes, sizeof(INode)); } // Max size
uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes, sizeof(INode)); } // Current size
bool is_nonempty() const { return (_inode_top >= _inodes); }
bool is_empty() const { return (_inode_top < _inodes); }
void clear() { _inode_top = _inodes - 1; } // retain storage
// Node_Stack is used to map nodes.
Node* find(uint idx) const;
};
//-----------------------------Node_Notes--------------------------------------
// Debugging or profiling annotations loosely and sparsely associated
// with some nodes. See Compile::node_notes_at for the accessor.
class Node_Notes VALUE_OBJ_CLASS_SPEC {
friend class VMStructs;
JVMState* _jvms;
public:
Node_Notes(JVMState* jvms = NULL) {
_jvms = jvms;
}
JVMState* jvms() { return _jvms; }
void set_jvms(JVMState* x) { _jvms = x; }
// True if there is nothing here.
bool is_clear() {
return (_jvms == NULL);
}
// Make there be nothing here.
void clear() {
_jvms = NULL;
}
// Make a new, clean node notes.
static Node_Notes* make(Compile* C) {
Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
nn->clear();
return nn;
}
Node_Notes* clone(Compile* C) {
Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
(*nn) = (*this);
return nn;
}
// Absorb any information from source.
bool update_from(Node_Notes* source) {
bool changed = false;
if (source != NULL) {
if (source->jvms() != NULL) {
set_jvms(source->jvms());
changed = true;
}
}
return changed;
}
};
// Inlined accessors for Compile::node_nodes that require the preceding class:
inline Node_Notes*
Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr,
int idx, bool can_grow) {
assert(idx >= 0, "oob");
int block_idx = (idx >> _log2_node_notes_block_size);
int grow_by = (block_idx - (arr == NULL? 0: arr->length()));
if (grow_by >= 0) {
if (!can_grow) return NULL;
grow_node_notes(arr, grow_by + 1);
}
// (Every element of arr is a sub-array of length _node_notes_block_size.)
return arr->at(block_idx) + (idx & (_node_notes_block_size-1));
}
inline bool
Compile::set_node_notes_at(int idx, Node_Notes* value) {
if (value == NULL || value->is_clear())
return false; // nothing to write => write nothing
Node_Notes* loc = locate_node_notes(_node_note_array, idx, true);
assert(loc != NULL, "");
return loc->update_from(value);
}
//------------------------------TypeNode---------------------------------------
// Node with a Type constant.
class TypeNode : public Node {
protected:
virtual uint hash() const; // Check the type
virtual uint cmp( const Node &n ) const;
virtual uint size_of() const; // Size is bigger
const Type* const _type;
public:
void set_type(const Type* t) {
assert(t != NULL, "sanity");
debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
*(const Type**)&_type = t; // cast away const-ness
// If this node is in the hash table, make sure it doesn't need a rehash.
assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
}
const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
TypeNode( const Type *t, uint required ) : Node(required), _type(t) {
init_class_id(Class_Type);
}
virtual const Type *Value( PhaseTransform *phase ) const;
virtual const Type *bottom_type() const;
virtual uint ideal_reg() const;
#ifndef PRODUCT
virtual void dump_spec(outputStream *st) const;
#endif
};
#endif // SHARE_VM_OPTO_NODE_HPP