jdk-24/hotspot/src/share/vm/opto/phaseX.hpp
Tobias Hartmann 11eb4553c9 8040213: C2 does not put all modified nodes on IGVN worklist
Verification code is added that checks if modified nodes are put on the IGVN worklist and modified nodes are processed by 'PhaseIterGVN::transform_old()'

Reviewed-by: kvn, jrose
2014-07-25 10:06:17 +02:00

604 lines
24 KiB
C++

/*
* Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_OPTO_PHASEX_HPP
#define SHARE_VM_OPTO_PHASEX_HPP
#include "libadt/dict.hpp"
#include "libadt/vectset.hpp"
#include "memory/resourceArea.hpp"
#include "opto/memnode.hpp"
#include "opto/node.hpp"
#include "opto/phase.hpp"
#include "opto/type.hpp"
class Compile;
class ConINode;
class ConLNode;
class Node;
class Type;
class PhaseTransform;
class PhaseGVN;
class PhaseIterGVN;
class PhaseCCP;
class PhasePeephole;
class PhaseRegAlloc;
//-----------------------------------------------------------------------------
// Expandable closed hash-table of nodes, initialized to NULL.
// Note that the constructor just zeros things
// Storage is reclaimed when the Arena's lifetime is over.
class NodeHash : public StackObj {
protected:
Arena *_a; // Arena to allocate in
uint _max; // Size of table (power of 2)
uint _inserts; // For grow and debug, count of hash_inserts
uint _insert_limit; // 'grow' when _inserts reaches _insert_limit
Node **_table; // Hash table of Node pointers
Node *_sentinel; // Replaces deleted entries in hash table
public:
NodeHash(uint est_max_size);
NodeHash(Arena *arena, uint est_max_size);
NodeHash(NodeHash *use_this_state);
#ifdef ASSERT
~NodeHash(); // Unlock all nodes upon destruction of table.
void operator=(const NodeHash&); // Unlock all nodes upon replacement of table.
#endif
Node *hash_find(const Node*);// Find an equivalent version in hash table
Node *hash_find_insert(Node*);// If not in table insert else return found node
void hash_insert(Node*); // Insert into hash table
bool hash_delete(const Node*);// Replace with _sentinel in hash table
void check_grow() {
_inserts++;
if( _inserts == _insert_limit ) { grow(); }
assert( _inserts <= _insert_limit, "hash table overflow");
assert( _inserts < _max, "hash table overflow" );
}
static uint round_up(uint); // Round up to nearest power of 2
void grow(); // Grow _table to next power of 2 and rehash
// Return 75% of _max, rounded up.
uint insert_limit() const { return _max - (_max>>2); }
void clear(); // Set all entries to NULL, keep storage.
// Size of hash table
uint size() const { return _max; }
// Return Node* at index in table
Node *at(uint table_index) {
assert(table_index < _max, "Must be within table");
return _table[table_index];
}
void remove_useless_nodes(VectorSet &useful); // replace with sentinel
void replace_with(NodeHash* nh);
void check_no_speculative_types(); // Check no speculative part for type nodes in table
Node *sentinel() { return _sentinel; }
#ifndef PRODUCT
Node *find_index(uint idx); // For debugging
void dump(); // For debugging, dump statistics
#endif
uint _grows; // For debugging, count of table grow()s
uint _look_probes; // For debugging, count of hash probes
uint _lookup_hits; // For debugging, count of hash_finds
uint _lookup_misses; // For debugging, count of hash_finds
uint _insert_probes; // For debugging, count of hash probes
uint _delete_probes; // For debugging, count of hash probes for deletes
uint _delete_hits; // For debugging, count of hash probes for deletes
uint _delete_misses; // For debugging, count of hash probes for deletes
uint _total_inserts; // For debugging, total inserts into hash table
uint _total_insert_probes; // For debugging, total probes while inserting
};
//-----------------------------------------------------------------------------
// Map dense integer indices to Types. Uses classic doubling-array trick.
// Abstractly provides an infinite array of Type*'s, initialized to NULL.
// Note that the constructor just zeros things, and since I use Arena
// allocation I do not need a destructor to reclaim storage.
// Despite the general name, this class is customized for use by PhaseTransform.
class Type_Array : public StackObj {
Arena *_a; // Arena to allocate in
uint _max;
const Type **_types;
void grow( uint i ); // Grow array node to fit
const Type *operator[] ( uint i ) const // Lookup, or NULL for not mapped
{ return (i<_max) ? _types[i] : (Type*)NULL; }
friend class PhaseTransform;
public:
Type_Array(Arena *a) : _a(a), _max(0), _types(0) {}
Type_Array(Type_Array *ta) : _a(ta->_a), _max(ta->_max), _types(ta->_types) { }
const Type *fast_lookup(uint i) const{assert(i<_max,"oob");return _types[i];}
// Extend the mapping: index i maps to Type *n.
void map( uint i, const Type *n ) { if( i>=_max ) grow(i); _types[i] = n; }
uint Size() const { return _max; }
#ifndef PRODUCT
void dump() const;
#endif
};
//------------------------------PhaseRemoveUseless-----------------------------
// Remove useless nodes from GVN hash-table, worklist, and graph
class PhaseRemoveUseless : public Phase {
protected:
Unique_Node_List _useful; // Nodes reachable from root
// list is allocated from current resource area
public:
PhaseRemoveUseless( PhaseGVN *gvn, Unique_Node_List *worklist );
Unique_Node_List *get_useful() { return &_useful; }
};
//------------------------------PhaseTransform---------------------------------
// Phases that analyze, then transform. Constructing the Phase object does any
// global or slow analysis. The results are cached later for a fast
// transformation pass. When the Phase object is deleted the cached analysis
// results are deleted.
class PhaseTransform : public Phase {
protected:
Arena* _arena;
Node_Array _nodes; // Map old node indices to new nodes.
Type_Array _types; // Map old node indices to Types.
// ConNode caches:
enum { _icon_min = -1 * HeapWordSize,
_icon_max = 16 * HeapWordSize,
_lcon_min = _icon_min,
_lcon_max = _icon_max,
_zcon_max = (uint)T_CONFLICT
};
ConINode* _icons[_icon_max - _icon_min + 1]; // cached jint constant nodes
ConLNode* _lcons[_lcon_max - _lcon_min + 1]; // cached jlong constant nodes
ConNode* _zcons[_zcon_max + 1]; // cached is_zero_type nodes
void init_con_caches();
// Support both int and long caches because either might be an intptr_t,
// so they show up frequently in address computations.
public:
PhaseTransform( PhaseNumber pnum );
PhaseTransform( Arena *arena, PhaseNumber pnum );
PhaseTransform( PhaseTransform *phase, PhaseNumber pnum );
Arena* arena() { return _arena; }
Type_Array& types() { return _types; }
// _nodes is used in varying ways by subclasses, which define local accessors
public:
// Get a previously recorded type for the node n.
// This type must already have been recorded.
// If you want the type of a very new (untransformed) node,
// you must use type_or_null, and test the result for NULL.
const Type* type(const Node* n) const {
assert(n != NULL, "must not be null");
const Type* t = _types.fast_lookup(n->_idx);
assert(t != NULL, "must set before get");
return t;
}
// Get a previously recorded type for the node n,
// or else return NULL if there is none.
const Type* type_or_null(const Node* n) const {
return _types.fast_lookup(n->_idx);
}
// Record a type for a node.
void set_type(const Node* n, const Type *t) {
assert(t != NULL, "type must not be null");
_types.map(n->_idx, t);
}
// Record an initial type for a node, the node's bottom type.
void set_type_bottom(const Node* n) {
// Use this for initialization when bottom_type() (or better) is not handy.
// Usually the initialization shoudl be to n->Value(this) instead,
// or a hand-optimized value like Type::MEMORY or Type::CONTROL.
assert(_types[n->_idx] == NULL, "must set the initial type just once");
_types.map(n->_idx, n->bottom_type());
}
// Make sure the types array is big enough to record a size for the node n.
// (In product builds, we never want to do range checks on the types array!)
void ensure_type_or_null(const Node* n) {
if (n->_idx >= _types.Size())
_types.map(n->_idx, NULL); // Grow the types array as needed.
}
// Utility functions:
const TypeInt* find_int_type( Node* n);
const TypeLong* find_long_type(Node* n);
jint find_int_con( Node* n, jint value_if_unknown) {
const TypeInt* t = find_int_type(n);
return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
}
jlong find_long_con(Node* n, jlong value_if_unknown) {
const TypeLong* t = find_long_type(n);
return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
}
// Make an idealized constant, i.e., one of ConINode, ConPNode, ConFNode, etc.
// Same as transform(ConNode::make(t)).
ConNode* makecon(const Type* t);
virtual ConNode* uncached_makecon(const Type* t) // override in PhaseValues
{ ShouldNotCallThis(); return NULL; }
// Fast int or long constant. Same as TypeInt::make(i) or TypeLong::make(l).
ConINode* intcon(jint i);
ConLNode* longcon(jlong l);
// Fast zero or null constant. Same as makecon(Type::get_zero_type(bt)).
ConNode* zerocon(BasicType bt);
// Return a node which computes the same function as this node, but
// in a faster or cheaper fashion.
virtual Node *transform( Node *n ) = 0;
// Return whether two Nodes are equivalent.
// Must not be recursive, since the recursive version is built from this.
// For pessimistic optimizations this is simply pointer equivalence.
bool eqv(const Node* n1, const Node* n2) const { return n1 == n2; }
// For pessimistic passes, the return type must monotonically narrow.
// For optimistic passes, the return type must monotonically widen.
// It is possible to get into a "death march" in either type of pass,
// where the types are continually moving but it will take 2**31 or
// more steps to converge. This doesn't happen on most normal loops.
//
// Here is an example of a deadly loop for an optimistic pass, along
// with a partial trace of inferred types:
// x = phi(0,x'); L: x' = x+1; if (x' >= 0) goto L;
// 0 1 join([0..max], 1)
// [0..1] [1..2] join([0..max], [1..2])
// [0..2] [1..3] join([0..max], [1..3])
// ... ... ...
// [0..max] [min]u[1..max] join([0..max], [min..max])
// [0..max] ==> fixpoint
// We would have proven, the hard way, that the iteration space is all
// non-negative ints, with the loop terminating due to 32-bit overflow.
//
// Here is the corresponding example for a pessimistic pass:
// x = phi(0,x'); L: x' = x-1; if (x' >= 0) goto L;
// int int join([0..max], int)
// [0..max] [-1..max-1] join([0..max], [-1..max-1])
// [0..max-1] [-1..max-2] join([0..max], [-1..max-2])
// ... ... ...
// [0..1] [-1..0] join([0..max], [-1..0])
// 0 -1 join([0..max], -1)
// 0 == fixpoint
// We would have proven, the hard way, that the iteration space is {0}.
// (Usually, other optimizations will make the "if (x >= 0)" fold up
// before we get into trouble. But not always.)
//
// It's a pleasant thing to observe that the pessimistic pass
// will make short work of the optimistic pass's deadly loop,
// and vice versa. That is a good example of the complementary
// purposes of the CCP (optimistic) vs. GVN (pessimistic) phases.
//
// In any case, only widen or narrow a few times before going to the
// correct flavor of top or bottom.
//
// This call only needs to be made once as the data flows around any
// given cycle. We do it at Phis, and nowhere else.
// The types presented are the new type of a phi (computed by PhiNode::Value)
// and the previously computed type, last time the phi was visited.
//
// The third argument is upper limit for the saturated value,
// if the phase wishes to widen the new_type.
// If the phase is narrowing, the old type provides a lower limit.
// Caller guarantees that old_type and new_type are no higher than limit_type.
virtual const Type* saturate(const Type* new_type, const Type* old_type,
const Type* limit_type) const
{ ShouldNotCallThis(); return NULL; }
// Delayed node rehash if this is an IGVN phase
virtual void igvn_rehash_node_delayed(Node* n) {}
#ifndef PRODUCT
void dump_old2new_map() const;
void dump_new( uint new_lidx ) const;
void dump_types() const;
void dump_nodes_and_types(const Node *root, uint depth, bool only_ctrl = true);
void dump_nodes_and_types_recur( const Node *n, uint depth, bool only_ctrl, VectorSet &visited);
uint _count_progress; // For profiling, count transforms that make progress
void set_progress() { ++_count_progress; assert( allow_progress(),"No progress allowed during verification"); }
void clear_progress() { _count_progress = 0; }
uint made_progress() const { return _count_progress; }
uint _count_transforms; // For profiling, count transforms performed
void set_transforms() { ++_count_transforms; }
void clear_transforms() { _count_transforms = 0; }
uint made_transforms() const{ return _count_transforms; }
bool _allow_progress; // progress not allowed during verification pass
void set_allow_progress(bool allow) { _allow_progress = allow; }
bool allow_progress() { return _allow_progress; }
#endif
};
//------------------------------PhaseValues------------------------------------
// Phase infrastructure to support values
class PhaseValues : public PhaseTransform {
protected:
NodeHash _table; // Hash table for value-numbering
public:
PhaseValues( Arena *arena, uint est_max_size );
PhaseValues( PhaseValues *pt );
PhaseValues( PhaseValues *ptv, const char *dummy );
NOT_PRODUCT( ~PhaseValues(); )
virtual PhaseIterGVN *is_IterGVN() { return 0; }
// Some Ideal and other transforms delete --> modify --> insert values
bool hash_delete(Node *n) { return _table.hash_delete(n); }
void hash_insert(Node *n) { _table.hash_insert(n); }
Node *hash_find_insert(Node *n){ return _table.hash_find_insert(n); }
Node *hash_find(const Node *n) { return _table.hash_find(n); }
// Used after parsing to eliminate values that are no longer in program
void remove_useless_nodes(VectorSet &useful) {
_table.remove_useless_nodes(useful);
// this may invalidate cached cons so reset the cache
init_con_caches();
}
virtual ConNode* uncached_makecon(const Type* t); // override from PhaseTransform
virtual const Type* saturate(const Type* new_type, const Type* old_type,
const Type* limit_type) const
{ return new_type; }
#ifndef PRODUCT
uint _count_new_values; // For profiling, count new values produced
void inc_new_values() { ++_count_new_values; }
void clear_new_values() { _count_new_values = 0; }
uint made_new_values() const { return _count_new_values; }
#endif
};
//------------------------------PhaseGVN---------------------------------------
// Phase for performing local, pessimistic GVN-style optimizations.
class PhaseGVN : public PhaseValues {
public:
PhaseGVN( Arena *arena, uint est_max_size ) : PhaseValues( arena, est_max_size ) {}
PhaseGVN( PhaseGVN *gvn ) : PhaseValues( gvn ) {}
PhaseGVN( PhaseGVN *gvn, const char *dummy ) : PhaseValues( gvn, dummy ) {}
// Return a node which computes the same function as this node, but
// in a faster or cheaper fashion.
Node *transform( Node *n );
Node *transform_no_reclaim( Node *n );
void replace_with(PhaseGVN* gvn) {
_table.replace_with(&gvn->_table);
_types = gvn->_types;
}
// Check for a simple dead loop when a data node references itself.
DEBUG_ONLY(void dead_loop_check(Node *n);)
};
//------------------------------PhaseIterGVN-----------------------------------
// Phase for iteratively performing local, pessimistic GVN-style optimizations.
// and ideal transformations on the graph.
class PhaseIterGVN : public PhaseGVN {
private:
bool _delay_transform; // When true simply register the node when calling transform
// instead of actually optimizing it
// Idealize old Node 'n' with respect to its inputs and its value
virtual Node *transform_old( Node *a_node );
// Subsume users of node 'old' into node 'nn'
void subsume_node( Node *old, Node *nn );
Node_Stack _stack; // Stack used to avoid recursion
protected:
// Idealize new Node 'n' with respect to its inputs and its value
virtual Node *transform( Node *a_node );
// Warm up hash table, type table and initial worklist
void init_worklist( Node *a_root );
virtual const Type* saturate(const Type* new_type, const Type* old_type,
const Type* limit_type) const;
// Usually returns new_type. Returns old_type if new_type is only a slight
// improvement, such that it would take many (>>10) steps to reach 2**32.
public:
PhaseIterGVN( PhaseIterGVN *igvn ); // Used by CCP constructor
PhaseIterGVN( PhaseGVN *gvn ); // Used after Parser
PhaseIterGVN( PhaseIterGVN *igvn, const char *dummy ); // Used after +VerifyOpto
virtual PhaseIterGVN *is_IterGVN() { return this; }
Unique_Node_List _worklist; // Iterative worklist
// Given def-use info and an initial worklist, apply Node::Ideal,
// Node::Value, Node::Identity, hash-based value numbering, Node::Ideal_DU
// and dominator info to a fixed point.
void optimize();
#ifndef PRODUCT
void trace_PhaseIterGVN(Node* n, Node* nn, const Type* old_type);
void init_verifyPhaseIterGVN();
void verify_PhaseIterGVN();
#endif
#ifdef ASSERT
void dump_infinite_loop_info(Node* n);
void trace_PhaseIterGVN_verbose(Node* n, int num_processed);
#endif
// Register a new node with the iter GVN pass without transforming it.
// Used when we need to restructure a Region/Phi area and all the Regions
// and Phis need to complete this one big transform before any other
// transforms can be triggered on the region.
// Optional 'orig' is an earlier version of this node.
// It is significant only for debugging and profiling.
Node* register_new_node_with_optimizer(Node* n, Node* orig = NULL);
// Kill a globally dead Node. All uses are also globally dead and are
// aggressively trimmed.
void remove_globally_dead_node( Node *dead );
// Kill all inputs to a dead node, recursively making more dead nodes.
// The Node must be dead locally, i.e., have no uses.
void remove_dead_node( Node *dead ) {
assert(dead->outcnt() == 0 && !dead->is_top(), "node must be dead");
remove_globally_dead_node(dead);
}
// Add users of 'n' to worklist
void add_users_to_worklist0( Node *n );
void add_users_to_worklist ( Node *n );
// Replace old node with new one.
void replace_node( Node *old, Node *nn ) {
add_users_to_worklist(old);
hash_delete(old); // Yank from hash before hacking edges
subsume_node(old, nn);
}
// Delayed node rehash: remove a node from the hash table and rehash it during
// next optimizing pass
void rehash_node_delayed(Node* n) {
hash_delete(n);
_worklist.push(n);
}
void igvn_rehash_node_delayed(Node* n) {
rehash_node_delayed(n);
}
// Replace ith edge of "n" with "in"
void replace_input_of(Node* n, int i, Node* in) {
rehash_node_delayed(n);
n->set_req(i, in);
}
// Delete ith edge of "n"
void delete_input_of(Node* n, int i) {
rehash_node_delayed(n);
n->del_req(i);
}
bool delay_transform() const { return _delay_transform; }
void set_delay_transform(bool delay) {
_delay_transform = delay;
}
// Clone loop predicates. Defined in loopTransform.cpp.
Node* clone_loop_predicates(Node* old_entry, Node* new_entry, bool clone_limit_check);
// Create a new if below new_entry for the predicate to be cloned
ProjNode* create_new_if_for_predicate(ProjNode* cont_proj, Node* new_entry,
Deoptimization::DeoptReason reason);
void remove_speculative_types();
void check_no_speculative_types() {
_table.check_no_speculative_types();
}
#ifndef PRODUCT
protected:
// Sub-quadratic implementation of VerifyIterativeGVN.
julong _verify_counter;
julong _verify_full_passes;
enum { _verify_window_size = 30 };
Node* _verify_window[_verify_window_size];
void verify_step(Node* n);
#endif
};
//------------------------------PhaseCCP---------------------------------------
// Phase for performing global Conditional Constant Propagation.
// Should be replaced with combined CCP & GVN someday.
class PhaseCCP : public PhaseIterGVN {
// Non-recursive. Use analysis to transform single Node.
virtual Node *transform_once( Node *n );
public:
PhaseCCP( PhaseIterGVN *igvn ); // Compute conditional constants
NOT_PRODUCT( ~PhaseCCP(); )
// Worklist algorithm identifies constants
void analyze();
// Recursive traversal of program. Used analysis to modify program.
virtual Node *transform( Node *n );
// Do any transformation after analysis
void do_transform();
virtual const Type* saturate(const Type* new_type, const Type* old_type,
const Type* limit_type) const;
// Returns new_type->widen(old_type), which increments the widen bits until
// giving up with TypeInt::INT or TypeLong::LONG.
// Result is clipped to limit_type if necessary.
#ifndef PRODUCT
static uint _total_invokes; // For profiling, count invocations
void inc_invokes() { ++PhaseCCP::_total_invokes; }
static uint _total_constants; // For profiling, count constants found
uint _count_constants;
void clear_constants() { _count_constants = 0; }
void inc_constants() { ++_count_constants; }
uint count_constants() const { return _count_constants; }
static void print_statistics();
#endif
};
//------------------------------PhasePeephole----------------------------------
// Phase for performing peephole optimizations on register allocated basic blocks.
class PhasePeephole : public PhaseTransform {
PhaseRegAlloc *_regalloc;
PhaseCFG &_cfg;
// Recursive traversal of program. Pure function is unused in this phase
virtual Node *transform( Node *n );
public:
PhasePeephole( PhaseRegAlloc *regalloc, PhaseCFG &cfg );
NOT_PRODUCT( ~PhasePeephole(); )
// Do any transformation after analysis
void do_transform();
#ifndef PRODUCT
static uint _total_peepholes; // For profiling, count peephole rules applied
uint _count_peepholes;
void clear_peepholes() { _count_peepholes = 0; }
void inc_peepholes() { ++_count_peepholes; }
uint count_peepholes() const { return _count_peepholes; }
static void print_statistics();
#endif
};
#endif // SHARE_VM_OPTO_PHASEX_HPP