jdk-24/hotspot/test/compiler/rangechecks/TestExplicitRangeChecks.java
Igor Ignatyev 23e0d96f6e 8132920: use package in compiler testlibraries
Reviewed-by: kvn, psandoz
2016-06-22 00:29:32 +03:00

599 lines
18 KiB
Java

/*
* Copyright (c) 2016, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* @test
* @bug 8073480
* @summary explicit range checks should be recognized by C2
* @modules java.base/jdk.internal.misc
* @library /testlibrary /test/lib /
* @build TestExplicitRangeChecks
* @run driver ClassFileInstaller sun.hotspot.WhiteBox
* jdk.test.lib.Platform
* @run main/othervm -ea -Xmixed -Xbootclasspath/a:. -XX:+UnlockDiagnosticVMOptions -XX:+WhiteBoxAPI
* -XX:-BackgroundCompilation -XX:-UseOnStackReplacement -XX:CompileCommand=compileonly,TestExplicitRangeChecks.test* TestExplicitRangeChecks
*
*/
import java.lang.annotation.*;
import java.lang.reflect.*;
import java.util.*;
import sun.hotspot.WhiteBox;
import sun.hotspot.code.NMethod;
import jdk.test.lib.Platform;
import jdk.internal.misc.Unsafe;
import compiler.whitebox.CompilerWhiteBoxTest;
public class TestExplicitRangeChecks {
private static final WhiteBox WHITE_BOX = WhiteBox.getWhiteBox();
private static final int TIERED_STOP_AT_LEVEL = WHITE_BOX.getIntxVMFlag("TieredStopAtLevel").intValue();
private static int[] array = new int[10];
private static boolean success = true;
@Retention(RetentionPolicy.RUNTIME)
@interface Args {
int[] compile();
int[] good();
int[] bad();
boolean deoptimize() default true;
}
// Should be compiled as a single unsigned comparison
// 0 <= index < array.length
@Args(compile = {5,}, good = {0, 9}, bad = {-1, 10})
static boolean test1_1(int index, int[] array) {
if (index < 0 || index >= array.length) {
return false;
}
return true;
}
// same test but so we can compile with same optimization after trap in test1_1
static boolean test1_2(int index, int[] array) {
if (index < 0 || index >= array.length) {
return false;
}
return true;
}
// Shouldn't matter whether first or second test is the one
// against a constants
// 0 <= index < array.length
@Args(compile = {5,}, good = {0, 9}, bad = {-1, 10})
static boolean test2_1(int index, int[] array) {
if (index >= array.length || index < 0) {
return false;
}
return true;
}
static boolean test2_2(int index, int[] array) {
if (index >= array.length || index < 0) {
return false;
}
return true;
}
// 0 <= index <= array.length
@Args(compile = {5,}, good = {0, 10}, bad = {-1, 11})
static boolean test3_1(int index, int[] array) {
if (index < 0 || index > array.length) {
return false;
}
return true;
}
static boolean test3_2(int index, int[] array) {
if (index < 0 || index > array.length) {
return false;
}
return true;
}
// 0 <= index <= array.length
@Args(compile = {5,}, good = {0, 10}, bad = {-1, 11})
static boolean test4_1(int index, int[] array) {
if (index > array.length || index < 0 ) {
return false;
}
return true;
}
static boolean test4_2(int index, int[] array) {
if (index > array.length || index < 0) {
return false;
}
return true;
}
static int[] test5_helper(int i) {
return (i < 100) ? new int[10] : new int[5];
}
// 0 < index < array.length
@Args(compile = {5,}, good = {1, 9}, bad = {0, 10})
static boolean test5_1(int index, int[] array) {
array = test5_helper(index); // array.length must be not constant greater than 1
if (index <= 0 || index >= array.length) {
return false;
}
return true;
}
static boolean test5_2(int index, int[] array) {
array = test5_helper(index); // array.length must be not constant greater than 1
if (index <= 0 || index >= array.length) {
return false;
}
return true;
}
// 0 < index < array.length
@Args(compile = {5,}, good = {1, 9}, bad = {0, 10})
static boolean test6_1(int index, int[] array) {
array = test5_helper(index); // array.length must be not constant greater than 1
if (index >= array.length || index <= 0 ) {
return false;
}
return true;
}
static boolean test6_2(int index, int[] array) {
array = test5_helper(index); // array.length must be not constant greater than 1
if (index >= array.length || index <= 0) {
return false;
}
return true;
}
// 0 < index <= array.length
@Args(compile = {5,}, good = {1, 10}, bad = {0, 11})
static boolean test7_1(int index, int[] array) {
if (index <= 0 || index > array.length) {
return false;
}
return true;
}
static boolean test7_2(int index, int[] array) {
if (index <= 0 || index > array.length) {
return false;
}
return true;
}
// 0 < index <= array.length
@Args(compile = {5,}, good = {1, 10}, bad = {0, 11})
static boolean test8_1(int index, int[] array) {
if (index > array.length || index <= 0 ) {
return false;
}
return true;
}
static boolean test8_2(int index, int[] array) {
if (index > array.length || index <= 0) {
return false;
}
return true;
}
static int[] test9_helper1(int i) {
return (i < 100) ? new int[1] : new int[2];
}
static int[] test9_helper2(int i) {
return (i < 100) ? new int[10] : new int[11];
}
// array1.length <= index < array2.length
@Args(compile = {5,}, good = {1, 9}, bad = {0, 10})
static boolean test9_1(int index, int[] array) {
int[] array1 = test9_helper1(index);
int[] array2 = test9_helper2(index);
if (index < array1.length || index >= array2.length) {
return false;
}
return true;
}
static boolean test9_2(int index, int[] array) {
int[] array1 = test9_helper1(index);
int[] array2 = test9_helper2(index);
if (index < array1.length || index >= array2.length) {
return false;
}
return true;
}
// Previously supported pattern
@Args(compile = {-5,5,15}, good = {0, 9}, bad = {-1, 10}, deoptimize=false)
static boolean test10_1(int index, int[] array) {
if (index < 0 || index >= 10) {
return false;
}
return true;
}
static int[] array11 = new int[10];
@Args(compile = {5,}, good = {0, 9}, bad = {-1,})
static boolean test11_1(int index, int[] array) {
if (index < 0) {
return false;
}
int unused = array11[index];
// If this one is folded with the first test then we allow
// array access above to proceed even for out of bound array
// index and the method throws an
// ArrayIndexOutOfBoundsException.
if (index >= array.length) {
return false;
}
return true;
}
static int[] array12 = {10, 10, 10, 10, 10, 10, 10, 10, 10, 10};
@Args(compile = {5,}, good = {0, 9}, bad = {-1,})
static boolean test12_1(int index, int[] array) {
// Cannot be folded otherwise would cause incorrect array
// access if the array12 range check is executed before the
// folded test.
if (index < 0 || index >= array12[index]) {
return false;
}
return true;
}
// Same as test1_1 but pass null array when index < 0: shouldn't
// cause NPE.
@Args(compile = {5,}, good = {0, 9}, bad = {})
static boolean test13_1(int index, int[] array) {
if (index < 0 || index >= array.length) {
return false;
}
return true;
}
// Same as test10 but with uncommon traps
@Args(compile = {5}, good = {0, 9}, bad = {-1, 10})
static boolean test14_1(int index, int[] array) {
if (index < 0 || index >= 10) {
return false;
}
return true;
}
static boolean test14_2(int index, int[] array) {
if (index < 0 || index >= 10) {
return false;
}
return true;
}
// Same as test13_1 but pass null array: null trap should be reported on first if
@Args(compile = {5,}, good = {0, 9}, bad = {})
static boolean test15_1(int index, int[] array) {
if (index < 0 || index >= array.length) {
return false;
}
return true;
}
// Same as test1 but with no null check between the integer comparisons
@Args(compile = {5,}, good = {0, 9}, bad = {-1, 10})
static boolean test16_1(int index, int[] array) {
int l = array.length;
if (index < 0 || index >= l) {
return false;
}
return true;
}
static boolean test16_2(int index, int[] array) {
int l = array.length;
if (index < 0 || index >= l) {
return false;
}
return true;
}
// Same as test1 but bound check on array access should optimize
// out.
@Args(compile = {5,}, good = {0, 9}, bad = {-1, 10})
static boolean test17_1(int index, int[] array) {
if (index < 0 || index >= array.length) {
return false;
}
array[index] = 0;
return true;
}
static boolean test17_2(int index, int[] array) {
if (index < 0 || index >= array.length) {
return false;
}
array[index] = 0;
return true;
}
// Same as test1 but range check smearing should optimize
// 3rd range check out.
@Args(compile = {5,}, good = {}, bad = {})
static boolean test18_1(int index, int[] array) {
if (index < 0 || index >= array.length) {
return false;
}
array[index+2] = 0;
array[index+1] = 0;
return true;
}
static boolean test19_helper1(int index) {
if (index < 12) {
return false;
}
return true;
}
static boolean test19_helper2(int index) {
if (index > 8) {
return false;
}
return true;
}
// Second test should be optimized out
static boolean test19(int index, int[] array) {
test19_helper1(index);
test19_helper2(index);
return true;
}
final HashMap<String,Method> tests = new HashMap<>();
{
for (Method m : this.getClass().getDeclaredMethods()) {
if (m.getName().matches("test[0-9]+(_[0-9])?")) {
assert(Modifier.isStatic(m.getModifiers())) : m;
tests.put(m.getName(), m);
}
}
}
void doTest(String name) throws Exception {
Method m = tests.get(name + "_1");
Args anno = m.getAnnotation(Args.class);
int[] compile = anno.compile();
int[] good = anno.good();
int[] bad = anno.bad();
boolean deoptimize = anno.deoptimize();
// Get compiled
for (int i = 0; i < 20000;) {
for (int j = 0; j < compile.length; j++) {
m.invoke(null, compile[j], array);
i++;
}
}
if (!WHITE_BOX.isMethodCompiled(m)) {
System.out.println(name + "_1 not compiled");
success = false;
}
// check that good values don't trigger exception or
// deoptimization
for (int i = 0; i < good.length; i++) {
boolean res = (boolean)m.invoke(null, good[i], array);
if (!res) {
System.out.println(name + " bad result for good input " + good[i]);
success = false;
}
if (!WHITE_BOX.isMethodCompiled(m)) {
System.out.println(name + " deoptimized on valid access");
success = false;
}
}
// check that bad values trigger exception and deoptimization
for (int i = 0; i < bad.length; i++) {
if (i > 0 && deoptimize) {
m = tests.get(name + "_" + (i+1));
for (int k = 0; k < 20000;) {
for (int j = 0; j < compile.length; j++) {
m.invoke(null, compile[j], array);
k++;
}
}
if (!WHITE_BOX.isMethodCompiled(m)) {
System.out.println(name + ("_" + (i+1)) + " not compiled");
success = false;
}
}
boolean res = (boolean)m.invoke(null, bad[i], array);
if (res) {
System.out.println(name + " bad result for bad input " + bad[i]);
success = false;
}
// Only perform these additional checks if C2 is available
if (Platform.isServer() &&
TIERED_STOP_AT_LEVEL == CompilerWhiteBoxTest.COMP_LEVEL_FULL_OPTIMIZATION) {
if (deoptimize && WHITE_BOX.isMethodCompiled(m)) {
System.out.println(name + " not deoptimized on invalid access");
success = false;
} else if (!deoptimize && !WHITE_BOX.isMethodCompiled(m)) {
System.out.println(name + " deoptimized on invalid access");
success = false;
}
}
}
}
private static final Unsafe UNSAFE;
static {
try {
Field unsafeField = Unsafe.class.getDeclaredField("theUnsafe");
unsafeField.setAccessible(true);
UNSAFE = (Unsafe) unsafeField.get(null);
}
catch (Exception e) {
throw new AssertionError(e);
}
}
// On x64, int to long conversion should optimize away in address computation
static int test20(int[] a) {
int sum = 0;
for (int i = 0; i < a.length; i++) {
sum += test20_helper(a, i);
}
return sum;
}
static int test20_helper(int[] a, int i) {
if (i < 0 || i >= a.length)
throw new ArrayIndexOutOfBoundsException();
long address = (((long) i) << 2) + UNSAFE.ARRAY_INT_BASE_OFFSET;
return UNSAFE.getInt(a, address);
}
static int test21(int[] a) {
int sum = 0;
for (int i = 0; i < a.length; i++) {
sum += test20_helper(a, i);
}
return sum;
}
static int test21_helper(int[] a, int i) {
if (i < 0 || i >= a.length)
throw new ArrayIndexOutOfBoundsException();
long address = (((long) i) << 2) + UNSAFE.ARRAY_INT_BASE_OFFSET;
return UNSAFE.getIntVolatile(a, address);
}
static public void main(String[] args) throws Exception {
if (WHITE_BOX.getBooleanVMFlag("BackgroundCompilation")) {
throw new AssertionError("Background compilation enabled");
}
TestExplicitRangeChecks test = new TestExplicitRangeChecks();
test.doTest("test1");
test.doTest("test2");
test.doTest("test3");
test.doTest("test4");
// pollute branch profile
for (int i = 0; i < 10000; i++) {
test5_helper((i%2 == 0) ? 0 : 1000);
}
test.doTest("test5");
test.doTest("test6");
test.doTest("test7");
test.doTest("test8");
// pollute branch profile
for (int i = 0; i < 10000; i++) {
test9_helper1((i%2 == 0) ? 0 : 1000);
test9_helper2((i%2 == 0) ? 0 : 1000);
}
test.doTest("test9");
test.doTest("test10");
test.doTest("test11");
test.doTest("test12");
test.doTest("test13");
{
Method m = test.tests.get("test13_1");
for (int i = 0; i < 1; i++) {
test13_1(-1, null);
if (!WHITE_BOX.isMethodCompiled(m)) {
break;
}
}
}
test.doTest("test13");
{
Method m = test.tests.get("test13_1");
for (int i = 0; i < 10; i++) {
test13_1(-1, null);
if (!WHITE_BOX.isMethodCompiled(m)) {
break;
}
}
}
test.doTest("test14");
test.doTest("test15");
{
Method m = test.tests.get("test15_1");
for (int i = 0; i < 10; i++) {
try {
test15_1(5, null);
} catch(NullPointerException npe) {}
if (!WHITE_BOX.isMethodCompiled(m)) {
break;
}
}
}
test.doTest("test15");
test.doTest("test16");
test.doTest("test17");
test.doTest("test18");
for (int i = 0; i < 20000; i++) {
test19_helper1(20);
test19_helper2(5);
}
{
Method m = test.tests.get("test19");
WHITE_BOX.enqueueMethodForCompilation(m, CompilerWhiteBoxTest.COMP_LEVEL_FULL_OPTIMIZATION);
}
for (int i = 0; i < 20000; i++) {
test20(array);
}
for (int i = 0; i < 20000; i++) {
test21(array);
}
if (!success) {
throw new RuntimeException("some tests failed");
}
}
}