15c4140ae5
Reviewed-by: brutisso, mlarsson, rprotacio
1359 lines
51 KiB
C++
1359 lines
51 KiB
C++
/*
|
|
* Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "classfile/stringTable.hpp"
|
|
#include "classfile/symbolTable.hpp"
|
|
#include "classfile/systemDictionary.hpp"
|
|
#include "code/codeCache.hpp"
|
|
#include "code/icBuffer.hpp"
|
|
#include "code/nmethod.hpp"
|
|
#include "code/pcDesc.hpp"
|
|
#include "code/scopeDesc.hpp"
|
|
#include "gc/shared/collectedHeap.hpp"
|
|
#include "gc/shared/gcLocker.inline.hpp"
|
|
#include "interpreter/interpreter.hpp"
|
|
#include "logging/log.hpp"
|
|
#include "memory/resourceArea.hpp"
|
|
#include "memory/universe.inline.hpp"
|
|
#include "oops/oop.inline.hpp"
|
|
#include "oops/symbol.hpp"
|
|
#include "runtime/atomic.inline.hpp"
|
|
#include "runtime/compilationPolicy.hpp"
|
|
#include "runtime/deoptimization.hpp"
|
|
#include "runtime/frame.inline.hpp"
|
|
#include "runtime/interfaceSupport.hpp"
|
|
#include "runtime/mutexLocker.hpp"
|
|
#include "runtime/orderAccess.inline.hpp"
|
|
#include "runtime/osThread.hpp"
|
|
#include "runtime/safepoint.hpp"
|
|
#include "runtime/signature.hpp"
|
|
#include "runtime/stubCodeGenerator.hpp"
|
|
#include "runtime/stubRoutines.hpp"
|
|
#include "runtime/sweeper.hpp"
|
|
#include "runtime/synchronizer.hpp"
|
|
#include "runtime/thread.inline.hpp"
|
|
#include "runtime/timerTrace.hpp"
|
|
#include "services/runtimeService.hpp"
|
|
#include "trace/tracing.hpp"
|
|
#include "trace/traceMacros.hpp"
|
|
#include "utilities/events.hpp"
|
|
#include "utilities/macros.hpp"
|
|
#if INCLUDE_ALL_GCS
|
|
#include "gc/cms/concurrentMarkSweepThread.hpp"
|
|
#include "gc/g1/suspendibleThreadSet.hpp"
|
|
#endif // INCLUDE_ALL_GCS
|
|
#ifdef COMPILER1
|
|
#include "c1/c1_globals.hpp"
|
|
#endif
|
|
|
|
// --------------------------------------------------------------------------------------------------
|
|
// Implementation of Safepoint begin/end
|
|
|
|
SafepointSynchronize::SynchronizeState volatile SafepointSynchronize::_state = SafepointSynchronize::_not_synchronized;
|
|
volatile int SafepointSynchronize::_waiting_to_block = 0;
|
|
volatile int SafepointSynchronize::_safepoint_counter = 0;
|
|
int SafepointSynchronize::_current_jni_active_count = 0;
|
|
long SafepointSynchronize::_end_of_last_safepoint = 0;
|
|
static volatile int PageArmed = 0 ; // safepoint polling page is RO|RW vs PROT_NONE
|
|
static volatile int TryingToBlock = 0 ; // proximate value -- for advisory use only
|
|
static bool timeout_error_printed = false;
|
|
|
|
// Roll all threads forward to a safepoint and suspend them all
|
|
void SafepointSynchronize::begin() {
|
|
EventSafepointBegin begin_event;
|
|
Thread* myThread = Thread::current();
|
|
assert(myThread->is_VM_thread(), "Only VM thread may execute a safepoint");
|
|
|
|
if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
|
|
_safepoint_begin_time = os::javaTimeNanos();
|
|
_ts_of_current_safepoint = tty->time_stamp().seconds();
|
|
}
|
|
|
|
#if INCLUDE_ALL_GCS
|
|
if (UseConcMarkSweepGC) {
|
|
// In the future we should investigate whether CMS can use the
|
|
// more-general mechanism below. DLD (01/05).
|
|
ConcurrentMarkSweepThread::synchronize(false);
|
|
} else if (UseG1GC) {
|
|
SuspendibleThreadSet::synchronize();
|
|
}
|
|
#endif // INCLUDE_ALL_GCS
|
|
|
|
// By getting the Threads_lock, we assure that no threads are about to start or
|
|
// exit. It is released again in SafepointSynchronize::end().
|
|
Threads_lock->lock();
|
|
|
|
assert( _state == _not_synchronized, "trying to safepoint synchronize with wrong state");
|
|
|
|
int nof_threads = Threads::number_of_threads();
|
|
|
|
log_debug(safepoint)("Safepoint synchronization initiated. (%d)", nof_threads);
|
|
|
|
RuntimeService::record_safepoint_begin();
|
|
|
|
MutexLocker mu(Safepoint_lock);
|
|
|
|
// Reset the count of active JNI critical threads
|
|
_current_jni_active_count = 0;
|
|
|
|
// Set number of threads to wait for, before we initiate the callbacks
|
|
_waiting_to_block = nof_threads;
|
|
TryingToBlock = 0 ;
|
|
int still_running = nof_threads;
|
|
|
|
// Save the starting time, so that it can be compared to see if this has taken
|
|
// too long to complete.
|
|
jlong safepoint_limit_time = 0;
|
|
timeout_error_printed = false;
|
|
|
|
// PrintSafepointStatisticsTimeout can be specified separately. When
|
|
// specified, PrintSafepointStatistics will be set to true in
|
|
// deferred_initialize_stat method. The initialization has to be done
|
|
// early enough to avoid any races. See bug 6880029 for details.
|
|
if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
|
|
deferred_initialize_stat();
|
|
}
|
|
|
|
// Begin the process of bringing the system to a safepoint.
|
|
// Java threads can be in several different states and are
|
|
// stopped by different mechanisms:
|
|
//
|
|
// 1. Running interpreted
|
|
// The interpreter dispatch table is changed to force it to
|
|
// check for a safepoint condition between bytecodes.
|
|
// 2. Running in native code
|
|
// When returning from the native code, a Java thread must check
|
|
// the safepoint _state to see if we must block. If the
|
|
// VM thread sees a Java thread in native, it does
|
|
// not wait for this thread to block. The order of the memory
|
|
// writes and reads of both the safepoint state and the Java
|
|
// threads state is critical. In order to guarantee that the
|
|
// memory writes are serialized with respect to each other,
|
|
// the VM thread issues a memory barrier instruction
|
|
// (on MP systems). In order to avoid the overhead of issuing
|
|
// a memory barrier for each Java thread making native calls, each Java
|
|
// thread performs a write to a single memory page after changing
|
|
// the thread state. The VM thread performs a sequence of
|
|
// mprotect OS calls which forces all previous writes from all
|
|
// Java threads to be serialized. This is done in the
|
|
// os::serialize_thread_states() call. This has proven to be
|
|
// much more efficient than executing a membar instruction
|
|
// on every call to native code.
|
|
// 3. Running compiled Code
|
|
// Compiled code reads a global (Safepoint Polling) page that
|
|
// is set to fault if we are trying to get to a safepoint.
|
|
// 4. Blocked
|
|
// A thread which is blocked will not be allowed to return from the
|
|
// block condition until the safepoint operation is complete.
|
|
// 5. In VM or Transitioning between states
|
|
// If a Java thread is currently running in the VM or transitioning
|
|
// between states, the safepointing code will wait for the thread to
|
|
// block itself when it attempts transitions to a new state.
|
|
//
|
|
{
|
|
EventSafepointStateSync sync_event;
|
|
int initial_running = 0;
|
|
|
|
_state = _synchronizing;
|
|
OrderAccess::fence();
|
|
|
|
// Flush all thread states to memory
|
|
if (!UseMembar) {
|
|
os::serialize_thread_states();
|
|
}
|
|
|
|
// Make interpreter safepoint aware
|
|
Interpreter::notice_safepoints();
|
|
|
|
if (DeferPollingPageLoopCount < 0) {
|
|
// Make polling safepoint aware
|
|
guarantee (PageArmed == 0, "invariant") ;
|
|
PageArmed = 1 ;
|
|
os::make_polling_page_unreadable();
|
|
}
|
|
|
|
// Consider using active_processor_count() ... but that call is expensive.
|
|
int ncpus = os::processor_count() ;
|
|
|
|
#ifdef ASSERT
|
|
for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
|
|
assert(cur->safepoint_state()->is_running(), "Illegal initial state");
|
|
// Clear the visited flag to ensure that the critical counts are collected properly.
|
|
cur->set_visited_for_critical_count(false);
|
|
}
|
|
#endif // ASSERT
|
|
|
|
if (SafepointTimeout)
|
|
safepoint_limit_time = os::javaTimeNanos() + (jlong)SafepointTimeoutDelay * MICROUNITS;
|
|
|
|
// Iterate through all threads until it have been determined how to stop them all at a safepoint
|
|
unsigned int iterations = 0;
|
|
int steps = 0 ;
|
|
while(still_running > 0) {
|
|
for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
|
|
assert(!cur->is_ConcurrentGC_thread(), "A concurrent GC thread is unexpectly being suspended");
|
|
ThreadSafepointState *cur_state = cur->safepoint_state();
|
|
if (cur_state->is_running()) {
|
|
cur_state->examine_state_of_thread();
|
|
if (!cur_state->is_running()) {
|
|
still_running--;
|
|
// consider adjusting steps downward:
|
|
// steps = 0
|
|
// steps -= NNN
|
|
// steps >>= 1
|
|
// steps = MIN(steps, 2000-100)
|
|
// if (iterations != 0) steps -= NNN
|
|
}
|
|
if (log_is_enabled(Trace, safepoint)) {
|
|
ResourceMark rm;
|
|
cur_state->print_on(Log(safepoint)::trace_stream());
|
|
}
|
|
}
|
|
}
|
|
|
|
if (iterations == 0) {
|
|
initial_running = still_running;
|
|
if (PrintSafepointStatistics) {
|
|
begin_statistics(nof_threads, still_running);
|
|
}
|
|
}
|
|
|
|
if (still_running > 0) {
|
|
// Check for if it takes to long
|
|
if (SafepointTimeout && safepoint_limit_time < os::javaTimeNanos()) {
|
|
print_safepoint_timeout(_spinning_timeout);
|
|
}
|
|
|
|
// Spin to avoid context switching.
|
|
// There's a tension between allowing the mutators to run (and rendezvous)
|
|
// vs spinning. As the VM thread spins, wasting cycles, it consumes CPU that
|
|
// a mutator might otherwise use profitably to reach a safepoint. Excessive
|
|
// spinning by the VM thread on a saturated system can increase rendezvous latency.
|
|
// Blocking or yielding incur their own penalties in the form of context switching
|
|
// and the resultant loss of $ residency.
|
|
//
|
|
// Further complicating matters is that yield() does not work as naively expected
|
|
// on many platforms -- yield() does not guarantee that any other ready threads
|
|
// will run. As such we revert to naked_short_sleep() after some number of iterations.
|
|
// nakes_short_sleep() is implemented as a short unconditional sleep.
|
|
// Typical operating systems round a "short" sleep period up to 10 msecs, so sleeping
|
|
// can actually increase the time it takes the VM thread to detect that a system-wide
|
|
// stop-the-world safepoint has been reached. In a pathological scenario such as that
|
|
// described in CR6415670 the VMthread may sleep just before the mutator(s) become safe.
|
|
// In that case the mutators will be stalled waiting for the safepoint to complete and the
|
|
// the VMthread will be sleeping, waiting for the mutators to rendezvous. The VMthread
|
|
// will eventually wake up and detect that all mutators are safe, at which point
|
|
// we'll again make progress.
|
|
//
|
|
// Beware too that that the VMThread typically runs at elevated priority.
|
|
// Its default priority is higher than the default mutator priority.
|
|
// Obviously, this complicates spinning.
|
|
//
|
|
// Note too that on Windows XP SwitchThreadTo() has quite different behavior than Sleep(0).
|
|
// Sleep(0) will _not yield to lower priority threads, while SwitchThreadTo() will.
|
|
//
|
|
// See the comments in synchronizer.cpp for additional remarks on spinning.
|
|
//
|
|
// In the future we might:
|
|
// 1. Modify the safepoint scheme to avoid potentially unbounded spinning.
|
|
// This is tricky as the path used by a thread exiting the JVM (say on
|
|
// on JNI call-out) simply stores into its state field. The burden
|
|
// is placed on the VM thread, which must poll (spin).
|
|
// 2. Find something useful to do while spinning. If the safepoint is GC-related
|
|
// we might aggressively scan the stacks of threads that are already safe.
|
|
// 3. Use Solaris schedctl to examine the state of the still-running mutators.
|
|
// If all the mutators are ONPROC there's no reason to sleep or yield.
|
|
// 4. YieldTo() any still-running mutators that are ready but OFFPROC.
|
|
// 5. Check system saturation. If the system is not fully saturated then
|
|
// simply spin and avoid sleep/yield.
|
|
// 6. As still-running mutators rendezvous they could unpark the sleeping
|
|
// VMthread. This works well for still-running mutators that become
|
|
// safe. The VMthread must still poll for mutators that call-out.
|
|
// 7. Drive the policy on time-since-begin instead of iterations.
|
|
// 8. Consider making the spin duration a function of the # of CPUs:
|
|
// Spin = (((ncpus-1) * M) + K) + F(still_running)
|
|
// Alternately, instead of counting iterations of the outer loop
|
|
// we could count the # of threads visited in the inner loop, above.
|
|
// 9. On windows consider using the return value from SwitchThreadTo()
|
|
// to drive subsequent spin/SwitchThreadTo()/Sleep(N) decisions.
|
|
|
|
if (int(iterations) == DeferPollingPageLoopCount) {
|
|
guarantee (PageArmed == 0, "invariant") ;
|
|
PageArmed = 1 ;
|
|
os::make_polling_page_unreadable();
|
|
}
|
|
|
|
// Instead of (ncpus > 1) consider either (still_running < (ncpus + EPSILON)) or
|
|
// ((still_running + _waiting_to_block - TryingToBlock)) < ncpus)
|
|
++steps ;
|
|
if (ncpus > 1 && steps < SafepointSpinBeforeYield) {
|
|
SpinPause() ; // MP-Polite spin
|
|
} else
|
|
if (steps < DeferThrSuspendLoopCount) {
|
|
os::naked_yield() ;
|
|
} else {
|
|
os::naked_short_sleep(1);
|
|
}
|
|
|
|
iterations ++ ;
|
|
}
|
|
assert(iterations < (uint)max_jint, "We have been iterating in the safepoint loop too long");
|
|
}
|
|
assert(still_running == 0, "sanity check");
|
|
|
|
if (PrintSafepointStatistics) {
|
|
update_statistics_on_spin_end();
|
|
}
|
|
|
|
if (sync_event.should_commit()) {
|
|
sync_event.set_safepointId(safepoint_counter());
|
|
sync_event.set_initialThreadCount(initial_running);
|
|
sync_event.set_runningThreadCount(_waiting_to_block);
|
|
sync_event.set_iterations(iterations);
|
|
sync_event.commit();
|
|
}
|
|
} //EventSafepointStateSync
|
|
|
|
// wait until all threads are stopped
|
|
{
|
|
EventSafepointWaitBlocked wait_blocked_event;
|
|
int initial_waiting_to_block = _waiting_to_block;
|
|
|
|
while (_waiting_to_block > 0) {
|
|
log_debug(safepoint)("Waiting for %d thread(s) to block", _waiting_to_block);
|
|
if (!SafepointTimeout || timeout_error_printed) {
|
|
Safepoint_lock->wait(true); // true, means with no safepoint checks
|
|
} else {
|
|
// Compute remaining time
|
|
jlong remaining_time = safepoint_limit_time - os::javaTimeNanos();
|
|
|
|
// If there is no remaining time, then there is an error
|
|
if (remaining_time < 0 || Safepoint_lock->wait(true, remaining_time / MICROUNITS)) {
|
|
print_safepoint_timeout(_blocking_timeout);
|
|
}
|
|
}
|
|
}
|
|
assert(_waiting_to_block == 0, "sanity check");
|
|
|
|
#ifndef PRODUCT
|
|
if (SafepointTimeout) {
|
|
jlong current_time = os::javaTimeNanos();
|
|
if (safepoint_limit_time < current_time) {
|
|
tty->print_cr("# SafepointSynchronize: Finished after "
|
|
INT64_FORMAT_W(6) " ms",
|
|
((current_time - safepoint_limit_time) / MICROUNITS +
|
|
(jlong)SafepointTimeoutDelay));
|
|
}
|
|
}
|
|
#endif
|
|
|
|
assert((_safepoint_counter & 0x1) == 0, "must be even");
|
|
assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
|
|
_safepoint_counter ++;
|
|
|
|
// Record state
|
|
_state = _synchronized;
|
|
|
|
OrderAccess::fence();
|
|
|
|
if (wait_blocked_event.should_commit()) {
|
|
wait_blocked_event.set_safepointId(safepoint_counter());
|
|
wait_blocked_event.set_runningThreadCount(initial_waiting_to_block);
|
|
wait_blocked_event.commit();
|
|
}
|
|
} // EventSafepointWaitBlocked
|
|
|
|
#ifdef ASSERT
|
|
for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
|
|
// make sure all the threads were visited
|
|
assert(cur->was_visited_for_critical_count(), "missed a thread");
|
|
}
|
|
#endif // ASSERT
|
|
|
|
// Update the count of active JNI critical regions
|
|
GCLocker::set_jni_lock_count(_current_jni_active_count);
|
|
|
|
if (log_is_enabled(Debug, safepoint)) {
|
|
VM_Operation *op = VMThread::vm_operation();
|
|
log_debug(safepoint)("Entering safepoint region: %s",
|
|
(op != NULL) ? op->name() : "no vm operation");
|
|
}
|
|
|
|
RuntimeService::record_safepoint_synchronized();
|
|
if (PrintSafepointStatistics) {
|
|
update_statistics_on_sync_end(os::javaTimeNanos());
|
|
}
|
|
|
|
// Call stuff that needs to be run when a safepoint is just about to be completed
|
|
{
|
|
EventSafepointCleanup cleanup_event;
|
|
do_cleanup_tasks();
|
|
if (cleanup_event.should_commit()) {
|
|
cleanup_event.set_safepointId(safepoint_counter());
|
|
cleanup_event.commit();
|
|
}
|
|
}
|
|
|
|
if (PrintSafepointStatistics) {
|
|
// Record how much time spend on the above cleanup tasks
|
|
update_statistics_on_cleanup_end(os::javaTimeNanos());
|
|
}
|
|
if (begin_event.should_commit()) {
|
|
begin_event.set_safepointId(safepoint_counter());
|
|
begin_event.set_totalThreadCount(nof_threads);
|
|
begin_event.set_jniCriticalThreadCount(_current_jni_active_count);
|
|
begin_event.commit();
|
|
}
|
|
}
|
|
|
|
// Wake up all threads, so they are ready to resume execution after the safepoint
|
|
// operation has been carried out
|
|
void SafepointSynchronize::end() {
|
|
EventSafepointEnd event;
|
|
int safepoint_id = safepoint_counter(); // Keep the odd counter as "id"
|
|
|
|
assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
|
|
assert((_safepoint_counter & 0x1) == 1, "must be odd");
|
|
_safepoint_counter ++;
|
|
// memory fence isn't required here since an odd _safepoint_counter
|
|
// value can do no harm and a fence is issued below anyway.
|
|
|
|
DEBUG_ONLY(Thread* myThread = Thread::current();)
|
|
assert(myThread->is_VM_thread(), "Only VM thread can execute a safepoint");
|
|
|
|
if (PrintSafepointStatistics) {
|
|
end_statistics(os::javaTimeNanos());
|
|
}
|
|
|
|
#ifdef ASSERT
|
|
// A pending_exception cannot be installed during a safepoint. The threads
|
|
// may install an async exception after they come back from a safepoint into
|
|
// pending_exception after they unblock. But that should happen later.
|
|
for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
|
|
assert (!(cur->has_pending_exception() &&
|
|
cur->safepoint_state()->is_at_poll_safepoint()),
|
|
"safepoint installed a pending exception");
|
|
}
|
|
#endif // ASSERT
|
|
|
|
if (PageArmed) {
|
|
// Make polling safepoint aware
|
|
os::make_polling_page_readable();
|
|
PageArmed = 0 ;
|
|
}
|
|
|
|
// Remove safepoint check from interpreter
|
|
Interpreter::ignore_safepoints();
|
|
|
|
{
|
|
MutexLocker mu(Safepoint_lock);
|
|
|
|
assert(_state == _synchronized, "must be synchronized before ending safepoint synchronization");
|
|
|
|
// Set to not synchronized, so the threads will not go into the signal_thread_blocked method
|
|
// when they get restarted.
|
|
_state = _not_synchronized;
|
|
OrderAccess::fence();
|
|
|
|
log_debug(safepoint)("Leaving safepoint region");
|
|
|
|
// Start suspended threads
|
|
for(JavaThread *current = Threads::first(); current; current = current->next()) {
|
|
// A problem occurring on Solaris is when attempting to restart threads
|
|
// the first #cpus - 1 go well, but then the VMThread is preempted when we get
|
|
// to the next one (since it has been running the longest). We then have
|
|
// to wait for a cpu to become available before we can continue restarting
|
|
// threads.
|
|
// FIXME: This causes the performance of the VM to degrade when active and with
|
|
// large numbers of threads. Apparently this is due to the synchronous nature
|
|
// of suspending threads.
|
|
//
|
|
// TODO-FIXME: the comments above are vestigial and no longer apply.
|
|
// Furthermore, using solaris' schedctl in this particular context confers no benefit
|
|
if (VMThreadHintNoPreempt) {
|
|
os::hint_no_preempt();
|
|
}
|
|
ThreadSafepointState* cur_state = current->safepoint_state();
|
|
assert(cur_state->type() != ThreadSafepointState::_running, "Thread not suspended at safepoint");
|
|
cur_state->restart();
|
|
assert(cur_state->is_running(), "safepoint state has not been reset");
|
|
}
|
|
|
|
RuntimeService::record_safepoint_end();
|
|
|
|
// Release threads lock, so threads can be created/destroyed again. It will also starts all threads
|
|
// blocked in signal_thread_blocked
|
|
Threads_lock->unlock();
|
|
|
|
}
|
|
#if INCLUDE_ALL_GCS
|
|
// If there are any concurrent GC threads resume them.
|
|
if (UseConcMarkSweepGC) {
|
|
ConcurrentMarkSweepThread::desynchronize(false);
|
|
} else if (UseG1GC) {
|
|
SuspendibleThreadSet::desynchronize();
|
|
}
|
|
#endif // INCLUDE_ALL_GCS
|
|
// record this time so VMThread can keep track how much time has elapsed
|
|
// since last safepoint.
|
|
_end_of_last_safepoint = os::javaTimeMillis();
|
|
|
|
if (event.should_commit()) {
|
|
event.set_safepointId(safepoint_id);
|
|
event.commit();
|
|
}
|
|
}
|
|
|
|
bool SafepointSynchronize::is_cleanup_needed() {
|
|
// Need a safepoint if some inline cache buffers is non-empty
|
|
if (!InlineCacheBuffer::is_empty()) return true;
|
|
return false;
|
|
}
|
|
|
|
static void event_safepoint_cleanup_task_commit(EventSafepointCleanupTask& event, const char* name) {
|
|
if (event.should_commit()) {
|
|
event.set_safepointId(SafepointSynchronize::safepoint_counter());
|
|
event.set_name(name);
|
|
event.commit();
|
|
}
|
|
}
|
|
|
|
// Various cleaning tasks that should be done periodically at safepoints
|
|
void SafepointSynchronize::do_cleanup_tasks() {
|
|
{
|
|
const char* name = "deflating idle monitors";
|
|
EventSafepointCleanupTask event;
|
|
TraceTime timer(name, TRACETIME_LOG(Info, safepointcleanup));
|
|
ObjectSynchronizer::deflate_idle_monitors();
|
|
event_safepoint_cleanup_task_commit(event, name);
|
|
}
|
|
|
|
{
|
|
const char* name = "updating inline caches";
|
|
EventSafepointCleanupTask event;
|
|
TraceTime timer(name, TRACETIME_LOG(Info, safepointcleanup));
|
|
InlineCacheBuffer::update_inline_caches();
|
|
event_safepoint_cleanup_task_commit(event, name);
|
|
}
|
|
{
|
|
const char* name = "compilation policy safepoint handler";
|
|
EventSafepointCleanupTask event;
|
|
TraceTime timer("compilation policy safepoint handler", TRACETIME_LOG(Info, safepointcleanup));
|
|
CompilationPolicy::policy()->do_safepoint_work();
|
|
event_safepoint_cleanup_task_commit(event, name);
|
|
}
|
|
|
|
{
|
|
const char* name = "mark nmethods";
|
|
EventSafepointCleanupTask event;
|
|
TraceTime timer(name, TRACETIME_LOG(Info, safepointcleanup));
|
|
NMethodSweeper::mark_active_nmethods();
|
|
event_safepoint_cleanup_task_commit(event, name);
|
|
}
|
|
|
|
if (SymbolTable::needs_rehashing()) {
|
|
const char* name = "rehashing symbol table";
|
|
EventSafepointCleanupTask event;
|
|
TraceTime timer(name, TRACETIME_LOG(Info, safepointcleanup));
|
|
SymbolTable::rehash_table();
|
|
event_safepoint_cleanup_task_commit(event, name);
|
|
}
|
|
|
|
if (StringTable::needs_rehashing()) {
|
|
const char* name = "rehashing string table";
|
|
EventSafepointCleanupTask event;
|
|
TraceTime timer(name, TRACETIME_LOG(Info, safepointcleanup));
|
|
StringTable::rehash_table();
|
|
event_safepoint_cleanup_task_commit(event, name);
|
|
}
|
|
|
|
{
|
|
// CMS delays purging the CLDG until the beginning of the next safepoint and to
|
|
// make sure concurrent sweep is done
|
|
const char* name = "purging class loader data graph";
|
|
EventSafepointCleanupTask event;
|
|
TraceTime timer(name, TRACETIME_LOG(Info, safepointcleanup));
|
|
ClassLoaderDataGraph::purge_if_needed();
|
|
event_safepoint_cleanup_task_commit(event, name);
|
|
}
|
|
}
|
|
|
|
|
|
bool SafepointSynchronize::safepoint_safe(JavaThread *thread, JavaThreadState state) {
|
|
switch(state) {
|
|
case _thread_in_native:
|
|
// native threads are safe if they have no java stack or have walkable stack
|
|
return !thread->has_last_Java_frame() || thread->frame_anchor()->walkable();
|
|
|
|
// blocked threads should have already have walkable stack
|
|
case _thread_blocked:
|
|
assert(!thread->has_last_Java_frame() || thread->frame_anchor()->walkable(), "blocked and not walkable");
|
|
return true;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
// See if the thread is running inside a lazy critical native and
|
|
// update the thread critical count if so. Also set a suspend flag to
|
|
// cause the native wrapper to return into the JVM to do the unlock
|
|
// once the native finishes.
|
|
void SafepointSynchronize::check_for_lazy_critical_native(JavaThread *thread, JavaThreadState state) {
|
|
if (state == _thread_in_native &&
|
|
thread->has_last_Java_frame() &&
|
|
thread->frame_anchor()->walkable()) {
|
|
// This thread might be in a critical native nmethod so look at
|
|
// the top of the stack and increment the critical count if it
|
|
// is.
|
|
frame wrapper_frame = thread->last_frame();
|
|
CodeBlob* stub_cb = wrapper_frame.cb();
|
|
if (stub_cb != NULL &&
|
|
stub_cb->is_nmethod() &&
|
|
stub_cb->as_nmethod_or_null()->is_lazy_critical_native()) {
|
|
// A thread could potentially be in a critical native across
|
|
// more than one safepoint, so only update the critical state on
|
|
// the first one. When it returns it will perform the unlock.
|
|
if (!thread->do_critical_native_unlock()) {
|
|
#ifdef ASSERT
|
|
if (!thread->in_critical()) {
|
|
GCLocker::increment_debug_jni_lock_count();
|
|
}
|
|
#endif
|
|
thread->enter_critical();
|
|
// Make sure the native wrapper calls back on return to
|
|
// perform the needed critical unlock.
|
|
thread->set_critical_native_unlock();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
// -------------------------------------------------------------------------------------------------------
|
|
// Implementation of Safepoint callback point
|
|
|
|
void SafepointSynchronize::block(JavaThread *thread) {
|
|
assert(thread != NULL, "thread must be set");
|
|
assert(thread->is_Java_thread(), "not a Java thread");
|
|
|
|
// Threads shouldn't block if they are in the middle of printing, but...
|
|
ttyLocker::break_tty_lock_for_safepoint(os::current_thread_id());
|
|
|
|
// Only bail from the block() call if the thread is gone from the
|
|
// thread list; starting to exit should still block.
|
|
if (thread->is_terminated()) {
|
|
// block current thread if we come here from native code when VM is gone
|
|
thread->block_if_vm_exited();
|
|
|
|
// otherwise do nothing
|
|
return;
|
|
}
|
|
|
|
JavaThreadState state = thread->thread_state();
|
|
thread->frame_anchor()->make_walkable(thread);
|
|
|
|
// Check that we have a valid thread_state at this point
|
|
switch(state) {
|
|
case _thread_in_vm_trans:
|
|
case _thread_in_Java: // From compiled code
|
|
|
|
// We are highly likely to block on the Safepoint_lock. In order to avoid blocking in this case,
|
|
// we pretend we are still in the VM.
|
|
thread->set_thread_state(_thread_in_vm);
|
|
|
|
if (is_synchronizing()) {
|
|
Atomic::inc (&TryingToBlock) ;
|
|
}
|
|
|
|
// We will always be holding the Safepoint_lock when we are examine the state
|
|
// of a thread. Hence, the instructions between the Safepoint_lock->lock() and
|
|
// Safepoint_lock->unlock() are happening atomic with regards to the safepoint code
|
|
Safepoint_lock->lock_without_safepoint_check();
|
|
if (is_synchronizing()) {
|
|
// Decrement the number of threads to wait for and signal vm thread
|
|
assert(_waiting_to_block > 0, "sanity check");
|
|
_waiting_to_block--;
|
|
thread->safepoint_state()->set_has_called_back(true);
|
|
|
|
DEBUG_ONLY(thread->set_visited_for_critical_count(true));
|
|
if (thread->in_critical()) {
|
|
// Notice that this thread is in a critical section
|
|
increment_jni_active_count();
|
|
}
|
|
|
|
// Consider (_waiting_to_block < 2) to pipeline the wakeup of the VM thread
|
|
if (_waiting_to_block == 0) {
|
|
Safepoint_lock->notify_all();
|
|
}
|
|
}
|
|
|
|
// We transition the thread to state _thread_blocked here, but
|
|
// we can't do our usual check for external suspension and then
|
|
// self-suspend after the lock_without_safepoint_check() call
|
|
// below because we are often called during transitions while
|
|
// we hold different locks. That would leave us suspended while
|
|
// holding a resource which results in deadlocks.
|
|
thread->set_thread_state(_thread_blocked);
|
|
Safepoint_lock->unlock();
|
|
|
|
// We now try to acquire the threads lock. Since this lock is hold by the VM thread during
|
|
// the entire safepoint, the threads will all line up here during the safepoint.
|
|
Threads_lock->lock_without_safepoint_check();
|
|
// restore original state. This is important if the thread comes from compiled code, so it
|
|
// will continue to execute with the _thread_in_Java state.
|
|
thread->set_thread_state(state);
|
|
Threads_lock->unlock();
|
|
break;
|
|
|
|
case _thread_in_native_trans:
|
|
case _thread_blocked_trans:
|
|
case _thread_new_trans:
|
|
if (thread->safepoint_state()->type() == ThreadSafepointState::_call_back) {
|
|
thread->print_thread_state();
|
|
fatal("Deadlock in safepoint code. "
|
|
"Should have called back to the VM before blocking.");
|
|
}
|
|
|
|
// We transition the thread to state _thread_blocked here, but
|
|
// we can't do our usual check for external suspension and then
|
|
// self-suspend after the lock_without_safepoint_check() call
|
|
// below because we are often called during transitions while
|
|
// we hold different locks. That would leave us suspended while
|
|
// holding a resource which results in deadlocks.
|
|
thread->set_thread_state(_thread_blocked);
|
|
|
|
// It is not safe to suspend a thread if we discover it is in _thread_in_native_trans. Hence,
|
|
// the safepoint code might still be waiting for it to block. We need to change the state here,
|
|
// so it can see that it is at a safepoint.
|
|
|
|
// Block until the safepoint operation is completed.
|
|
Threads_lock->lock_without_safepoint_check();
|
|
|
|
// Restore state
|
|
thread->set_thread_state(state);
|
|
|
|
Threads_lock->unlock();
|
|
break;
|
|
|
|
default:
|
|
fatal("Illegal threadstate encountered: %d", state);
|
|
}
|
|
|
|
// Check for pending. async. exceptions or suspends - except if the
|
|
// thread was blocked inside the VM. has_special_runtime_exit_condition()
|
|
// is called last since it grabs a lock and we only want to do that when
|
|
// we must.
|
|
//
|
|
// Note: we never deliver an async exception at a polling point as the
|
|
// compiler may not have an exception handler for it. The polling
|
|
// code will notice the async and deoptimize and the exception will
|
|
// be delivered. (Polling at a return point is ok though). Sure is
|
|
// a lot of bother for a deprecated feature...
|
|
//
|
|
// We don't deliver an async exception if the thread state is
|
|
// _thread_in_native_trans so JNI functions won't be called with
|
|
// a surprising pending exception. If the thread state is going back to java,
|
|
// async exception is checked in check_special_condition_for_native_trans().
|
|
|
|
if (state != _thread_blocked_trans &&
|
|
state != _thread_in_vm_trans &&
|
|
thread->has_special_runtime_exit_condition()) {
|
|
thread->handle_special_runtime_exit_condition(
|
|
!thread->is_at_poll_safepoint() && (state != _thread_in_native_trans));
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------------
|
|
// Exception handlers
|
|
|
|
|
|
void SafepointSynchronize::handle_polling_page_exception(JavaThread *thread) {
|
|
assert(thread->is_Java_thread(), "polling reference encountered by VM thread");
|
|
assert(thread->thread_state() == _thread_in_Java, "should come from Java code");
|
|
assert(SafepointSynchronize::is_synchronizing(), "polling encountered outside safepoint synchronization");
|
|
|
|
if (ShowSafepointMsgs) {
|
|
tty->print("handle_polling_page_exception: ");
|
|
}
|
|
|
|
if (PrintSafepointStatistics) {
|
|
inc_page_trap_count();
|
|
}
|
|
|
|
ThreadSafepointState* state = thread->safepoint_state();
|
|
|
|
state->handle_polling_page_exception();
|
|
}
|
|
|
|
|
|
void SafepointSynchronize::print_safepoint_timeout(SafepointTimeoutReason reason) {
|
|
if (!timeout_error_printed) {
|
|
timeout_error_printed = true;
|
|
// Print out the thread info which didn't reach the safepoint for debugging
|
|
// purposes (useful when there are lots of threads in the debugger).
|
|
tty->cr();
|
|
tty->print_cr("# SafepointSynchronize::begin: Timeout detected:");
|
|
if (reason == _spinning_timeout) {
|
|
tty->print_cr("# SafepointSynchronize::begin: Timed out while spinning to reach a safepoint.");
|
|
} else if (reason == _blocking_timeout) {
|
|
tty->print_cr("# SafepointSynchronize::begin: Timed out while waiting for threads to stop.");
|
|
}
|
|
|
|
tty->print_cr("# SafepointSynchronize::begin: Threads which did not reach the safepoint:");
|
|
ThreadSafepointState *cur_state;
|
|
ResourceMark rm;
|
|
for(JavaThread *cur_thread = Threads::first(); cur_thread;
|
|
cur_thread = cur_thread->next()) {
|
|
cur_state = cur_thread->safepoint_state();
|
|
|
|
if (cur_thread->thread_state() != _thread_blocked &&
|
|
((reason == _spinning_timeout && cur_state->is_running()) ||
|
|
(reason == _blocking_timeout && !cur_state->has_called_back()))) {
|
|
tty->print("# ");
|
|
cur_thread->print();
|
|
tty->cr();
|
|
}
|
|
}
|
|
tty->print_cr("# SafepointSynchronize::begin: (End of list)");
|
|
}
|
|
|
|
// To debug the long safepoint, specify both DieOnSafepointTimeout &
|
|
// ShowMessageBoxOnError.
|
|
if (DieOnSafepointTimeout) {
|
|
VM_Operation *op = VMThread::vm_operation();
|
|
fatal("Safepoint sync time longer than " INTX_FORMAT "ms detected when executing %s.",
|
|
SafepointTimeoutDelay,
|
|
op != NULL ? op->name() : "no vm operation");
|
|
}
|
|
}
|
|
|
|
|
|
// -------------------------------------------------------------------------------------------------------
|
|
// Implementation of ThreadSafepointState
|
|
|
|
ThreadSafepointState::ThreadSafepointState(JavaThread *thread) {
|
|
_thread = thread;
|
|
_type = _running;
|
|
_has_called_back = false;
|
|
_at_poll_safepoint = false;
|
|
}
|
|
|
|
void ThreadSafepointState::create(JavaThread *thread) {
|
|
ThreadSafepointState *state = new ThreadSafepointState(thread);
|
|
thread->set_safepoint_state(state);
|
|
}
|
|
|
|
void ThreadSafepointState::destroy(JavaThread *thread) {
|
|
if (thread->safepoint_state()) {
|
|
delete(thread->safepoint_state());
|
|
thread->set_safepoint_state(NULL);
|
|
}
|
|
}
|
|
|
|
void ThreadSafepointState::examine_state_of_thread() {
|
|
assert(is_running(), "better be running or just have hit safepoint poll");
|
|
|
|
JavaThreadState state = _thread->thread_state();
|
|
|
|
// Save the state at the start of safepoint processing.
|
|
_orig_thread_state = state;
|
|
|
|
// Check for a thread that is suspended. Note that thread resume tries
|
|
// to grab the Threads_lock which we own here, so a thread cannot be
|
|
// resumed during safepoint synchronization.
|
|
|
|
// We check to see if this thread is suspended without locking to
|
|
// avoid deadlocking with a third thread that is waiting for this
|
|
// thread to be suspended. The third thread can notice the safepoint
|
|
// that we're trying to start at the beginning of its SR_lock->wait()
|
|
// call. If that happens, then the third thread will block on the
|
|
// safepoint while still holding the underlying SR_lock. We won't be
|
|
// able to get the SR_lock and we'll deadlock.
|
|
//
|
|
// We don't need to grab the SR_lock here for two reasons:
|
|
// 1) The suspend flags are both volatile and are set with an
|
|
// Atomic::cmpxchg() call so we should see the suspended
|
|
// state right away.
|
|
// 2) We're being called from the safepoint polling loop; if
|
|
// we don't see the suspended state on this iteration, then
|
|
// we'll come around again.
|
|
//
|
|
bool is_suspended = _thread->is_ext_suspended();
|
|
if (is_suspended) {
|
|
roll_forward(_at_safepoint);
|
|
return;
|
|
}
|
|
|
|
// Some JavaThread states have an initial safepoint state of
|
|
// running, but are actually at a safepoint. We will happily
|
|
// agree and update the safepoint state here.
|
|
if (SafepointSynchronize::safepoint_safe(_thread, state)) {
|
|
SafepointSynchronize::check_for_lazy_critical_native(_thread, state);
|
|
roll_forward(_at_safepoint);
|
|
return;
|
|
}
|
|
|
|
if (state == _thread_in_vm) {
|
|
roll_forward(_call_back);
|
|
return;
|
|
}
|
|
|
|
// All other thread states will continue to run until they
|
|
// transition and self-block in state _blocked
|
|
// Safepoint polling in compiled code causes the Java threads to do the same.
|
|
// Note: new threads may require a malloc so they must be allowed to finish
|
|
|
|
assert(is_running(), "examine_state_of_thread on non-running thread");
|
|
return;
|
|
}
|
|
|
|
// Returns true is thread could not be rolled forward at present position.
|
|
void ThreadSafepointState::roll_forward(suspend_type type) {
|
|
_type = type;
|
|
|
|
switch(_type) {
|
|
case _at_safepoint:
|
|
SafepointSynchronize::signal_thread_at_safepoint();
|
|
DEBUG_ONLY(_thread->set_visited_for_critical_count(true));
|
|
if (_thread->in_critical()) {
|
|
// Notice that this thread is in a critical section
|
|
SafepointSynchronize::increment_jni_active_count();
|
|
}
|
|
break;
|
|
|
|
case _call_back:
|
|
set_has_called_back(false);
|
|
break;
|
|
|
|
case _running:
|
|
default:
|
|
ShouldNotReachHere();
|
|
}
|
|
}
|
|
|
|
void ThreadSafepointState::restart() {
|
|
switch(type()) {
|
|
case _at_safepoint:
|
|
case _call_back:
|
|
break;
|
|
|
|
case _running:
|
|
default:
|
|
tty->print_cr("restart thread " INTPTR_FORMAT " with state %d",
|
|
p2i(_thread), _type);
|
|
_thread->print();
|
|
ShouldNotReachHere();
|
|
}
|
|
_type = _running;
|
|
set_has_called_back(false);
|
|
}
|
|
|
|
|
|
void ThreadSafepointState::print_on(outputStream *st) const {
|
|
const char *s = NULL;
|
|
|
|
switch(_type) {
|
|
case _running : s = "_running"; break;
|
|
case _at_safepoint : s = "_at_safepoint"; break;
|
|
case _call_back : s = "_call_back"; break;
|
|
default:
|
|
ShouldNotReachHere();
|
|
}
|
|
|
|
st->print_cr("Thread: " INTPTR_FORMAT
|
|
" [0x%2x] State: %s _has_called_back %d _at_poll_safepoint %d",
|
|
p2i(_thread), _thread->osthread()->thread_id(), s, _has_called_back,
|
|
_at_poll_safepoint);
|
|
|
|
_thread->print_thread_state_on(st);
|
|
}
|
|
|
|
// ---------------------------------------------------------------------------------------------------------------------
|
|
|
|
// Block the thread at the safepoint poll or poll return.
|
|
void ThreadSafepointState::handle_polling_page_exception() {
|
|
|
|
// Check state. block() will set thread state to thread_in_vm which will
|
|
// cause the safepoint state _type to become _call_back.
|
|
assert(type() == ThreadSafepointState::_running,
|
|
"polling page exception on thread not running state");
|
|
|
|
// Step 1: Find the nmethod from the return address
|
|
if (ShowSafepointMsgs && Verbose) {
|
|
tty->print_cr("Polling page exception at " INTPTR_FORMAT, p2i(thread()->saved_exception_pc()));
|
|
}
|
|
address real_return_addr = thread()->saved_exception_pc();
|
|
|
|
CodeBlob *cb = CodeCache::find_blob(real_return_addr);
|
|
assert(cb != NULL && cb->is_nmethod(), "return address should be in nmethod");
|
|
nmethod* nm = (nmethod*)cb;
|
|
|
|
// Find frame of caller
|
|
frame stub_fr = thread()->last_frame();
|
|
CodeBlob* stub_cb = stub_fr.cb();
|
|
assert(stub_cb->is_safepoint_stub(), "must be a safepoint stub");
|
|
RegisterMap map(thread(), true);
|
|
frame caller_fr = stub_fr.sender(&map);
|
|
|
|
// Should only be poll_return or poll
|
|
assert( nm->is_at_poll_or_poll_return(real_return_addr), "should not be at call" );
|
|
|
|
// This is a poll immediately before a return. The exception handling code
|
|
// has already had the effect of causing the return to occur, so the execution
|
|
// will continue immediately after the call. In addition, the oopmap at the
|
|
// return point does not mark the return value as an oop (if it is), so
|
|
// it needs a handle here to be updated.
|
|
if( nm->is_at_poll_return(real_return_addr) ) {
|
|
// See if return type is an oop.
|
|
bool return_oop = nm->method()->is_returning_oop();
|
|
Handle return_value;
|
|
if (return_oop) {
|
|
// The oop result has been saved on the stack together with all
|
|
// the other registers. In order to preserve it over GCs we need
|
|
// to keep it in a handle.
|
|
oop result = caller_fr.saved_oop_result(&map);
|
|
assert(result == NULL || result->is_oop(), "must be oop");
|
|
return_value = Handle(thread(), result);
|
|
assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
|
|
}
|
|
|
|
// Block the thread
|
|
SafepointSynchronize::block(thread());
|
|
|
|
// restore oop result, if any
|
|
if (return_oop) {
|
|
caller_fr.set_saved_oop_result(&map, return_value());
|
|
}
|
|
}
|
|
|
|
// This is a safepoint poll. Verify the return address and block.
|
|
else {
|
|
set_at_poll_safepoint(true);
|
|
|
|
// verify the blob built the "return address" correctly
|
|
assert(real_return_addr == caller_fr.pc(), "must match");
|
|
|
|
// Block the thread
|
|
SafepointSynchronize::block(thread());
|
|
set_at_poll_safepoint(false);
|
|
|
|
// If we have a pending async exception deoptimize the frame
|
|
// as otherwise we may never deliver it.
|
|
if (thread()->has_async_condition()) {
|
|
ThreadInVMfromJavaNoAsyncException __tiv(thread());
|
|
Deoptimization::deoptimize_frame(thread(), caller_fr.id());
|
|
}
|
|
|
|
// If an exception has been installed we must check for a pending deoptimization
|
|
// Deoptimize frame if exception has been thrown.
|
|
|
|
if (thread()->has_pending_exception() ) {
|
|
RegisterMap map(thread(), true);
|
|
frame caller_fr = stub_fr.sender(&map);
|
|
if (caller_fr.is_deoptimized_frame()) {
|
|
// The exception patch will destroy registers that are still
|
|
// live and will be needed during deoptimization. Defer the
|
|
// Async exception should have deferred the exception until the
|
|
// next safepoint which will be detected when we get into
|
|
// the interpreter so if we have an exception now things
|
|
// are messed up.
|
|
|
|
fatal("Exception installed and deoptimization is pending");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
//
|
|
// Statistics & Instrumentations
|
|
//
|
|
SafepointSynchronize::SafepointStats* SafepointSynchronize::_safepoint_stats = NULL;
|
|
jlong SafepointSynchronize::_safepoint_begin_time = 0;
|
|
int SafepointSynchronize::_cur_stat_index = 0;
|
|
julong SafepointSynchronize::_safepoint_reasons[VM_Operation::VMOp_Terminating];
|
|
julong SafepointSynchronize::_coalesced_vmop_count = 0;
|
|
jlong SafepointSynchronize::_max_sync_time = 0;
|
|
jlong SafepointSynchronize::_max_vmop_time = 0;
|
|
float SafepointSynchronize::_ts_of_current_safepoint = 0.0f;
|
|
|
|
static jlong cleanup_end_time = 0;
|
|
static bool need_to_track_page_armed_status = false;
|
|
static bool init_done = false;
|
|
|
|
// Helper method to print the header.
|
|
static void print_header() {
|
|
tty->print(" vmop "
|
|
"[threads: total initially_running wait_to_block] ");
|
|
tty->print("[time: spin block sync cleanup vmop] ");
|
|
|
|
// no page armed status printed out if it is always armed.
|
|
if (need_to_track_page_armed_status) {
|
|
tty->print("page_armed ");
|
|
}
|
|
|
|
tty->print_cr("page_trap_count");
|
|
}
|
|
|
|
void SafepointSynchronize::deferred_initialize_stat() {
|
|
if (init_done) return;
|
|
|
|
// If PrintSafepointStatisticsTimeout is specified, the statistics data will
|
|
// be printed right away, in which case, _safepoint_stats will regress to
|
|
// a single element array. Otherwise, it is a circular ring buffer with default
|
|
// size of PrintSafepointStatisticsCount.
|
|
int stats_array_size;
|
|
if (PrintSafepointStatisticsTimeout > 0) {
|
|
stats_array_size = 1;
|
|
PrintSafepointStatistics = true;
|
|
} else {
|
|
stats_array_size = PrintSafepointStatisticsCount;
|
|
}
|
|
_safepoint_stats = (SafepointStats*)os::malloc(stats_array_size
|
|
* sizeof(SafepointStats), mtInternal);
|
|
guarantee(_safepoint_stats != NULL,
|
|
"not enough memory for safepoint instrumentation data");
|
|
|
|
if (DeferPollingPageLoopCount >= 0) {
|
|
need_to_track_page_armed_status = true;
|
|
}
|
|
init_done = true;
|
|
}
|
|
|
|
void SafepointSynchronize::begin_statistics(int nof_threads, int nof_running) {
|
|
assert(init_done, "safepoint statistics array hasn't been initialized");
|
|
SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
|
|
|
|
spstat->_time_stamp = _ts_of_current_safepoint;
|
|
|
|
VM_Operation *op = VMThread::vm_operation();
|
|
spstat->_vmop_type = (op != NULL ? op->type() : -1);
|
|
if (op != NULL) {
|
|
_safepoint_reasons[spstat->_vmop_type]++;
|
|
}
|
|
|
|
spstat->_nof_total_threads = nof_threads;
|
|
spstat->_nof_initial_running_threads = nof_running;
|
|
spstat->_nof_threads_hit_page_trap = 0;
|
|
|
|
// Records the start time of spinning. The real time spent on spinning
|
|
// will be adjusted when spin is done. Same trick is applied for time
|
|
// spent on waiting for threads to block.
|
|
if (nof_running != 0) {
|
|
spstat->_time_to_spin = os::javaTimeNanos();
|
|
} else {
|
|
spstat->_time_to_spin = 0;
|
|
}
|
|
}
|
|
|
|
void SafepointSynchronize::update_statistics_on_spin_end() {
|
|
SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
|
|
|
|
jlong cur_time = os::javaTimeNanos();
|
|
|
|
spstat->_nof_threads_wait_to_block = _waiting_to_block;
|
|
if (spstat->_nof_initial_running_threads != 0) {
|
|
spstat->_time_to_spin = cur_time - spstat->_time_to_spin;
|
|
}
|
|
|
|
if (need_to_track_page_armed_status) {
|
|
spstat->_page_armed = (PageArmed == 1);
|
|
}
|
|
|
|
// Records the start time of waiting for to block. Updated when block is done.
|
|
if (_waiting_to_block != 0) {
|
|
spstat->_time_to_wait_to_block = cur_time;
|
|
} else {
|
|
spstat->_time_to_wait_to_block = 0;
|
|
}
|
|
}
|
|
|
|
void SafepointSynchronize::update_statistics_on_sync_end(jlong end_time) {
|
|
SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
|
|
|
|
if (spstat->_nof_threads_wait_to_block != 0) {
|
|
spstat->_time_to_wait_to_block = end_time -
|
|
spstat->_time_to_wait_to_block;
|
|
}
|
|
|
|
// Records the end time of sync which will be used to calculate the total
|
|
// vm operation time. Again, the real time spending in syncing will be deducted
|
|
// from the start of the sync time later when end_statistics is called.
|
|
spstat->_time_to_sync = end_time - _safepoint_begin_time;
|
|
if (spstat->_time_to_sync > _max_sync_time) {
|
|
_max_sync_time = spstat->_time_to_sync;
|
|
}
|
|
|
|
spstat->_time_to_do_cleanups = end_time;
|
|
}
|
|
|
|
void SafepointSynchronize::update_statistics_on_cleanup_end(jlong end_time) {
|
|
SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
|
|
|
|
// Record how long spent in cleanup tasks.
|
|
spstat->_time_to_do_cleanups = end_time - spstat->_time_to_do_cleanups;
|
|
|
|
cleanup_end_time = end_time;
|
|
}
|
|
|
|
void SafepointSynchronize::end_statistics(jlong vmop_end_time) {
|
|
SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
|
|
|
|
// Update the vm operation time.
|
|
spstat->_time_to_exec_vmop = vmop_end_time - cleanup_end_time;
|
|
if (spstat->_time_to_exec_vmop > _max_vmop_time) {
|
|
_max_vmop_time = spstat->_time_to_exec_vmop;
|
|
}
|
|
// Only the sync time longer than the specified
|
|
// PrintSafepointStatisticsTimeout will be printed out right away.
|
|
// By default, it is -1 meaning all samples will be put into the list.
|
|
if ( PrintSafepointStatisticsTimeout > 0) {
|
|
if (spstat->_time_to_sync > (jlong)PrintSafepointStatisticsTimeout * MICROUNITS) {
|
|
print_statistics();
|
|
}
|
|
} else {
|
|
// The safepoint statistics will be printed out when the _safepoin_stats
|
|
// array fills up.
|
|
if (_cur_stat_index == PrintSafepointStatisticsCount - 1) {
|
|
print_statistics();
|
|
_cur_stat_index = 0;
|
|
} else {
|
|
_cur_stat_index++;
|
|
}
|
|
}
|
|
}
|
|
|
|
void SafepointSynchronize::print_statistics() {
|
|
SafepointStats* sstats = _safepoint_stats;
|
|
|
|
for (int index = 0; index <= _cur_stat_index; index++) {
|
|
if (index % 30 == 0) {
|
|
print_header();
|
|
}
|
|
sstats = &_safepoint_stats[index];
|
|
tty->print("%.3f: ", sstats->_time_stamp);
|
|
tty->print("%-26s ["
|
|
INT32_FORMAT_W(8) INT32_FORMAT_W(11) INT32_FORMAT_W(15)
|
|
" ] ",
|
|
sstats->_vmop_type == -1 ? "no vm operation" :
|
|
VM_Operation::name(sstats->_vmop_type),
|
|
sstats->_nof_total_threads,
|
|
sstats->_nof_initial_running_threads,
|
|
sstats->_nof_threads_wait_to_block);
|
|
// "/ MICROUNITS " is to convert the unit from nanos to millis.
|
|
tty->print(" ["
|
|
INT64_FORMAT_W(6) INT64_FORMAT_W(6)
|
|
INT64_FORMAT_W(6) INT64_FORMAT_W(6)
|
|
INT64_FORMAT_W(6) " ] ",
|
|
sstats->_time_to_spin / MICROUNITS,
|
|
sstats->_time_to_wait_to_block / MICROUNITS,
|
|
sstats->_time_to_sync / MICROUNITS,
|
|
sstats->_time_to_do_cleanups / MICROUNITS,
|
|
sstats->_time_to_exec_vmop / MICROUNITS);
|
|
|
|
if (need_to_track_page_armed_status) {
|
|
tty->print(INT32_FORMAT " ", sstats->_page_armed);
|
|
}
|
|
tty->print_cr(INT32_FORMAT " ", sstats->_nof_threads_hit_page_trap);
|
|
}
|
|
}
|
|
|
|
// This method will be called when VM exits. It will first call
|
|
// print_statistics to print out the rest of the sampling. Then
|
|
// it tries to summarize the sampling.
|
|
void SafepointSynchronize::print_stat_on_exit() {
|
|
if (_safepoint_stats == NULL) return;
|
|
|
|
SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
|
|
|
|
// During VM exit, end_statistics may not get called and in that
|
|
// case, if the sync time is less than PrintSafepointStatisticsTimeout,
|
|
// don't print it out.
|
|
// Approximate the vm op time.
|
|
_safepoint_stats[_cur_stat_index]._time_to_exec_vmop =
|
|
os::javaTimeNanos() - cleanup_end_time;
|
|
|
|
if ( PrintSafepointStatisticsTimeout < 0 ||
|
|
spstat->_time_to_sync > (jlong)PrintSafepointStatisticsTimeout * MICROUNITS) {
|
|
print_statistics();
|
|
}
|
|
tty->cr();
|
|
|
|
// Print out polling page sampling status.
|
|
if (!need_to_track_page_armed_status) {
|
|
tty->print_cr("Polling page always armed");
|
|
} else {
|
|
tty->print_cr("Defer polling page loop count = " INTX_FORMAT "\n",
|
|
DeferPollingPageLoopCount);
|
|
}
|
|
|
|
for (int index = 0; index < VM_Operation::VMOp_Terminating; index++) {
|
|
if (_safepoint_reasons[index] != 0) {
|
|
tty->print_cr("%-26s" UINT64_FORMAT_W(10), VM_Operation::name(index),
|
|
_safepoint_reasons[index]);
|
|
}
|
|
}
|
|
|
|
tty->print_cr(UINT64_FORMAT_W(5) " VM operations coalesced during safepoint",
|
|
_coalesced_vmop_count);
|
|
tty->print_cr("Maximum sync time " INT64_FORMAT_W(5) " ms",
|
|
_max_sync_time / MICROUNITS);
|
|
tty->print_cr("Maximum vm operation time (except for Exit VM operation) "
|
|
INT64_FORMAT_W(5) " ms",
|
|
_max_vmop_time / MICROUNITS);
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Non-product code
|
|
|
|
#ifndef PRODUCT
|
|
|
|
void SafepointSynchronize::print_state() {
|
|
if (_state == _not_synchronized) {
|
|
tty->print_cr("not synchronized");
|
|
} else if (_state == _synchronizing || _state == _synchronized) {
|
|
tty->print_cr("State: %s", (_state == _synchronizing) ? "synchronizing" :
|
|
"synchronized");
|
|
|
|
for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
|
|
cur->safepoint_state()->print();
|
|
}
|
|
}
|
|
}
|
|
|
|
void SafepointSynchronize::safepoint_msg(const char* format, ...) {
|
|
if (ShowSafepointMsgs) {
|
|
va_list ap;
|
|
va_start(ap, format);
|
|
tty->vprint_cr(format, ap);
|
|
va_end(ap);
|
|
}
|
|
}
|
|
|
|
#endif // !PRODUCT
|