8f14f8b2a7
Reviewed-by: darcy, rhalade, mschoene
329 lines
11 KiB
Java
329 lines
11 KiB
Java
/*
|
|
* Copyright (c) 2006, 2018, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*/
|
|
|
|
/*
|
|
* @test
|
|
* @bug 6362557 8200698
|
|
* @summary Some tests of add(BigDecimal, mc)
|
|
* @author Joseph D. Darcy
|
|
*/
|
|
|
|
import java.math.*;
|
|
import static java.math.BigDecimal.*;
|
|
import java.util.Set;
|
|
import java.util.EnumSet;
|
|
|
|
public class AddTests {
|
|
|
|
private static Set<RoundingMode> nonExactRoundingModes =
|
|
EnumSet.complementOf(EnumSet.of(RoundingMode.UNNECESSARY));
|
|
|
|
/**
|
|
* Test for some simple additions, particularly, it will test
|
|
* the overflow case.
|
|
*/
|
|
private static int simpleTests() {
|
|
int failures = 0;
|
|
|
|
BigDecimal[] bd1 = {
|
|
new BigDecimal(new BigInteger("7812404666936930160"), 11),
|
|
new BigDecimal(new BigInteger("7812404666936930160"), 12),
|
|
new BigDecimal(new BigInteger("7812404666936930160"), 13),
|
|
};
|
|
BigDecimal bd2 = new BigDecimal(new BigInteger("2790000"), 1);
|
|
BigDecimal[] expectedResult = {
|
|
new BigDecimal("78403046.66936930160"),
|
|
new BigDecimal("8091404.666936930160"),
|
|
new BigDecimal("1060240.4666936930160"),
|
|
};
|
|
for (int i = 0; i < bd1.length; i++) {
|
|
if (!bd1[i].add(bd2).equals(expectedResult[i]))
|
|
failures++;
|
|
}
|
|
return failures;
|
|
}
|
|
|
|
/**
|
|
* Test for extreme value of scale and rounding precision that
|
|
* could cause integer overflow in right-shift-into-sticky-bit
|
|
* computations.
|
|
*/
|
|
private static int extremaTests() {
|
|
int failures = 0;
|
|
|
|
failures += addWithoutException(valueOf(1, -Integer.MAX_VALUE),
|
|
valueOf(2, Integer.MAX_VALUE), null);
|
|
failures += addWithoutException(valueOf(1, -Integer.MAX_VALUE),
|
|
valueOf(-2, Integer.MAX_VALUE), null);
|
|
return failures;
|
|
}
|
|
|
|
/**
|
|
* Print sum of b1 and b2; correct result will not throw an
|
|
* exception.
|
|
*/
|
|
private static int addWithoutException(BigDecimal b1, BigDecimal b2, MathContext mc) {
|
|
if (mc == null)
|
|
mc = new MathContext(2, RoundingMode.DOWN);
|
|
|
|
try {
|
|
BigDecimal sum = b1.add(b2, mc);
|
|
printAddition(b1, b2, sum.toString());
|
|
return 0;
|
|
} catch(ArithmeticException ae) {
|
|
printAddition(b1, b2, "Exception!");
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Test combinations of operands that may meet the condensation
|
|
* criteria when rounded to different precisions.
|
|
*/
|
|
private static int roundingGradationTests() {
|
|
int failures = 0;
|
|
|
|
failures += roundAway(new BigDecimal("1234e100"),
|
|
new BigDecimal( "1234e97"));
|
|
|
|
failures += roundAway(new BigDecimal("1234e100"),
|
|
new BigDecimal( "1234e96"));
|
|
|
|
failures += roundAway(new BigDecimal("1234e100"),
|
|
new BigDecimal( "1234e95"));
|
|
|
|
failures += roundAway(new BigDecimal("1234e100"),
|
|
new BigDecimal( "1234e94"));
|
|
|
|
failures += roundAway(new BigDecimal("1234e100"),
|
|
new BigDecimal( "1234e93"));
|
|
|
|
failures += roundAway(new BigDecimal("1234e100"),
|
|
new BigDecimal( "1234e92"));
|
|
|
|
failures += roundAway(new BigDecimal("1234e100"),
|
|
new BigDecimal("1234e50"));
|
|
|
|
|
|
failures += roundAway(new BigDecimal("1000e100"),
|
|
new BigDecimal( "1234e97"));
|
|
|
|
failures += roundAway(new BigDecimal("1000e100"),
|
|
new BigDecimal( "1234e96"));
|
|
|
|
failures += roundAway(new BigDecimal("1000e100"),
|
|
new BigDecimal( "1234e95"));
|
|
|
|
failures += roundAway(new BigDecimal("1000e100"),
|
|
new BigDecimal( "1234e94"));
|
|
|
|
failures += roundAway(new BigDecimal("1000e100"),
|
|
new BigDecimal( "1234e93"));
|
|
|
|
failures += roundAway(new BigDecimal("1000e100"),
|
|
new BigDecimal( "1234e92"));
|
|
|
|
failures += roundAway(new BigDecimal("1000e100"),
|
|
new BigDecimal("1234e50"));
|
|
|
|
|
|
|
|
failures += roundAway(new BigDecimal("1999e100"),
|
|
new BigDecimal( "1234e97"));
|
|
|
|
failures += roundAway(new BigDecimal("1999e100"),
|
|
new BigDecimal( "1234e96"));
|
|
|
|
failures += roundAway(new BigDecimal("1999e100"),
|
|
new BigDecimal( "1234e95"));
|
|
|
|
failures += roundAway(new BigDecimal("1999e100"),
|
|
new BigDecimal( "1234e94"));
|
|
|
|
failures += roundAway(new BigDecimal("1999e100"),
|
|
new BigDecimal( "1234e93"));
|
|
|
|
failures += roundAway(new BigDecimal("1999e100"),
|
|
new BigDecimal( "1234e92"));
|
|
|
|
failures += roundAway(new BigDecimal("1999e100"),
|
|
new BigDecimal("1234e50"));
|
|
|
|
|
|
|
|
failures += roundAway(new BigDecimal("9999e100"),
|
|
new BigDecimal( "1234e97"));
|
|
|
|
failures += roundAway(new BigDecimal("9999e100"),
|
|
new BigDecimal( "1234e96"));
|
|
|
|
failures += roundAway(new BigDecimal("9999e100"),
|
|
new BigDecimal( "1234e95"));
|
|
|
|
failures += roundAway(new BigDecimal("9999e100"),
|
|
new BigDecimal( "1234e94"));
|
|
|
|
failures += roundAway(new BigDecimal("9999e100"),
|
|
new BigDecimal( "1234e93"));
|
|
|
|
failures += roundAway(new BigDecimal("9999e100"),
|
|
new BigDecimal( "1234e92"));
|
|
|
|
failures += roundAway(new BigDecimal("9999e100"),
|
|
new BigDecimal("1234e50"));
|
|
|
|
return failures;
|
|
}
|
|
|
|
private static void printAddition(BigDecimal b1, BigDecimal b2, String s) {
|
|
System.out.println("" + b1+ "\t+\t" + b2 + "\t=\t" + s);
|
|
}
|
|
|
|
private static int roundAway(BigDecimal b1, BigDecimal b2) {
|
|
int failures = 0;
|
|
|
|
b1.precision();
|
|
b2.precision();
|
|
|
|
BigDecimal b1_negate = b1.negate();
|
|
BigDecimal b2_negate = b2.negate();
|
|
|
|
b1_negate.precision();
|
|
b2_negate.precision();
|
|
|
|
failures += roundAway1(b1, b2);
|
|
failures += roundAway1(b1, b2_negate);
|
|
failures += roundAway1(b1_negate, b2);
|
|
failures += roundAway1(b1_negate, b2_negate);
|
|
|
|
return failures;
|
|
}
|
|
|
|
private static int roundAway1(BigDecimal b1, BigDecimal b2) {
|
|
int failures = 0;
|
|
failures += roundAway0(b1, b2);
|
|
failures += roundAway0(b2, b1);
|
|
return failures;
|
|
}
|
|
|
|
/**
|
|
* Compare b1.add(b2, mc) with b1.add(b2).round(mc) for a variety
|
|
* of MathContexts.
|
|
*/
|
|
private static int roundAway0(BigDecimal b1, BigDecimal b2) {
|
|
int failures = 0;
|
|
BigDecimal exactSum = b1.add(b2);
|
|
|
|
for(int precision = 1 ; precision < exactSum.precision()+2; precision++) {
|
|
for(RoundingMode rm : nonExactRoundingModes) {
|
|
MathContext mc = new MathContext(precision, rm);
|
|
BigDecimal roundedExactSum = exactSum.round(mc);
|
|
|
|
try {
|
|
BigDecimal sum = b1.add(b2, mc);
|
|
|
|
if (!roundedExactSum.equals(sum) ) {
|
|
failures++;
|
|
System.out.println("Exact sum " + exactSum +
|
|
"\trounded by " + mc +
|
|
"\texpected: " + roundedExactSum + " got: ");
|
|
printAddition(b1, b2, sum.toString());
|
|
}
|
|
// else {
|
|
// System.out.print(mc + "\t");
|
|
// printAddition(b1, b2, sum.toString());
|
|
// }
|
|
|
|
} catch (ArithmeticException ae) {
|
|
printAddition(b1, b2, "Exception!");
|
|
failures++;
|
|
}
|
|
}
|
|
}
|
|
|
|
return failures;
|
|
}
|
|
|
|
/**
|
|
* Verify calling the precision method should not change the
|
|
* computed result.
|
|
*/
|
|
private static int precisionConsistencyTest() {
|
|
int failures = 0;
|
|
MathContext mc = new MathContext(1,RoundingMode.DOWN);
|
|
BigDecimal a = BigDecimal.valueOf(1999, -1); //value is equivalent to 19990
|
|
|
|
BigDecimal sum1 = a.add(BigDecimal.ONE, mc);
|
|
a.precision();
|
|
BigDecimal sum2 = a.add(BigDecimal.ONE, mc);
|
|
|
|
if (!sum1.equals(sum2)) {
|
|
failures ++;
|
|
System.out.println("Unequal sums after calling precision!");
|
|
System.out.print("Before:\t");
|
|
printAddition(a, BigDecimal.ONE, sum1.toString());
|
|
|
|
System.out.print("After:\t");
|
|
printAddition(a, BigDecimal.ONE, sum2.toString());
|
|
}
|
|
|
|
return failures;
|
|
}
|
|
|
|
private static int arithmeticExceptionTest() {
|
|
int failures = 0;
|
|
BigDecimal x;
|
|
try {
|
|
//
|
|
// The string representation "1e2147483647", which is equivalent
|
|
// to 10^Integer.MAX_VALUE, is used to create an augend with an
|
|
// unscaled value of 1 and a scale of -Integer.MAX_VALUE. The
|
|
// addend "1" has an unscaled value of 1 with a scale of 0. The
|
|
// addition is performed exactly and is specified to have a
|
|
// preferred scale of max(-Integer.MAX_VALUE, 0). As the scale
|
|
// of the result is 0, a value with Integer.MAX_VALUE + 1 digits
|
|
// would need to be created. Therefore the next statement is
|
|
// expected to overflow with an ArithmeticException.
|
|
//
|
|
x = new BigDecimal("1e2147483647").add(new BigDecimal(1));
|
|
failures++;
|
|
} catch (ArithmeticException ae) {
|
|
}
|
|
return failures;
|
|
}
|
|
|
|
public static void main(String argv[]) {
|
|
int failures = 0;
|
|
|
|
failures += extremaTests();
|
|
failures += roundingGradationTests();
|
|
failures += precisionConsistencyTest();
|
|
failures += arithmeticExceptionTest();
|
|
|
|
if (failures > 0) {
|
|
throw new RuntimeException("Incurred " + failures +
|
|
" failures while testing rounding add.");
|
|
}
|
|
}
|
|
}
|