15c4140ae5
Reviewed-by: brutisso, mlarsson, rprotacio
3629 lines
133 KiB
C++
3629 lines
133 KiB
C++
/*
|
|
* Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "classfile/metadataOnStackMark.hpp"
|
|
#include "classfile/symbolTable.hpp"
|
|
#include "code/codeCache.hpp"
|
|
#include "gc/g1/concurrentMarkThread.inline.hpp"
|
|
#include "gc/g1/g1CollectedHeap.inline.hpp"
|
|
#include "gc/g1/g1CollectorPolicy.hpp"
|
|
#include "gc/g1/g1CollectorState.hpp"
|
|
#include "gc/g1/g1ConcurrentMark.inline.hpp"
|
|
#include "gc/g1/g1HeapVerifier.hpp"
|
|
#include "gc/g1/g1OopClosures.inline.hpp"
|
|
#include "gc/g1/g1StringDedup.hpp"
|
|
#include "gc/g1/heapRegion.inline.hpp"
|
|
#include "gc/g1/heapRegionRemSet.hpp"
|
|
#include "gc/g1/heapRegionSet.inline.hpp"
|
|
#include "gc/g1/suspendibleThreadSet.hpp"
|
|
#include "gc/shared/gcId.hpp"
|
|
#include "gc/shared/gcTimer.hpp"
|
|
#include "gc/shared/gcTrace.hpp"
|
|
#include "gc/shared/gcTraceTime.inline.hpp"
|
|
#include "gc/shared/genOopClosures.inline.hpp"
|
|
#include "gc/shared/referencePolicy.hpp"
|
|
#include "gc/shared/strongRootsScope.hpp"
|
|
#include "gc/shared/taskqueue.inline.hpp"
|
|
#include "gc/shared/vmGCOperations.hpp"
|
|
#include "logging/log.hpp"
|
|
#include "memory/allocation.hpp"
|
|
#include "memory/resourceArea.hpp"
|
|
#include "oops/oop.inline.hpp"
|
|
#include "runtime/atomic.inline.hpp"
|
|
#include "runtime/handles.inline.hpp"
|
|
#include "runtime/java.hpp"
|
|
#include "runtime/prefetch.inline.hpp"
|
|
#include "services/memTracker.hpp"
|
|
|
|
// Concurrent marking bit map wrapper
|
|
|
|
G1CMBitMapRO::G1CMBitMapRO(int shifter) :
|
|
_bm(),
|
|
_shifter(shifter) {
|
|
_bmStartWord = 0;
|
|
_bmWordSize = 0;
|
|
}
|
|
|
|
HeapWord* G1CMBitMapRO::getNextMarkedWordAddress(const HeapWord* addr,
|
|
const HeapWord* limit) const {
|
|
// First we must round addr *up* to a possible object boundary.
|
|
addr = (HeapWord*)align_size_up((intptr_t)addr,
|
|
HeapWordSize << _shifter);
|
|
size_t addrOffset = heapWordToOffset(addr);
|
|
assert(limit != NULL, "limit must not be NULL");
|
|
size_t limitOffset = heapWordToOffset(limit);
|
|
size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
|
|
HeapWord* nextAddr = offsetToHeapWord(nextOffset);
|
|
assert(nextAddr >= addr, "get_next_one postcondition");
|
|
assert(nextAddr == limit || isMarked(nextAddr),
|
|
"get_next_one postcondition");
|
|
return nextAddr;
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
bool G1CMBitMapRO::covers(MemRegion heap_rs) const {
|
|
// assert(_bm.map() == _virtual_space.low(), "map inconsistency");
|
|
assert(((size_t)_bm.size() * ((size_t)1 << _shifter)) == _bmWordSize,
|
|
"size inconsistency");
|
|
return _bmStartWord == (HeapWord*)(heap_rs.start()) &&
|
|
_bmWordSize == heap_rs.word_size();
|
|
}
|
|
#endif
|
|
|
|
void G1CMBitMapRO::print_on_error(outputStream* st, const char* prefix) const {
|
|
_bm.print_on_error(st, prefix);
|
|
}
|
|
|
|
size_t G1CMBitMap::compute_size(size_t heap_size) {
|
|
return ReservedSpace::allocation_align_size_up(heap_size / mark_distance());
|
|
}
|
|
|
|
size_t G1CMBitMap::mark_distance() {
|
|
return MinObjAlignmentInBytes * BitsPerByte;
|
|
}
|
|
|
|
void G1CMBitMap::initialize(MemRegion heap, G1RegionToSpaceMapper* storage) {
|
|
_bmStartWord = heap.start();
|
|
_bmWordSize = heap.word_size();
|
|
|
|
_bm.set_map((BitMap::bm_word_t*) storage->reserved().start());
|
|
_bm.set_size(_bmWordSize >> _shifter);
|
|
|
|
storage->set_mapping_changed_listener(&_listener);
|
|
}
|
|
|
|
void G1CMBitMapMappingChangedListener::on_commit(uint start_region, size_t num_regions, bool zero_filled) {
|
|
if (zero_filled) {
|
|
return;
|
|
}
|
|
// We need to clear the bitmap on commit, removing any existing information.
|
|
MemRegion mr(G1CollectedHeap::heap()->bottom_addr_for_region(start_region), num_regions * HeapRegion::GrainWords);
|
|
_bm->clear_range(mr);
|
|
}
|
|
|
|
void G1CMBitMap::clear_range(MemRegion mr) {
|
|
mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
|
|
assert(!mr.is_empty(), "unexpected empty region");
|
|
// convert address range into offset range
|
|
_bm.at_put_range(heapWordToOffset(mr.start()),
|
|
heapWordToOffset(mr.end()), false);
|
|
}
|
|
|
|
G1CMMarkStack::G1CMMarkStack(G1ConcurrentMark* cm) :
|
|
_base(NULL), _cm(cm)
|
|
{}
|
|
|
|
bool G1CMMarkStack::allocate(size_t capacity) {
|
|
// allocate a stack of the requisite depth
|
|
ReservedSpace rs(ReservedSpace::allocation_align_size_up(capacity * sizeof(oop)));
|
|
if (!rs.is_reserved()) {
|
|
log_warning(gc)("ConcurrentMark MarkStack allocation failure");
|
|
return false;
|
|
}
|
|
MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
|
|
if (!_virtual_space.initialize(rs, rs.size())) {
|
|
log_warning(gc)("ConcurrentMark MarkStack backing store failure");
|
|
// Release the virtual memory reserved for the marking stack
|
|
rs.release();
|
|
return false;
|
|
}
|
|
assert(_virtual_space.committed_size() == rs.size(),
|
|
"Didn't reserve backing store for all of G1ConcurrentMark stack?");
|
|
_base = (oop*) _virtual_space.low();
|
|
setEmpty();
|
|
_capacity = (jint) capacity;
|
|
_saved_index = -1;
|
|
_should_expand = false;
|
|
return true;
|
|
}
|
|
|
|
void G1CMMarkStack::expand() {
|
|
// Called, during remark, if we've overflown the marking stack during marking.
|
|
assert(isEmpty(), "stack should been emptied while handling overflow");
|
|
assert(_capacity <= (jint) MarkStackSizeMax, "stack bigger than permitted");
|
|
// Clear expansion flag
|
|
_should_expand = false;
|
|
if (_capacity == (jint) MarkStackSizeMax) {
|
|
log_trace(gc)("(benign) Can't expand marking stack capacity, at max size limit");
|
|
return;
|
|
}
|
|
// Double capacity if possible
|
|
jint new_capacity = MIN2(_capacity*2, (jint) MarkStackSizeMax);
|
|
// Do not give up existing stack until we have managed to
|
|
// get the double capacity that we desired.
|
|
ReservedSpace rs(ReservedSpace::allocation_align_size_up(new_capacity *
|
|
sizeof(oop)));
|
|
if (rs.is_reserved()) {
|
|
// Release the backing store associated with old stack
|
|
_virtual_space.release();
|
|
// Reinitialize virtual space for new stack
|
|
if (!_virtual_space.initialize(rs, rs.size())) {
|
|
fatal("Not enough swap for expanded marking stack capacity");
|
|
}
|
|
_base = (oop*)(_virtual_space.low());
|
|
_index = 0;
|
|
_capacity = new_capacity;
|
|
} else {
|
|
// Failed to double capacity, continue;
|
|
log_trace(gc)("(benign) Failed to expand marking stack capacity from " SIZE_FORMAT "K to " SIZE_FORMAT "K",
|
|
_capacity / K, new_capacity / K);
|
|
}
|
|
}
|
|
|
|
void G1CMMarkStack::set_should_expand() {
|
|
// If we're resetting the marking state because of an
|
|
// marking stack overflow, record that we should, if
|
|
// possible, expand the stack.
|
|
_should_expand = _cm->has_overflown();
|
|
}
|
|
|
|
G1CMMarkStack::~G1CMMarkStack() {
|
|
if (_base != NULL) {
|
|
_base = NULL;
|
|
_virtual_space.release();
|
|
}
|
|
}
|
|
|
|
void G1CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
|
|
MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
|
|
jint start = _index;
|
|
jint next_index = start + n;
|
|
if (next_index > _capacity) {
|
|
_overflow = true;
|
|
return;
|
|
}
|
|
// Otherwise.
|
|
_index = next_index;
|
|
for (int i = 0; i < n; i++) {
|
|
int ind = start + i;
|
|
assert(ind < _capacity, "By overflow test above.");
|
|
_base[ind] = ptr_arr[i];
|
|
}
|
|
}
|
|
|
|
bool G1CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
|
|
MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
|
|
jint index = _index;
|
|
if (index == 0) {
|
|
*n = 0;
|
|
return false;
|
|
} else {
|
|
int k = MIN2(max, index);
|
|
jint new_ind = index - k;
|
|
for (int j = 0; j < k; j++) {
|
|
ptr_arr[j] = _base[new_ind + j];
|
|
}
|
|
_index = new_ind;
|
|
*n = k;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
void G1CMMarkStack::note_start_of_gc() {
|
|
assert(_saved_index == -1,
|
|
"note_start_of_gc()/end_of_gc() bracketed incorrectly");
|
|
_saved_index = _index;
|
|
}
|
|
|
|
void G1CMMarkStack::note_end_of_gc() {
|
|
// This is intentionally a guarantee, instead of an assert. If we
|
|
// accidentally add something to the mark stack during GC, it
|
|
// will be a correctness issue so it's better if we crash. we'll
|
|
// only check this once per GC anyway, so it won't be a performance
|
|
// issue in any way.
|
|
guarantee(_saved_index == _index,
|
|
"saved index: %d index: %d", _saved_index, _index);
|
|
_saved_index = -1;
|
|
}
|
|
|
|
G1CMRootRegions::G1CMRootRegions() :
|
|
_young_list(NULL), _cm(NULL), _scan_in_progress(false),
|
|
_should_abort(false), _next_survivor(NULL) { }
|
|
|
|
void G1CMRootRegions::init(G1CollectedHeap* g1h, G1ConcurrentMark* cm) {
|
|
_young_list = g1h->young_list();
|
|
_cm = cm;
|
|
}
|
|
|
|
void G1CMRootRegions::prepare_for_scan() {
|
|
assert(!scan_in_progress(), "pre-condition");
|
|
|
|
// Currently, only survivors can be root regions.
|
|
assert(_next_survivor == NULL, "pre-condition");
|
|
_next_survivor = _young_list->first_survivor_region();
|
|
_scan_in_progress = (_next_survivor != NULL);
|
|
_should_abort = false;
|
|
}
|
|
|
|
HeapRegion* G1CMRootRegions::claim_next() {
|
|
if (_should_abort) {
|
|
// If someone has set the should_abort flag, we return NULL to
|
|
// force the caller to bail out of their loop.
|
|
return NULL;
|
|
}
|
|
|
|
// Currently, only survivors can be root regions.
|
|
HeapRegion* res = _next_survivor;
|
|
if (res != NULL) {
|
|
MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
|
|
// Read it again in case it changed while we were waiting for the lock.
|
|
res = _next_survivor;
|
|
if (res != NULL) {
|
|
if (res == _young_list->last_survivor_region()) {
|
|
// We just claimed the last survivor so store NULL to indicate
|
|
// that we're done.
|
|
_next_survivor = NULL;
|
|
} else {
|
|
_next_survivor = res->get_next_young_region();
|
|
}
|
|
} else {
|
|
// Someone else claimed the last survivor while we were trying
|
|
// to take the lock so nothing else to do.
|
|
}
|
|
}
|
|
assert(res == NULL || res->is_survivor(), "post-condition");
|
|
|
|
return res;
|
|
}
|
|
|
|
void G1CMRootRegions::notify_scan_done() {
|
|
MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
|
|
_scan_in_progress = false;
|
|
RootRegionScan_lock->notify_all();
|
|
}
|
|
|
|
void G1CMRootRegions::cancel_scan() {
|
|
notify_scan_done();
|
|
}
|
|
|
|
void G1CMRootRegions::scan_finished() {
|
|
assert(scan_in_progress(), "pre-condition");
|
|
|
|
// Currently, only survivors can be root regions.
|
|
if (!_should_abort) {
|
|
assert(_next_survivor == NULL, "we should have claimed all survivors");
|
|
}
|
|
_next_survivor = NULL;
|
|
|
|
notify_scan_done();
|
|
}
|
|
|
|
bool G1CMRootRegions::wait_until_scan_finished() {
|
|
if (!scan_in_progress()) return false;
|
|
|
|
{
|
|
MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
|
|
while (scan_in_progress()) {
|
|
RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
uint G1ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
|
|
return MAX2((n_par_threads + 2) / 4, 1U);
|
|
}
|
|
|
|
G1ConcurrentMark::G1ConcurrentMark(G1CollectedHeap* g1h, G1RegionToSpaceMapper* prev_bitmap_storage, G1RegionToSpaceMapper* next_bitmap_storage) :
|
|
_g1h(g1h),
|
|
_markBitMap1(),
|
|
_markBitMap2(),
|
|
_parallel_marking_threads(0),
|
|
_max_parallel_marking_threads(0),
|
|
_sleep_factor(0.0),
|
|
_marking_task_overhead(1.0),
|
|
_cleanup_list("Cleanup List"),
|
|
_region_bm((BitMap::idx_t)(g1h->max_regions()), false /* in_resource_area*/),
|
|
_card_bm((g1h->reserved_region().byte_size() + CardTableModRefBS::card_size - 1) >>
|
|
CardTableModRefBS::card_shift,
|
|
false /* in_resource_area*/),
|
|
|
|
_prevMarkBitMap(&_markBitMap1),
|
|
_nextMarkBitMap(&_markBitMap2),
|
|
|
|
_markStack(this),
|
|
// _finger set in set_non_marking_state
|
|
|
|
_max_worker_id(ParallelGCThreads),
|
|
// _active_tasks set in set_non_marking_state
|
|
// _tasks set inside the constructor
|
|
_task_queues(new G1CMTaskQueueSet((int) _max_worker_id)),
|
|
_terminator(ParallelTaskTerminator((int) _max_worker_id, _task_queues)),
|
|
|
|
_has_overflown(false),
|
|
_concurrent(false),
|
|
_has_aborted(false),
|
|
_restart_for_overflow(false),
|
|
_concurrent_marking_in_progress(false),
|
|
_gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
|
|
_gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()),
|
|
|
|
// _verbose_level set below
|
|
|
|
_init_times(),
|
|
_remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
|
|
_cleanup_times(),
|
|
_total_counting_time(0.0),
|
|
_total_rs_scrub_time(0.0),
|
|
|
|
_parallel_workers(NULL),
|
|
|
|
_count_card_bitmaps(NULL),
|
|
_count_marked_bytes(NULL),
|
|
_completed_initialization(false) {
|
|
|
|
_markBitMap1.initialize(g1h->reserved_region(), prev_bitmap_storage);
|
|
_markBitMap2.initialize(g1h->reserved_region(), next_bitmap_storage);
|
|
|
|
// Create & start a ConcurrentMark thread.
|
|
_cmThread = new ConcurrentMarkThread(this);
|
|
assert(cmThread() != NULL, "CM Thread should have been created");
|
|
assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");
|
|
if (_cmThread->osthread() == NULL) {
|
|
vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
|
|
}
|
|
|
|
assert(CGC_lock != NULL, "Where's the CGC_lock?");
|
|
assert(_markBitMap1.covers(g1h->reserved_region()), "_markBitMap1 inconsistency");
|
|
assert(_markBitMap2.covers(g1h->reserved_region()), "_markBitMap2 inconsistency");
|
|
|
|
SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
|
|
satb_qs.set_buffer_size(G1SATBBufferSize);
|
|
|
|
_root_regions.init(_g1h, this);
|
|
|
|
if (ConcGCThreads > ParallelGCThreads) {
|
|
log_warning(gc)("Can't have more ConcGCThreads (%u) than ParallelGCThreads (%u).",
|
|
ConcGCThreads, ParallelGCThreads);
|
|
return;
|
|
}
|
|
if (!FLAG_IS_DEFAULT(ConcGCThreads) && ConcGCThreads > 0) {
|
|
// Note: ConcGCThreads has precedence over G1MarkingOverheadPercent
|
|
// if both are set
|
|
_sleep_factor = 0.0;
|
|
_marking_task_overhead = 1.0;
|
|
} else if (G1MarkingOverheadPercent > 0) {
|
|
// We will calculate the number of parallel marking threads based
|
|
// on a target overhead with respect to the soft real-time goal
|
|
double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
|
|
double overall_cm_overhead =
|
|
(double) MaxGCPauseMillis * marking_overhead /
|
|
(double) GCPauseIntervalMillis;
|
|
double cpu_ratio = 1.0 / (double) os::processor_count();
|
|
double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
|
|
double marking_task_overhead =
|
|
overall_cm_overhead / marking_thread_num *
|
|
(double) os::processor_count();
|
|
double sleep_factor =
|
|
(1.0 - marking_task_overhead) / marking_task_overhead;
|
|
|
|
FLAG_SET_ERGO(uint, ConcGCThreads, (uint) marking_thread_num);
|
|
_sleep_factor = sleep_factor;
|
|
_marking_task_overhead = marking_task_overhead;
|
|
} else {
|
|
// Calculate the number of parallel marking threads by scaling
|
|
// the number of parallel GC threads.
|
|
uint marking_thread_num = scale_parallel_threads(ParallelGCThreads);
|
|
FLAG_SET_ERGO(uint, ConcGCThreads, marking_thread_num);
|
|
_sleep_factor = 0.0;
|
|
_marking_task_overhead = 1.0;
|
|
}
|
|
|
|
assert(ConcGCThreads > 0, "Should have been set");
|
|
_parallel_marking_threads = ConcGCThreads;
|
|
_max_parallel_marking_threads = _parallel_marking_threads;
|
|
|
|
_parallel_workers = new WorkGang("G1 Marker",
|
|
_max_parallel_marking_threads, false, true);
|
|
if (_parallel_workers == NULL) {
|
|
vm_exit_during_initialization("Failed necessary allocation.");
|
|
} else {
|
|
_parallel_workers->initialize_workers();
|
|
}
|
|
|
|
if (FLAG_IS_DEFAULT(MarkStackSize)) {
|
|
size_t mark_stack_size =
|
|
MIN2(MarkStackSizeMax,
|
|
MAX2(MarkStackSize, (size_t) (parallel_marking_threads() * TASKQUEUE_SIZE)));
|
|
// Verify that the calculated value for MarkStackSize is in range.
|
|
// It would be nice to use the private utility routine from Arguments.
|
|
if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
|
|
log_warning(gc)("Invalid value calculated for MarkStackSize (" SIZE_FORMAT "): "
|
|
"must be between 1 and " SIZE_FORMAT,
|
|
mark_stack_size, MarkStackSizeMax);
|
|
return;
|
|
}
|
|
FLAG_SET_ERGO(size_t, MarkStackSize, mark_stack_size);
|
|
} else {
|
|
// Verify MarkStackSize is in range.
|
|
if (FLAG_IS_CMDLINE(MarkStackSize)) {
|
|
if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
|
|
if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
|
|
log_warning(gc)("Invalid value specified for MarkStackSize (" SIZE_FORMAT "): "
|
|
"must be between 1 and " SIZE_FORMAT,
|
|
MarkStackSize, MarkStackSizeMax);
|
|
return;
|
|
}
|
|
} else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
|
|
if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
|
|
log_warning(gc)("Invalid value specified for MarkStackSize (" SIZE_FORMAT ")"
|
|
" or for MarkStackSizeMax (" SIZE_FORMAT ")",
|
|
MarkStackSize, MarkStackSizeMax);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!_markStack.allocate(MarkStackSize)) {
|
|
log_warning(gc)("Failed to allocate CM marking stack");
|
|
return;
|
|
}
|
|
|
|
_tasks = NEW_C_HEAP_ARRAY(G1CMTask*, _max_worker_id, mtGC);
|
|
_accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_worker_id, mtGC);
|
|
|
|
_count_card_bitmaps = NEW_C_HEAP_ARRAY(BitMap, _max_worker_id, mtGC);
|
|
_count_marked_bytes = NEW_C_HEAP_ARRAY(size_t*, _max_worker_id, mtGC);
|
|
|
|
BitMap::idx_t card_bm_size = _card_bm.size();
|
|
|
|
// so that the assertion in MarkingTaskQueue::task_queue doesn't fail
|
|
_active_tasks = _max_worker_id;
|
|
|
|
uint max_regions = _g1h->max_regions();
|
|
for (uint i = 0; i < _max_worker_id; ++i) {
|
|
G1CMTaskQueue* task_queue = new G1CMTaskQueue();
|
|
task_queue->initialize();
|
|
_task_queues->register_queue(i, task_queue);
|
|
|
|
_count_card_bitmaps[i] = BitMap(card_bm_size, false);
|
|
_count_marked_bytes[i] = NEW_C_HEAP_ARRAY(size_t, max_regions, mtGC);
|
|
|
|
_tasks[i] = new G1CMTask(i, this,
|
|
_count_marked_bytes[i],
|
|
&_count_card_bitmaps[i],
|
|
task_queue, _task_queues);
|
|
|
|
_accum_task_vtime[i] = 0.0;
|
|
}
|
|
|
|
// Calculate the card number for the bottom of the heap. Used
|
|
// in biasing indexes into the accounting card bitmaps.
|
|
_heap_bottom_card_num =
|
|
intptr_t(uintptr_t(_g1h->reserved_region().start()) >>
|
|
CardTableModRefBS::card_shift);
|
|
|
|
// Clear all the liveness counting data
|
|
clear_all_count_data();
|
|
|
|
// so that the call below can read a sensible value
|
|
_heap_start = g1h->reserved_region().start();
|
|
set_non_marking_state();
|
|
_completed_initialization = true;
|
|
}
|
|
|
|
void G1ConcurrentMark::reset() {
|
|
// Starting values for these two. This should be called in a STW
|
|
// phase.
|
|
MemRegion reserved = _g1h->g1_reserved();
|
|
_heap_start = reserved.start();
|
|
_heap_end = reserved.end();
|
|
|
|
// Separated the asserts so that we know which one fires.
|
|
assert(_heap_start != NULL, "heap bounds should look ok");
|
|
assert(_heap_end != NULL, "heap bounds should look ok");
|
|
assert(_heap_start < _heap_end, "heap bounds should look ok");
|
|
|
|
// Reset all the marking data structures and any necessary flags
|
|
reset_marking_state();
|
|
|
|
// We do reset all of them, since different phases will use
|
|
// different number of active threads. So, it's easiest to have all
|
|
// of them ready.
|
|
for (uint i = 0; i < _max_worker_id; ++i) {
|
|
_tasks[i]->reset(_nextMarkBitMap);
|
|
}
|
|
|
|
// we need this to make sure that the flag is on during the evac
|
|
// pause with initial mark piggy-backed
|
|
set_concurrent_marking_in_progress();
|
|
}
|
|
|
|
|
|
void G1ConcurrentMark::reset_marking_state(bool clear_overflow) {
|
|
_markStack.set_should_expand();
|
|
_markStack.setEmpty(); // Also clears the _markStack overflow flag
|
|
if (clear_overflow) {
|
|
clear_has_overflown();
|
|
} else {
|
|
assert(has_overflown(), "pre-condition");
|
|
}
|
|
_finger = _heap_start;
|
|
|
|
for (uint i = 0; i < _max_worker_id; ++i) {
|
|
G1CMTaskQueue* queue = _task_queues->queue(i);
|
|
queue->set_empty();
|
|
}
|
|
}
|
|
|
|
void G1ConcurrentMark::set_concurrency(uint active_tasks) {
|
|
assert(active_tasks <= _max_worker_id, "we should not have more");
|
|
|
|
_active_tasks = active_tasks;
|
|
// Need to update the three data structures below according to the
|
|
// number of active threads for this phase.
|
|
_terminator = ParallelTaskTerminator((int) active_tasks, _task_queues);
|
|
_first_overflow_barrier_sync.set_n_workers((int) active_tasks);
|
|
_second_overflow_barrier_sync.set_n_workers((int) active_tasks);
|
|
}
|
|
|
|
void G1ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
|
|
set_concurrency(active_tasks);
|
|
|
|
_concurrent = concurrent;
|
|
// We propagate this to all tasks, not just the active ones.
|
|
for (uint i = 0; i < _max_worker_id; ++i)
|
|
_tasks[i]->set_concurrent(concurrent);
|
|
|
|
if (concurrent) {
|
|
set_concurrent_marking_in_progress();
|
|
} else {
|
|
// We currently assume that the concurrent flag has been set to
|
|
// false before we start remark. At this point we should also be
|
|
// in a STW phase.
|
|
assert(!concurrent_marking_in_progress(), "invariant");
|
|
assert(out_of_regions(),
|
|
"only way to get here: _finger: " PTR_FORMAT ", _heap_end: " PTR_FORMAT,
|
|
p2i(_finger), p2i(_heap_end));
|
|
}
|
|
}
|
|
|
|
void G1ConcurrentMark::set_non_marking_state() {
|
|
// We set the global marking state to some default values when we're
|
|
// not doing marking.
|
|
reset_marking_state();
|
|
_active_tasks = 0;
|
|
clear_concurrent_marking_in_progress();
|
|
}
|
|
|
|
G1ConcurrentMark::~G1ConcurrentMark() {
|
|
// The G1ConcurrentMark instance is never freed.
|
|
ShouldNotReachHere();
|
|
}
|
|
|
|
class G1ClearBitMapTask : public AbstractGangTask {
|
|
// Heap region closure used for clearing the given mark bitmap.
|
|
class G1ClearBitmapHRClosure : public HeapRegionClosure {
|
|
private:
|
|
G1CMBitMap* _bitmap;
|
|
G1ConcurrentMark* _cm;
|
|
public:
|
|
G1ClearBitmapHRClosure(G1CMBitMap* bitmap, G1ConcurrentMark* cm) : HeapRegionClosure(), _cm(cm), _bitmap(bitmap) {
|
|
}
|
|
|
|
virtual bool doHeapRegion(HeapRegion* r) {
|
|
size_t const chunk_size_in_words = M / HeapWordSize;
|
|
|
|
HeapWord* cur = r->bottom();
|
|
HeapWord* const end = r->end();
|
|
|
|
while (cur < end) {
|
|
MemRegion mr(cur, MIN2(cur + chunk_size_in_words, end));
|
|
_bitmap->clear_range(mr);
|
|
|
|
cur += chunk_size_in_words;
|
|
|
|
// Abort iteration if after yielding the marking has been aborted.
|
|
if (_cm != NULL && _cm->do_yield_check() && _cm->has_aborted()) {
|
|
return true;
|
|
}
|
|
// Repeat the asserts from before the start of the closure. We will do them
|
|
// as asserts here to minimize their overhead on the product. However, we
|
|
// will have them as guarantees at the beginning / end of the bitmap
|
|
// clearing to get some checking in the product.
|
|
assert(_cm == NULL || _cm->cmThread()->during_cycle(), "invariant");
|
|
assert(_cm == NULL || !G1CollectedHeap::heap()->collector_state()->mark_in_progress(), "invariant");
|
|
}
|
|
assert(cur == end, "Must have completed iteration over the bitmap for region %u.", r->hrm_index());
|
|
|
|
return false;
|
|
}
|
|
};
|
|
|
|
G1ClearBitmapHRClosure _cl;
|
|
HeapRegionClaimer _hr_claimer;
|
|
bool _suspendible; // If the task is suspendible, workers must join the STS.
|
|
|
|
public:
|
|
G1ClearBitMapTask(G1CMBitMap* bitmap, G1ConcurrentMark* cm, uint n_workers, bool suspendible) :
|
|
AbstractGangTask("Parallel Clear Bitmap Task"),
|
|
_cl(bitmap, suspendible ? cm : NULL),
|
|
_hr_claimer(n_workers),
|
|
_suspendible(suspendible)
|
|
{ }
|
|
|
|
void work(uint worker_id) {
|
|
SuspendibleThreadSetJoiner sts_join(_suspendible);
|
|
G1CollectedHeap::heap()->heap_region_par_iterate(&_cl, worker_id, &_hr_claimer, true);
|
|
}
|
|
|
|
bool is_complete() {
|
|
return _cl.complete();
|
|
}
|
|
};
|
|
|
|
void G1ConcurrentMark::clear_bitmap(G1CMBitMap* bitmap, WorkGang* workers, bool may_yield) {
|
|
assert(may_yield || SafepointSynchronize::is_at_safepoint(), "Non-yielding bitmap clear only allowed at safepoint.");
|
|
|
|
G1ClearBitMapTask task(bitmap, this, workers->active_workers(), may_yield);
|
|
workers->run_task(&task);
|
|
guarantee(!may_yield || task.is_complete(), "Must have completed iteration when not yielding.");
|
|
}
|
|
|
|
void G1ConcurrentMark::cleanup_for_next_mark() {
|
|
// Make sure that the concurrent mark thread looks to still be in
|
|
// the current cycle.
|
|
guarantee(cmThread()->during_cycle(), "invariant");
|
|
|
|
// We are finishing up the current cycle by clearing the next
|
|
// marking bitmap and getting it ready for the next cycle. During
|
|
// this time no other cycle can start. So, let's make sure that this
|
|
// is the case.
|
|
guarantee(!_g1h->collector_state()->mark_in_progress(), "invariant");
|
|
|
|
clear_bitmap(_nextMarkBitMap, _parallel_workers, true);
|
|
|
|
// Clear the liveness counting data. If the marking has been aborted, the abort()
|
|
// call already did that.
|
|
if (!has_aborted()) {
|
|
clear_all_count_data();
|
|
}
|
|
|
|
// Repeat the asserts from above.
|
|
guarantee(cmThread()->during_cycle(), "invariant");
|
|
guarantee(!_g1h->collector_state()->mark_in_progress(), "invariant");
|
|
}
|
|
|
|
void G1ConcurrentMark::clear_prev_bitmap(WorkGang* workers) {
|
|
assert(SafepointSynchronize::is_at_safepoint(), "Should only clear the entire prev bitmap at a safepoint.");
|
|
clear_bitmap((G1CMBitMap*)_prevMarkBitMap, workers, false);
|
|
}
|
|
|
|
class CheckBitmapClearHRClosure : public HeapRegionClosure {
|
|
G1CMBitMap* _bitmap;
|
|
bool _error;
|
|
public:
|
|
CheckBitmapClearHRClosure(G1CMBitMap* bitmap) : _bitmap(bitmap) {
|
|
}
|
|
|
|
virtual bool doHeapRegion(HeapRegion* r) {
|
|
// This closure can be called concurrently to the mutator, so we must make sure
|
|
// that the result of the getNextMarkedWordAddress() call is compared to the
|
|
// value passed to it as limit to detect any found bits.
|
|
// end never changes in G1.
|
|
HeapWord* end = r->end();
|
|
return _bitmap->getNextMarkedWordAddress(r->bottom(), end) != end;
|
|
}
|
|
};
|
|
|
|
bool G1ConcurrentMark::nextMarkBitmapIsClear() {
|
|
CheckBitmapClearHRClosure cl(_nextMarkBitMap);
|
|
_g1h->heap_region_iterate(&cl);
|
|
return cl.complete();
|
|
}
|
|
|
|
class NoteStartOfMarkHRClosure: public HeapRegionClosure {
|
|
public:
|
|
bool doHeapRegion(HeapRegion* r) {
|
|
r->note_start_of_marking();
|
|
return false;
|
|
}
|
|
};
|
|
|
|
void G1ConcurrentMark::checkpointRootsInitialPre() {
|
|
G1CollectedHeap* g1h = G1CollectedHeap::heap();
|
|
G1CollectorPolicy* g1p = g1h->g1_policy();
|
|
|
|
_has_aborted = false;
|
|
|
|
// Initialize marking structures. This has to be done in a STW phase.
|
|
reset();
|
|
|
|
// For each region note start of marking.
|
|
NoteStartOfMarkHRClosure startcl;
|
|
g1h->heap_region_iterate(&startcl);
|
|
}
|
|
|
|
|
|
void G1ConcurrentMark::checkpointRootsInitialPost() {
|
|
G1CollectedHeap* g1h = G1CollectedHeap::heap();
|
|
|
|
// Start Concurrent Marking weak-reference discovery.
|
|
ReferenceProcessor* rp = g1h->ref_processor_cm();
|
|
// enable ("weak") refs discovery
|
|
rp->enable_discovery();
|
|
rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
|
|
|
|
SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
|
|
// This is the start of the marking cycle, we're expected all
|
|
// threads to have SATB queues with active set to false.
|
|
satb_mq_set.set_active_all_threads(true, /* new active value */
|
|
false /* expected_active */);
|
|
|
|
_root_regions.prepare_for_scan();
|
|
|
|
// update_g1_committed() will be called at the end of an evac pause
|
|
// when marking is on. So, it's also called at the end of the
|
|
// initial-mark pause to update the heap end, if the heap expands
|
|
// during it. No need to call it here.
|
|
}
|
|
|
|
/*
|
|
* Notice that in the next two methods, we actually leave the STS
|
|
* during the barrier sync and join it immediately afterwards. If we
|
|
* do not do this, the following deadlock can occur: one thread could
|
|
* be in the barrier sync code, waiting for the other thread to also
|
|
* sync up, whereas another one could be trying to yield, while also
|
|
* waiting for the other threads to sync up too.
|
|
*
|
|
* Note, however, that this code is also used during remark and in
|
|
* this case we should not attempt to leave / enter the STS, otherwise
|
|
* we'll either hit an assert (debug / fastdebug) or deadlock
|
|
* (product). So we should only leave / enter the STS if we are
|
|
* operating concurrently.
|
|
*
|
|
* Because the thread that does the sync barrier has left the STS, it
|
|
* is possible to be suspended for a Full GC or an evacuation pause
|
|
* could occur. This is actually safe, since the entering the sync
|
|
* barrier is one of the last things do_marking_step() does, and it
|
|
* doesn't manipulate any data structures afterwards.
|
|
*/
|
|
|
|
void G1ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
|
|
bool barrier_aborted;
|
|
{
|
|
SuspendibleThreadSetLeaver sts_leave(concurrent());
|
|
barrier_aborted = !_first_overflow_barrier_sync.enter();
|
|
}
|
|
|
|
// at this point everyone should have synced up and not be doing any
|
|
// more work
|
|
|
|
if (barrier_aborted) {
|
|
// If the barrier aborted we ignore the overflow condition and
|
|
// just abort the whole marking phase as quickly as possible.
|
|
return;
|
|
}
|
|
|
|
// If we're executing the concurrent phase of marking, reset the marking
|
|
// state; otherwise the marking state is reset after reference processing,
|
|
// during the remark pause.
|
|
// If we reset here as a result of an overflow during the remark we will
|
|
// see assertion failures from any subsequent set_concurrency_and_phase()
|
|
// calls.
|
|
if (concurrent()) {
|
|
// let the task associated with with worker 0 do this
|
|
if (worker_id == 0) {
|
|
// task 0 is responsible for clearing the global data structures
|
|
// We should be here because of an overflow. During STW we should
|
|
// not clear the overflow flag since we rely on it being true when
|
|
// we exit this method to abort the pause and restart concurrent
|
|
// marking.
|
|
reset_marking_state(true /* clear_overflow */);
|
|
|
|
log_info(gc, marking)("Concurrent Mark reset for overflow");
|
|
}
|
|
}
|
|
|
|
// after this, each task should reset its own data structures then
|
|
// then go into the second barrier
|
|
}
|
|
|
|
void G1ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
|
|
SuspendibleThreadSetLeaver sts_leave(concurrent());
|
|
_second_overflow_barrier_sync.enter();
|
|
|
|
// at this point everything should be re-initialized and ready to go
|
|
}
|
|
|
|
class G1CMConcurrentMarkingTask: public AbstractGangTask {
|
|
private:
|
|
G1ConcurrentMark* _cm;
|
|
ConcurrentMarkThread* _cmt;
|
|
|
|
public:
|
|
void work(uint worker_id) {
|
|
assert(Thread::current()->is_ConcurrentGC_thread(),
|
|
"this should only be done by a conc GC thread");
|
|
ResourceMark rm;
|
|
|
|
double start_vtime = os::elapsedVTime();
|
|
|
|
{
|
|
SuspendibleThreadSetJoiner sts_join;
|
|
|
|
assert(worker_id < _cm->active_tasks(), "invariant");
|
|
G1CMTask* the_task = _cm->task(worker_id);
|
|
the_task->record_start_time();
|
|
if (!_cm->has_aborted()) {
|
|
do {
|
|
double start_vtime_sec = os::elapsedVTime();
|
|
double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
|
|
|
|
the_task->do_marking_step(mark_step_duration_ms,
|
|
true /* do_termination */,
|
|
false /* is_serial*/);
|
|
|
|
double end_vtime_sec = os::elapsedVTime();
|
|
double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
|
|
_cm->clear_has_overflown();
|
|
|
|
_cm->do_yield_check(worker_id);
|
|
|
|
jlong sleep_time_ms;
|
|
if (!_cm->has_aborted() && the_task->has_aborted()) {
|
|
sleep_time_ms =
|
|
(jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
|
|
{
|
|
SuspendibleThreadSetLeaver sts_leave;
|
|
os::sleep(Thread::current(), sleep_time_ms, false);
|
|
}
|
|
}
|
|
} while (!_cm->has_aborted() && the_task->has_aborted());
|
|
}
|
|
the_task->record_end_time();
|
|
guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
|
|
}
|
|
|
|
double end_vtime = os::elapsedVTime();
|
|
_cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
|
|
}
|
|
|
|
G1CMConcurrentMarkingTask(G1ConcurrentMark* cm,
|
|
ConcurrentMarkThread* cmt) :
|
|
AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }
|
|
|
|
~G1CMConcurrentMarkingTask() { }
|
|
};
|
|
|
|
// Calculates the number of active workers for a concurrent
|
|
// phase.
|
|
uint G1ConcurrentMark::calc_parallel_marking_threads() {
|
|
uint n_conc_workers = 0;
|
|
if (!UseDynamicNumberOfGCThreads ||
|
|
(!FLAG_IS_DEFAULT(ConcGCThreads) &&
|
|
!ForceDynamicNumberOfGCThreads)) {
|
|
n_conc_workers = max_parallel_marking_threads();
|
|
} else {
|
|
n_conc_workers =
|
|
AdaptiveSizePolicy::calc_default_active_workers(
|
|
max_parallel_marking_threads(),
|
|
1, /* Minimum workers */
|
|
parallel_marking_threads(),
|
|
Threads::number_of_non_daemon_threads());
|
|
// Don't scale down "n_conc_workers" by scale_parallel_threads() because
|
|
// that scaling has already gone into "_max_parallel_marking_threads".
|
|
}
|
|
assert(n_conc_workers > 0, "Always need at least 1");
|
|
return n_conc_workers;
|
|
}
|
|
|
|
void G1ConcurrentMark::scanRootRegion(HeapRegion* hr, uint worker_id) {
|
|
// Currently, only survivors can be root regions.
|
|
assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
|
|
G1RootRegionScanClosure cl(_g1h, this, worker_id);
|
|
|
|
const uintx interval = PrefetchScanIntervalInBytes;
|
|
HeapWord* curr = hr->bottom();
|
|
const HeapWord* end = hr->top();
|
|
while (curr < end) {
|
|
Prefetch::read(curr, interval);
|
|
oop obj = oop(curr);
|
|
int size = obj->oop_iterate_size(&cl);
|
|
assert(size == obj->size(), "sanity");
|
|
curr += size;
|
|
}
|
|
}
|
|
|
|
class G1CMRootRegionScanTask : public AbstractGangTask {
|
|
private:
|
|
G1ConcurrentMark* _cm;
|
|
|
|
public:
|
|
G1CMRootRegionScanTask(G1ConcurrentMark* cm) :
|
|
AbstractGangTask("Root Region Scan"), _cm(cm) { }
|
|
|
|
void work(uint worker_id) {
|
|
assert(Thread::current()->is_ConcurrentGC_thread(),
|
|
"this should only be done by a conc GC thread");
|
|
|
|
G1CMRootRegions* root_regions = _cm->root_regions();
|
|
HeapRegion* hr = root_regions->claim_next();
|
|
while (hr != NULL) {
|
|
_cm->scanRootRegion(hr, worker_id);
|
|
hr = root_regions->claim_next();
|
|
}
|
|
}
|
|
};
|
|
|
|
void G1ConcurrentMark::scan_root_regions() {
|
|
// scan_in_progress() will have been set to true only if there was
|
|
// at least one root region to scan. So, if it's false, we
|
|
// should not attempt to do any further work.
|
|
if (root_regions()->scan_in_progress()) {
|
|
assert(!has_aborted(), "Aborting before root region scanning is finished not supported.");
|
|
|
|
_parallel_marking_threads = calc_parallel_marking_threads();
|
|
assert(parallel_marking_threads() <= max_parallel_marking_threads(),
|
|
"Maximum number of marking threads exceeded");
|
|
uint active_workers = MAX2(1U, parallel_marking_threads());
|
|
|
|
G1CMRootRegionScanTask task(this);
|
|
_parallel_workers->set_active_workers(active_workers);
|
|
_parallel_workers->run_task(&task);
|
|
|
|
// It's possible that has_aborted() is true here without actually
|
|
// aborting the survivor scan earlier. This is OK as it's
|
|
// mainly used for sanity checking.
|
|
root_regions()->scan_finished();
|
|
}
|
|
}
|
|
|
|
void G1ConcurrentMark::concurrent_cycle_start() {
|
|
_gc_timer_cm->register_gc_start();
|
|
|
|
_gc_tracer_cm->report_gc_start(GCCause::_no_gc /* first parameter is not used */, _gc_timer_cm->gc_start());
|
|
|
|
_g1h->trace_heap_before_gc(_gc_tracer_cm);
|
|
}
|
|
|
|
void G1ConcurrentMark::concurrent_cycle_end() {
|
|
_g1h->trace_heap_after_gc(_gc_tracer_cm);
|
|
|
|
if (has_aborted()) {
|
|
_gc_tracer_cm->report_concurrent_mode_failure();
|
|
}
|
|
|
|
_gc_timer_cm->register_gc_end();
|
|
|
|
_gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
|
|
}
|
|
|
|
void G1ConcurrentMark::mark_from_roots() {
|
|
// we might be tempted to assert that:
|
|
// assert(asynch == !SafepointSynchronize::is_at_safepoint(),
|
|
// "inconsistent argument?");
|
|
// However that wouldn't be right, because it's possible that
|
|
// a safepoint is indeed in progress as a younger generation
|
|
// stop-the-world GC happens even as we mark in this generation.
|
|
|
|
_restart_for_overflow = false;
|
|
|
|
// _g1h has _n_par_threads
|
|
_parallel_marking_threads = calc_parallel_marking_threads();
|
|
assert(parallel_marking_threads() <= max_parallel_marking_threads(),
|
|
"Maximum number of marking threads exceeded");
|
|
|
|
uint active_workers = MAX2(1U, parallel_marking_threads());
|
|
assert(active_workers > 0, "Should have been set");
|
|
|
|
// Parallel task terminator is set in "set_concurrency_and_phase()"
|
|
set_concurrency_and_phase(active_workers, true /* concurrent */);
|
|
|
|
G1CMConcurrentMarkingTask markingTask(this, cmThread());
|
|
_parallel_workers->set_active_workers(active_workers);
|
|
_parallel_workers->run_task(&markingTask);
|
|
print_stats();
|
|
}
|
|
|
|
void G1ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
|
|
// world is stopped at this checkpoint
|
|
assert(SafepointSynchronize::is_at_safepoint(),
|
|
"world should be stopped");
|
|
|
|
G1CollectedHeap* g1h = G1CollectedHeap::heap();
|
|
|
|
// If a full collection has happened, we shouldn't do this.
|
|
if (has_aborted()) {
|
|
g1h->collector_state()->set_mark_in_progress(false); // So bitmap clearing isn't confused
|
|
return;
|
|
}
|
|
|
|
SvcGCMarker sgcm(SvcGCMarker::OTHER);
|
|
|
|
if (VerifyDuringGC) {
|
|
HandleMark hm; // handle scope
|
|
g1h->prepare_for_verify();
|
|
Universe::verify(VerifyOption_G1UsePrevMarking, "During GC (before)");
|
|
}
|
|
g1h->verifier()->check_bitmaps("Remark Start");
|
|
|
|
G1CollectorPolicy* g1p = g1h->g1_policy();
|
|
g1p->record_concurrent_mark_remark_start();
|
|
|
|
double start = os::elapsedTime();
|
|
|
|
checkpointRootsFinalWork();
|
|
|
|
double mark_work_end = os::elapsedTime();
|
|
|
|
weakRefsWork(clear_all_soft_refs);
|
|
|
|
if (has_overflown()) {
|
|
// Oops. We overflowed. Restart concurrent marking.
|
|
_restart_for_overflow = true;
|
|
|
|
// Verify the heap w.r.t. the previous marking bitmap.
|
|
if (VerifyDuringGC) {
|
|
HandleMark hm; // handle scope
|
|
g1h->prepare_for_verify();
|
|
Universe::verify(VerifyOption_G1UsePrevMarking, "During GC (overflow)");
|
|
}
|
|
|
|
// Clear the marking state because we will be restarting
|
|
// marking due to overflowing the global mark stack.
|
|
reset_marking_state();
|
|
} else {
|
|
{
|
|
GCTraceTime(Debug, gc, phases) trace("Aggregate Data", _gc_timer_cm);
|
|
|
|
// Aggregate the per-task counting data that we have accumulated
|
|
// while marking.
|
|
aggregate_count_data();
|
|
}
|
|
|
|
SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
|
|
// We're done with marking.
|
|
// This is the end of the marking cycle, we're expected all
|
|
// threads to have SATB queues with active set to true.
|
|
satb_mq_set.set_active_all_threads(false, /* new active value */
|
|
true /* expected_active */);
|
|
|
|
if (VerifyDuringGC) {
|
|
HandleMark hm; // handle scope
|
|
g1h->prepare_for_verify();
|
|
Universe::verify(VerifyOption_G1UseNextMarking, "During GC (after)");
|
|
}
|
|
g1h->verifier()->check_bitmaps("Remark End");
|
|
assert(!restart_for_overflow(), "sanity");
|
|
// Completely reset the marking state since marking completed
|
|
set_non_marking_state();
|
|
}
|
|
|
|
// Expand the marking stack, if we have to and if we can.
|
|
if (_markStack.should_expand()) {
|
|
_markStack.expand();
|
|
}
|
|
|
|
// Statistics
|
|
double now = os::elapsedTime();
|
|
_remark_mark_times.add((mark_work_end - start) * 1000.0);
|
|
_remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
|
|
_remark_times.add((now - start) * 1000.0);
|
|
|
|
g1p->record_concurrent_mark_remark_end();
|
|
|
|
G1CMIsAliveClosure is_alive(g1h);
|
|
_gc_tracer_cm->report_object_count_after_gc(&is_alive);
|
|
}
|
|
|
|
// Base class of the closures that finalize and verify the
|
|
// liveness counting data.
|
|
class G1CMCountDataClosureBase: public HeapRegionClosure {
|
|
protected:
|
|
G1CollectedHeap* _g1h;
|
|
G1ConcurrentMark* _cm;
|
|
CardTableModRefBS* _ct_bs;
|
|
|
|
BitMap* _region_bm;
|
|
BitMap* _card_bm;
|
|
|
|
// Takes a region that's not empty (i.e., it has at least one
|
|
// live object in it and sets its corresponding bit on the region
|
|
// bitmap to 1.
|
|
void set_bit_for_region(HeapRegion* hr) {
|
|
BitMap::idx_t index = (BitMap::idx_t) hr->hrm_index();
|
|
_region_bm->par_at_put(index, true);
|
|
}
|
|
|
|
public:
|
|
G1CMCountDataClosureBase(G1CollectedHeap* g1h,
|
|
BitMap* region_bm, BitMap* card_bm):
|
|
_g1h(g1h), _cm(g1h->concurrent_mark()),
|
|
_ct_bs(barrier_set_cast<CardTableModRefBS>(g1h->barrier_set())),
|
|
_region_bm(region_bm), _card_bm(card_bm) { }
|
|
};
|
|
|
|
// Closure that calculates the # live objects per region. Used
|
|
// for verification purposes during the cleanup pause.
|
|
class CalcLiveObjectsClosure: public G1CMCountDataClosureBase {
|
|
G1CMBitMapRO* _bm;
|
|
size_t _region_marked_bytes;
|
|
|
|
public:
|
|
CalcLiveObjectsClosure(G1CMBitMapRO *bm, G1CollectedHeap* g1h,
|
|
BitMap* region_bm, BitMap* card_bm) :
|
|
G1CMCountDataClosureBase(g1h, region_bm, card_bm),
|
|
_bm(bm), _region_marked_bytes(0) { }
|
|
|
|
bool doHeapRegion(HeapRegion* hr) {
|
|
HeapWord* ntams = hr->next_top_at_mark_start();
|
|
HeapWord* start = hr->bottom();
|
|
|
|
assert(start <= hr->end() && start <= ntams && ntams <= hr->end(),
|
|
"Preconditions not met - "
|
|
"start: " PTR_FORMAT ", ntams: " PTR_FORMAT ", end: " PTR_FORMAT,
|
|
p2i(start), p2i(ntams), p2i(hr->end()));
|
|
|
|
// Find the first marked object at or after "start".
|
|
start = _bm->getNextMarkedWordAddress(start, ntams);
|
|
|
|
size_t marked_bytes = 0;
|
|
|
|
while (start < ntams) {
|
|
oop obj = oop(start);
|
|
int obj_sz = obj->size();
|
|
HeapWord* obj_end = start + obj_sz;
|
|
|
|
BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
|
|
BitMap::idx_t end_idx = _cm->card_bitmap_index_for(obj_end);
|
|
|
|
// Note: if we're looking at the last region in heap - obj_end
|
|
// could be actually just beyond the end of the heap; end_idx
|
|
// will then correspond to a (non-existent) card that is also
|
|
// just beyond the heap.
|
|
if (_g1h->is_in_g1_reserved(obj_end) && !_ct_bs->is_card_aligned(obj_end)) {
|
|
// end of object is not card aligned - increment to cover
|
|
// all the cards spanned by the object
|
|
end_idx += 1;
|
|
}
|
|
|
|
// Set the bits in the card BM for the cards spanned by this object.
|
|
_cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
|
|
|
|
// Add the size of this object to the number of marked bytes.
|
|
marked_bytes += (size_t)obj_sz * HeapWordSize;
|
|
|
|
// This will happen if we are handling a humongous object that spans
|
|
// several heap regions.
|
|
if (obj_end > hr->end()) {
|
|
break;
|
|
}
|
|
// Find the next marked object after this one.
|
|
start = _bm->getNextMarkedWordAddress(obj_end, ntams);
|
|
}
|
|
|
|
// Mark the allocated-since-marking portion...
|
|
HeapWord* top = hr->top();
|
|
if (ntams < top) {
|
|
BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
|
|
BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
|
|
|
|
// Note: if we're looking at the last region in heap - top
|
|
// could be actually just beyond the end of the heap; end_idx
|
|
// will then correspond to a (non-existent) card that is also
|
|
// just beyond the heap.
|
|
if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
|
|
// end of object is not card aligned - increment to cover
|
|
// all the cards spanned by the object
|
|
end_idx += 1;
|
|
}
|
|
_cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
|
|
|
|
// This definitely means the region has live objects.
|
|
set_bit_for_region(hr);
|
|
}
|
|
|
|
// Update the live region bitmap.
|
|
if (marked_bytes > 0) {
|
|
set_bit_for_region(hr);
|
|
}
|
|
|
|
// Set the marked bytes for the current region so that
|
|
// it can be queried by a calling verification routine
|
|
_region_marked_bytes = marked_bytes;
|
|
|
|
return false;
|
|
}
|
|
|
|
size_t region_marked_bytes() const { return _region_marked_bytes; }
|
|
};
|
|
|
|
// Heap region closure used for verifying the counting data
|
|
// that was accumulated concurrently and aggregated during
|
|
// the remark pause. This closure is applied to the heap
|
|
// regions during the STW cleanup pause.
|
|
|
|
class VerifyLiveObjectDataHRClosure: public HeapRegionClosure {
|
|
G1CollectedHeap* _g1h;
|
|
G1ConcurrentMark* _cm;
|
|
CalcLiveObjectsClosure _calc_cl;
|
|
BitMap* _region_bm; // Region BM to be verified
|
|
BitMap* _card_bm; // Card BM to be verified
|
|
|
|
BitMap* _exp_region_bm; // Expected Region BM values
|
|
BitMap* _exp_card_bm; // Expected card BM values
|
|
|
|
int _failures;
|
|
|
|
public:
|
|
VerifyLiveObjectDataHRClosure(G1CollectedHeap* g1h,
|
|
BitMap* region_bm,
|
|
BitMap* card_bm,
|
|
BitMap* exp_region_bm,
|
|
BitMap* exp_card_bm) :
|
|
_g1h(g1h), _cm(g1h->concurrent_mark()),
|
|
_calc_cl(_cm->nextMarkBitMap(), g1h, exp_region_bm, exp_card_bm),
|
|
_region_bm(region_bm), _card_bm(card_bm),
|
|
_exp_region_bm(exp_region_bm), _exp_card_bm(exp_card_bm),
|
|
_failures(0) { }
|
|
|
|
int failures() const { return _failures; }
|
|
|
|
bool doHeapRegion(HeapRegion* hr) {
|
|
int failures = 0;
|
|
|
|
// Call the CalcLiveObjectsClosure to walk the marking bitmap for
|
|
// this region and set the corresponding bits in the expected region
|
|
// and card bitmaps.
|
|
bool res = _calc_cl.doHeapRegion(hr);
|
|
assert(res == false, "should be continuing");
|
|
|
|
// Verify the marked bytes for this region.
|
|
size_t exp_marked_bytes = _calc_cl.region_marked_bytes();
|
|
size_t act_marked_bytes = hr->next_marked_bytes();
|
|
|
|
if (exp_marked_bytes > act_marked_bytes) {
|
|
if (hr->is_starts_humongous()) {
|
|
// For start_humongous regions, the size of the whole object will be
|
|
// in exp_marked_bytes.
|
|
HeapRegion* region = hr;
|
|
int num_regions;
|
|
for (num_regions = 0; region != NULL; num_regions++) {
|
|
region = _g1h->next_region_in_humongous(region);
|
|
}
|
|
if ((num_regions-1) * HeapRegion::GrainBytes >= exp_marked_bytes) {
|
|
failures += 1;
|
|
} else if (num_regions * HeapRegion::GrainBytes < exp_marked_bytes) {
|
|
failures += 1;
|
|
}
|
|
} else {
|
|
// We're not OK if expected marked bytes > actual marked bytes. It means
|
|
// we have missed accounting some objects during the actual marking.
|
|
failures += 1;
|
|
}
|
|
}
|
|
|
|
// Verify the bit, for this region, in the actual and expected
|
|
// (which was just calculated) region bit maps.
|
|
// We're not OK if the bit in the calculated expected region
|
|
// bitmap is set and the bit in the actual region bitmap is not.
|
|
BitMap::idx_t index = (BitMap::idx_t) hr->hrm_index();
|
|
|
|
bool expected = _exp_region_bm->at(index);
|
|
bool actual = _region_bm->at(index);
|
|
if (expected && !actual) {
|
|
failures += 1;
|
|
}
|
|
|
|
// Verify that the card bit maps for the cards spanned by the current
|
|
// region match. We have an error if we have a set bit in the expected
|
|
// bit map and the corresponding bit in the actual bitmap is not set.
|
|
|
|
BitMap::idx_t start_idx = _cm->card_bitmap_index_for(hr->bottom());
|
|
BitMap::idx_t end_idx = _cm->card_bitmap_index_for(hr->top());
|
|
|
|
for (BitMap::idx_t i = start_idx; i < end_idx; i+=1) {
|
|
expected = _exp_card_bm->at(i);
|
|
actual = _card_bm->at(i);
|
|
|
|
if (expected && !actual) {
|
|
failures += 1;
|
|
}
|
|
}
|
|
|
|
_failures += failures;
|
|
|
|
// We could stop iteration over the heap when we
|
|
// find the first violating region by returning true.
|
|
return false;
|
|
}
|
|
};
|
|
|
|
class G1ParVerifyFinalCountTask: public AbstractGangTask {
|
|
protected:
|
|
G1CollectedHeap* _g1h;
|
|
G1ConcurrentMark* _cm;
|
|
BitMap* _actual_region_bm;
|
|
BitMap* _actual_card_bm;
|
|
|
|
uint _n_workers;
|
|
|
|
BitMap* _expected_region_bm;
|
|
BitMap* _expected_card_bm;
|
|
|
|
int _failures;
|
|
|
|
HeapRegionClaimer _hrclaimer;
|
|
|
|
public:
|
|
G1ParVerifyFinalCountTask(G1CollectedHeap* g1h,
|
|
BitMap* region_bm, BitMap* card_bm,
|
|
BitMap* expected_region_bm, BitMap* expected_card_bm)
|
|
: AbstractGangTask("G1 verify final counting"),
|
|
_g1h(g1h), _cm(_g1h->concurrent_mark()),
|
|
_actual_region_bm(region_bm), _actual_card_bm(card_bm),
|
|
_expected_region_bm(expected_region_bm), _expected_card_bm(expected_card_bm),
|
|
_failures(0),
|
|
_n_workers(_g1h->workers()->active_workers()), _hrclaimer(_n_workers) {
|
|
assert(VerifyDuringGC, "don't call this otherwise");
|
|
assert(_expected_card_bm->size() == _actual_card_bm->size(), "sanity");
|
|
assert(_expected_region_bm->size() == _actual_region_bm->size(), "sanity");
|
|
}
|
|
|
|
void work(uint worker_id) {
|
|
assert(worker_id < _n_workers, "invariant");
|
|
|
|
VerifyLiveObjectDataHRClosure verify_cl(_g1h,
|
|
_actual_region_bm, _actual_card_bm,
|
|
_expected_region_bm,
|
|
_expected_card_bm);
|
|
|
|
_g1h->heap_region_par_iterate(&verify_cl, worker_id, &_hrclaimer);
|
|
|
|
Atomic::add(verify_cl.failures(), &_failures);
|
|
}
|
|
|
|
int failures() const { return _failures; }
|
|
};
|
|
|
|
// Closure that finalizes the liveness counting data.
|
|
// Used during the cleanup pause.
|
|
// Sets the bits corresponding to the interval [NTAMS, top]
|
|
// (which contains the implicitly live objects) in the
|
|
// card liveness bitmap. Also sets the bit for each region,
|
|
// containing live data, in the region liveness bitmap.
|
|
|
|
class FinalCountDataUpdateClosure: public G1CMCountDataClosureBase {
|
|
public:
|
|
FinalCountDataUpdateClosure(G1CollectedHeap* g1h,
|
|
BitMap* region_bm,
|
|
BitMap* card_bm) :
|
|
G1CMCountDataClosureBase(g1h, region_bm, card_bm) { }
|
|
|
|
bool doHeapRegion(HeapRegion* hr) {
|
|
HeapWord* ntams = hr->next_top_at_mark_start();
|
|
HeapWord* top = hr->top();
|
|
|
|
assert(hr->bottom() <= ntams && ntams <= hr->end(), "Preconditions.");
|
|
|
|
// Mark the allocated-since-marking portion...
|
|
if (ntams < top) {
|
|
// This definitely means the region has live objects.
|
|
set_bit_for_region(hr);
|
|
|
|
// Now set the bits in the card bitmap for [ntams, top)
|
|
BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
|
|
BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
|
|
|
|
// Note: if we're looking at the last region in heap - top
|
|
// could be actually just beyond the end of the heap; end_idx
|
|
// will then correspond to a (non-existent) card that is also
|
|
// just beyond the heap.
|
|
if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
|
|
// end of object is not card aligned - increment to cover
|
|
// all the cards spanned by the object
|
|
end_idx += 1;
|
|
}
|
|
|
|
assert(end_idx <= _card_bm->size(),
|
|
"oob: end_idx= " SIZE_FORMAT ", bitmap size= " SIZE_FORMAT,
|
|
end_idx, _card_bm->size());
|
|
assert(start_idx < _card_bm->size(),
|
|
"oob: start_idx= " SIZE_FORMAT ", bitmap size= " SIZE_FORMAT,
|
|
start_idx, _card_bm->size());
|
|
|
|
_cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
|
|
}
|
|
|
|
// Set the bit for the region if it contains live data
|
|
if (hr->next_marked_bytes() > 0) {
|
|
set_bit_for_region(hr);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
};
|
|
|
|
class G1ParFinalCountTask: public AbstractGangTask {
|
|
protected:
|
|
G1CollectedHeap* _g1h;
|
|
G1ConcurrentMark* _cm;
|
|
BitMap* _actual_region_bm;
|
|
BitMap* _actual_card_bm;
|
|
|
|
uint _n_workers;
|
|
HeapRegionClaimer _hrclaimer;
|
|
|
|
public:
|
|
G1ParFinalCountTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm)
|
|
: AbstractGangTask("G1 final counting"),
|
|
_g1h(g1h), _cm(_g1h->concurrent_mark()),
|
|
_actual_region_bm(region_bm), _actual_card_bm(card_bm),
|
|
_n_workers(_g1h->workers()->active_workers()), _hrclaimer(_n_workers) {
|
|
}
|
|
|
|
void work(uint worker_id) {
|
|
assert(worker_id < _n_workers, "invariant");
|
|
|
|
FinalCountDataUpdateClosure final_update_cl(_g1h,
|
|
_actual_region_bm,
|
|
_actual_card_bm);
|
|
|
|
_g1h->heap_region_par_iterate(&final_update_cl, worker_id, &_hrclaimer);
|
|
}
|
|
};
|
|
|
|
class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
|
|
G1CollectedHeap* _g1;
|
|
size_t _freed_bytes;
|
|
FreeRegionList* _local_cleanup_list;
|
|
uint _old_regions_removed;
|
|
uint _humongous_regions_removed;
|
|
HRRSCleanupTask* _hrrs_cleanup_task;
|
|
|
|
public:
|
|
G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
|
|
FreeRegionList* local_cleanup_list,
|
|
HRRSCleanupTask* hrrs_cleanup_task) :
|
|
_g1(g1),
|
|
_freed_bytes(0),
|
|
_local_cleanup_list(local_cleanup_list),
|
|
_old_regions_removed(0),
|
|
_humongous_regions_removed(0),
|
|
_hrrs_cleanup_task(hrrs_cleanup_task) { }
|
|
|
|
size_t freed_bytes() { return _freed_bytes; }
|
|
const uint old_regions_removed() { return _old_regions_removed; }
|
|
const uint humongous_regions_removed() { return _humongous_regions_removed; }
|
|
|
|
bool doHeapRegion(HeapRegion *hr) {
|
|
if (hr->is_archive()) {
|
|
return false;
|
|
}
|
|
// We use a claim value of zero here because all regions
|
|
// were claimed with value 1 in the FinalCount task.
|
|
_g1->reset_gc_time_stamps(hr);
|
|
hr->note_end_of_marking();
|
|
|
|
if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
|
|
_freed_bytes += hr->used();
|
|
hr->set_containing_set(NULL);
|
|
if (hr->is_humongous()) {
|
|
_humongous_regions_removed++;
|
|
_g1->free_humongous_region(hr, _local_cleanup_list, true);
|
|
} else {
|
|
_old_regions_removed++;
|
|
_g1->free_region(hr, _local_cleanup_list, true);
|
|
}
|
|
} else {
|
|
hr->rem_set()->do_cleanup_work(_hrrs_cleanup_task);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
};
|
|
|
|
class G1ParNoteEndTask: public AbstractGangTask {
|
|
friend class G1NoteEndOfConcMarkClosure;
|
|
|
|
protected:
|
|
G1CollectedHeap* _g1h;
|
|
FreeRegionList* _cleanup_list;
|
|
HeapRegionClaimer _hrclaimer;
|
|
|
|
public:
|
|
G1ParNoteEndTask(G1CollectedHeap* g1h, FreeRegionList* cleanup_list, uint n_workers) :
|
|
AbstractGangTask("G1 note end"), _g1h(g1h), _cleanup_list(cleanup_list), _hrclaimer(n_workers) {
|
|
}
|
|
|
|
void work(uint worker_id) {
|
|
FreeRegionList local_cleanup_list("Local Cleanup List");
|
|
HRRSCleanupTask hrrs_cleanup_task;
|
|
G1NoteEndOfConcMarkClosure g1_note_end(_g1h, &local_cleanup_list,
|
|
&hrrs_cleanup_task);
|
|
_g1h->heap_region_par_iterate(&g1_note_end, worker_id, &_hrclaimer);
|
|
assert(g1_note_end.complete(), "Shouldn't have yielded!");
|
|
|
|
// Now update the lists
|
|
_g1h->remove_from_old_sets(g1_note_end.old_regions_removed(), g1_note_end.humongous_regions_removed());
|
|
{
|
|
MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
|
|
_g1h->decrement_summary_bytes(g1_note_end.freed_bytes());
|
|
|
|
// If we iterate over the global cleanup list at the end of
|
|
// cleanup to do this printing we will not guarantee to only
|
|
// generate output for the newly-reclaimed regions (the list
|
|
// might not be empty at the beginning of cleanup; we might
|
|
// still be working on its previous contents). So we do the
|
|
// printing here, before we append the new regions to the global
|
|
// cleanup list.
|
|
|
|
G1HRPrinter* hr_printer = _g1h->hr_printer();
|
|
if (hr_printer->is_active()) {
|
|
FreeRegionListIterator iter(&local_cleanup_list);
|
|
while (iter.more_available()) {
|
|
HeapRegion* hr = iter.get_next();
|
|
hr_printer->cleanup(hr);
|
|
}
|
|
}
|
|
|
|
_cleanup_list->add_ordered(&local_cleanup_list);
|
|
assert(local_cleanup_list.is_empty(), "post-condition");
|
|
|
|
HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
|
|
}
|
|
}
|
|
};
|
|
|
|
void G1ConcurrentMark::cleanup() {
|
|
// world is stopped at this checkpoint
|
|
assert(SafepointSynchronize::is_at_safepoint(),
|
|
"world should be stopped");
|
|
G1CollectedHeap* g1h = G1CollectedHeap::heap();
|
|
|
|
// If a full collection has happened, we shouldn't do this.
|
|
if (has_aborted()) {
|
|
g1h->collector_state()->set_mark_in_progress(false); // So bitmap clearing isn't confused
|
|
return;
|
|
}
|
|
|
|
g1h->verifier()->verify_region_sets_optional();
|
|
|
|
if (VerifyDuringGC) {
|
|
HandleMark hm; // handle scope
|
|
g1h->prepare_for_verify();
|
|
Universe::verify(VerifyOption_G1UsePrevMarking, "During GC (before)");
|
|
}
|
|
g1h->verifier()->check_bitmaps("Cleanup Start");
|
|
|
|
G1CollectorPolicy* g1p = g1h->g1_policy();
|
|
g1p->record_concurrent_mark_cleanup_start();
|
|
|
|
double start = os::elapsedTime();
|
|
|
|
HeapRegionRemSet::reset_for_cleanup_tasks();
|
|
|
|
// Do counting once more with the world stopped for good measure.
|
|
G1ParFinalCountTask g1_par_count_task(g1h, &_region_bm, &_card_bm);
|
|
|
|
g1h->workers()->run_task(&g1_par_count_task);
|
|
|
|
if (VerifyDuringGC) {
|
|
// Verify that the counting data accumulated during marking matches
|
|
// that calculated by walking the marking bitmap.
|
|
|
|
// Bitmaps to hold expected values
|
|
BitMap expected_region_bm(_region_bm.size(), true);
|
|
BitMap expected_card_bm(_card_bm.size(), true);
|
|
|
|
G1ParVerifyFinalCountTask g1_par_verify_task(g1h,
|
|
&_region_bm,
|
|
&_card_bm,
|
|
&expected_region_bm,
|
|
&expected_card_bm);
|
|
|
|
g1h->workers()->run_task(&g1_par_verify_task);
|
|
|
|
guarantee(g1_par_verify_task.failures() == 0, "Unexpected accounting failures");
|
|
}
|
|
|
|
size_t start_used_bytes = g1h->used();
|
|
g1h->collector_state()->set_mark_in_progress(false);
|
|
|
|
double count_end = os::elapsedTime();
|
|
double this_final_counting_time = (count_end - start);
|
|
_total_counting_time += this_final_counting_time;
|
|
|
|
if (log_is_enabled(Trace, gc, liveness)) {
|
|
G1PrintRegionLivenessInfoClosure cl("Post-Marking");
|
|
_g1h->heap_region_iterate(&cl);
|
|
}
|
|
|
|
// Install newly created mark bitMap as "prev".
|
|
swapMarkBitMaps();
|
|
|
|
g1h->reset_gc_time_stamp();
|
|
|
|
uint n_workers = _g1h->workers()->active_workers();
|
|
|
|
// Note end of marking in all heap regions.
|
|
G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list, n_workers);
|
|
g1h->workers()->run_task(&g1_par_note_end_task);
|
|
g1h->check_gc_time_stamps();
|
|
|
|
if (!cleanup_list_is_empty()) {
|
|
// The cleanup list is not empty, so we'll have to process it
|
|
// concurrently. Notify anyone else that might be wanting free
|
|
// regions that there will be more free regions coming soon.
|
|
g1h->set_free_regions_coming();
|
|
}
|
|
|
|
// call below, since it affects the metric by which we sort the heap
|
|
// regions.
|
|
if (G1ScrubRemSets) {
|
|
double rs_scrub_start = os::elapsedTime();
|
|
g1h->scrub_rem_set(&_region_bm, &_card_bm);
|
|
_total_rs_scrub_time += (os::elapsedTime() - rs_scrub_start);
|
|
}
|
|
|
|
// this will also free any regions totally full of garbage objects,
|
|
// and sort the regions.
|
|
g1h->g1_policy()->record_concurrent_mark_cleanup_end();
|
|
|
|
// Statistics.
|
|
double end = os::elapsedTime();
|
|
_cleanup_times.add((end - start) * 1000.0);
|
|
|
|
// Clean up will have freed any regions completely full of garbage.
|
|
// Update the soft reference policy with the new heap occupancy.
|
|
Universe::update_heap_info_at_gc();
|
|
|
|
if (VerifyDuringGC) {
|
|
HandleMark hm; // handle scope
|
|
g1h->prepare_for_verify();
|
|
Universe::verify(VerifyOption_G1UsePrevMarking, "During GC (after)");
|
|
}
|
|
|
|
g1h->verifier()->check_bitmaps("Cleanup End");
|
|
|
|
g1h->verifier()->verify_region_sets_optional();
|
|
|
|
// We need to make this be a "collection" so any collection pause that
|
|
// races with it goes around and waits for completeCleanup to finish.
|
|
g1h->increment_total_collections();
|
|
|
|
// Clean out dead classes and update Metaspace sizes.
|
|
if (ClassUnloadingWithConcurrentMark) {
|
|
ClassLoaderDataGraph::purge();
|
|
}
|
|
MetaspaceGC::compute_new_size();
|
|
|
|
// We reclaimed old regions so we should calculate the sizes to make
|
|
// sure we update the old gen/space data.
|
|
g1h->g1mm()->update_sizes();
|
|
g1h->allocation_context_stats().update_after_mark();
|
|
}
|
|
|
|
void G1ConcurrentMark::complete_cleanup() {
|
|
if (has_aborted()) return;
|
|
|
|
G1CollectedHeap* g1h = G1CollectedHeap::heap();
|
|
|
|
_cleanup_list.verify_optional();
|
|
FreeRegionList tmp_free_list("Tmp Free List");
|
|
|
|
log_develop_trace(gc, freelist)("G1ConcRegionFreeing [complete cleanup] : "
|
|
"cleanup list has %u entries",
|
|
_cleanup_list.length());
|
|
|
|
// No one else should be accessing the _cleanup_list at this point,
|
|
// so it is not necessary to take any locks
|
|
while (!_cleanup_list.is_empty()) {
|
|
HeapRegion* hr = _cleanup_list.remove_region(true /* from_head */);
|
|
assert(hr != NULL, "Got NULL from a non-empty list");
|
|
hr->par_clear();
|
|
tmp_free_list.add_ordered(hr);
|
|
|
|
// Instead of adding one region at a time to the secondary_free_list,
|
|
// we accumulate them in the local list and move them a few at a
|
|
// time. This also cuts down on the number of notify_all() calls
|
|
// we do during this process. We'll also append the local list when
|
|
// _cleanup_list is empty (which means we just removed the last
|
|
// region from the _cleanup_list).
|
|
if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
|
|
_cleanup_list.is_empty()) {
|
|
log_develop_trace(gc, freelist)("G1ConcRegionFreeing [complete cleanup] : "
|
|
"appending %u entries to the secondary_free_list, "
|
|
"cleanup list still has %u entries",
|
|
tmp_free_list.length(),
|
|
_cleanup_list.length());
|
|
|
|
{
|
|
MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
|
|
g1h->secondary_free_list_add(&tmp_free_list);
|
|
SecondaryFreeList_lock->notify_all();
|
|
}
|
|
#ifndef PRODUCT
|
|
if (G1StressConcRegionFreeing) {
|
|
for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
|
|
os::sleep(Thread::current(), (jlong) 1, false);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
assert(tmp_free_list.is_empty(), "post-condition");
|
|
}
|
|
|
|
// Supporting Object and Oop closures for reference discovery
|
|
// and processing in during marking
|
|
|
|
bool G1CMIsAliveClosure::do_object_b(oop obj) {
|
|
HeapWord* addr = (HeapWord*)obj;
|
|
return addr != NULL &&
|
|
(!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
|
|
}
|
|
|
|
// 'Keep Alive' oop closure used by both serial parallel reference processing.
|
|
// Uses the G1CMTask associated with a worker thread (for serial reference
|
|
// processing the G1CMTask for worker 0 is used) to preserve (mark) and
|
|
// trace referent objects.
|
|
//
|
|
// Using the G1CMTask and embedded local queues avoids having the worker
|
|
// threads operating on the global mark stack. This reduces the risk
|
|
// of overflowing the stack - which we would rather avoid at this late
|
|
// state. Also using the tasks' local queues removes the potential
|
|
// of the workers interfering with each other that could occur if
|
|
// operating on the global stack.
|
|
|
|
class G1CMKeepAliveAndDrainClosure: public OopClosure {
|
|
G1ConcurrentMark* _cm;
|
|
G1CMTask* _task;
|
|
int _ref_counter_limit;
|
|
int _ref_counter;
|
|
bool _is_serial;
|
|
public:
|
|
G1CMKeepAliveAndDrainClosure(G1ConcurrentMark* cm, G1CMTask* task, bool is_serial) :
|
|
_cm(cm), _task(task), _is_serial(is_serial),
|
|
_ref_counter_limit(G1RefProcDrainInterval) {
|
|
assert(_ref_counter_limit > 0, "sanity");
|
|
assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
|
|
_ref_counter = _ref_counter_limit;
|
|
}
|
|
|
|
virtual void do_oop(narrowOop* p) { do_oop_work(p); }
|
|
virtual void do_oop( oop* p) { do_oop_work(p); }
|
|
|
|
template <class T> void do_oop_work(T* p) {
|
|
if (!_cm->has_overflown()) {
|
|
oop obj = oopDesc::load_decode_heap_oop(p);
|
|
_task->deal_with_reference(obj);
|
|
_ref_counter--;
|
|
|
|
if (_ref_counter == 0) {
|
|
// We have dealt with _ref_counter_limit references, pushing them
|
|
// and objects reachable from them on to the local stack (and
|
|
// possibly the global stack). Call G1CMTask::do_marking_step() to
|
|
// process these entries.
|
|
//
|
|
// We call G1CMTask::do_marking_step() in a loop, which we'll exit if
|
|
// there's nothing more to do (i.e. we're done with the entries that
|
|
// were pushed as a result of the G1CMTask::deal_with_reference() calls
|
|
// above) or we overflow.
|
|
//
|
|
// Note: G1CMTask::do_marking_step() can set the G1CMTask::has_aborted()
|
|
// flag while there may still be some work to do. (See the comment at
|
|
// the beginning of G1CMTask::do_marking_step() for those conditions -
|
|
// one of which is reaching the specified time target.) It is only
|
|
// when G1CMTask::do_marking_step() returns without setting the
|
|
// has_aborted() flag that the marking step has completed.
|
|
do {
|
|
double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
|
|
_task->do_marking_step(mark_step_duration_ms,
|
|
false /* do_termination */,
|
|
_is_serial);
|
|
} while (_task->has_aborted() && !_cm->has_overflown());
|
|
_ref_counter = _ref_counter_limit;
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
// 'Drain' oop closure used by both serial and parallel reference processing.
|
|
// Uses the G1CMTask associated with a given worker thread (for serial
|
|
// reference processing the G1CMtask for worker 0 is used). Calls the
|
|
// do_marking_step routine, with an unbelievably large timeout value,
|
|
// to drain the marking data structures of the remaining entries
|
|
// added by the 'keep alive' oop closure above.
|
|
|
|
class G1CMDrainMarkingStackClosure: public VoidClosure {
|
|
G1ConcurrentMark* _cm;
|
|
G1CMTask* _task;
|
|
bool _is_serial;
|
|
public:
|
|
G1CMDrainMarkingStackClosure(G1ConcurrentMark* cm, G1CMTask* task, bool is_serial) :
|
|
_cm(cm), _task(task), _is_serial(is_serial) {
|
|
assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
|
|
}
|
|
|
|
void do_void() {
|
|
do {
|
|
// We call G1CMTask::do_marking_step() to completely drain the local
|
|
// and global marking stacks of entries pushed by the 'keep alive'
|
|
// oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
|
|
//
|
|
// G1CMTask::do_marking_step() is called in a loop, which we'll exit
|
|
// if there's nothing more to do (i.e. we've completely drained the
|
|
// entries that were pushed as a a result of applying the 'keep alive'
|
|
// closure to the entries on the discovered ref lists) or we overflow
|
|
// the global marking stack.
|
|
//
|
|
// Note: G1CMTask::do_marking_step() can set the G1CMTask::has_aborted()
|
|
// flag while there may still be some work to do. (See the comment at
|
|
// the beginning of G1CMTask::do_marking_step() for those conditions -
|
|
// one of which is reaching the specified time target.) It is only
|
|
// when G1CMTask::do_marking_step() returns without setting the
|
|
// has_aborted() flag that the marking step has completed.
|
|
|
|
_task->do_marking_step(1000000000.0 /* something very large */,
|
|
true /* do_termination */,
|
|
_is_serial);
|
|
} while (_task->has_aborted() && !_cm->has_overflown());
|
|
}
|
|
};
|
|
|
|
// Implementation of AbstractRefProcTaskExecutor for parallel
|
|
// reference processing at the end of G1 concurrent marking
|
|
|
|
class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
|
|
private:
|
|
G1CollectedHeap* _g1h;
|
|
G1ConcurrentMark* _cm;
|
|
WorkGang* _workers;
|
|
uint _active_workers;
|
|
|
|
public:
|
|
G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
|
|
G1ConcurrentMark* cm,
|
|
WorkGang* workers,
|
|
uint n_workers) :
|
|
_g1h(g1h), _cm(cm),
|
|
_workers(workers), _active_workers(n_workers) { }
|
|
|
|
// Executes the given task using concurrent marking worker threads.
|
|
virtual void execute(ProcessTask& task);
|
|
virtual void execute(EnqueueTask& task);
|
|
};
|
|
|
|
class G1CMRefProcTaskProxy: public AbstractGangTask {
|
|
typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
|
|
ProcessTask& _proc_task;
|
|
G1CollectedHeap* _g1h;
|
|
G1ConcurrentMark* _cm;
|
|
|
|
public:
|
|
G1CMRefProcTaskProxy(ProcessTask& proc_task,
|
|
G1CollectedHeap* g1h,
|
|
G1ConcurrentMark* cm) :
|
|
AbstractGangTask("Process reference objects in parallel"),
|
|
_proc_task(proc_task), _g1h(g1h), _cm(cm) {
|
|
ReferenceProcessor* rp = _g1h->ref_processor_cm();
|
|
assert(rp->processing_is_mt(), "shouldn't be here otherwise");
|
|
}
|
|
|
|
virtual void work(uint worker_id) {
|
|
ResourceMark rm;
|
|
HandleMark hm;
|
|
G1CMTask* task = _cm->task(worker_id);
|
|
G1CMIsAliveClosure g1_is_alive(_g1h);
|
|
G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
|
|
G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
|
|
|
|
_proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
|
|
}
|
|
};
|
|
|
|
void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
|
|
assert(_workers != NULL, "Need parallel worker threads.");
|
|
assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
|
|
|
|
G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
|
|
|
|
// We need to reset the concurrency level before each
|
|
// proxy task execution, so that the termination protocol
|
|
// and overflow handling in G1CMTask::do_marking_step() knows
|
|
// how many workers to wait for.
|
|
_cm->set_concurrency(_active_workers);
|
|
_workers->run_task(&proc_task_proxy);
|
|
}
|
|
|
|
class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
|
|
typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
|
|
EnqueueTask& _enq_task;
|
|
|
|
public:
|
|
G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
|
|
AbstractGangTask("Enqueue reference objects in parallel"),
|
|
_enq_task(enq_task) { }
|
|
|
|
virtual void work(uint worker_id) {
|
|
_enq_task.work(worker_id);
|
|
}
|
|
};
|
|
|
|
void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
|
|
assert(_workers != NULL, "Need parallel worker threads.");
|
|
assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
|
|
|
|
G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
|
|
|
|
// Not strictly necessary but...
|
|
//
|
|
// We need to reset the concurrency level before each
|
|
// proxy task execution, so that the termination protocol
|
|
// and overflow handling in G1CMTask::do_marking_step() knows
|
|
// how many workers to wait for.
|
|
_cm->set_concurrency(_active_workers);
|
|
_workers->run_task(&enq_task_proxy);
|
|
}
|
|
|
|
void G1ConcurrentMark::weakRefsWorkParallelPart(BoolObjectClosure* is_alive, bool purged_classes) {
|
|
G1CollectedHeap::heap()->parallel_cleaning(is_alive, true, true, purged_classes);
|
|
}
|
|
|
|
void G1ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
|
|
if (has_overflown()) {
|
|
// Skip processing the discovered references if we have
|
|
// overflown the global marking stack. Reference objects
|
|
// only get discovered once so it is OK to not
|
|
// de-populate the discovered reference lists. We could have,
|
|
// but the only benefit would be that, when marking restarts,
|
|
// less reference objects are discovered.
|
|
return;
|
|
}
|
|
|
|
ResourceMark rm;
|
|
HandleMark hm;
|
|
|
|
G1CollectedHeap* g1h = G1CollectedHeap::heap();
|
|
|
|
// Is alive closure.
|
|
G1CMIsAliveClosure g1_is_alive(g1h);
|
|
|
|
// Inner scope to exclude the cleaning of the string and symbol
|
|
// tables from the displayed time.
|
|
{
|
|
GCTraceTime(Debug, gc, phases) trace("Reference Processing", _gc_timer_cm);
|
|
|
|
ReferenceProcessor* rp = g1h->ref_processor_cm();
|
|
|
|
// See the comment in G1CollectedHeap::ref_processing_init()
|
|
// about how reference processing currently works in G1.
|
|
|
|
// Set the soft reference policy
|
|
rp->setup_policy(clear_all_soft_refs);
|
|
assert(_markStack.isEmpty(), "mark stack should be empty");
|
|
|
|
// Instances of the 'Keep Alive' and 'Complete GC' closures used
|
|
// in serial reference processing. Note these closures are also
|
|
// used for serially processing (by the the current thread) the
|
|
// JNI references during parallel reference processing.
|
|
//
|
|
// These closures do not need to synchronize with the worker
|
|
// threads involved in parallel reference processing as these
|
|
// instances are executed serially by the current thread (e.g.
|
|
// reference processing is not multi-threaded and is thus
|
|
// performed by the current thread instead of a gang worker).
|
|
//
|
|
// The gang tasks involved in parallel reference processing create
|
|
// their own instances of these closures, which do their own
|
|
// synchronization among themselves.
|
|
G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
|
|
G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);
|
|
|
|
// We need at least one active thread. If reference processing
|
|
// is not multi-threaded we use the current (VMThread) thread,
|
|
// otherwise we use the work gang from the G1CollectedHeap and
|
|
// we utilize all the worker threads we can.
|
|
bool processing_is_mt = rp->processing_is_mt();
|
|
uint active_workers = (processing_is_mt ? g1h->workers()->active_workers() : 1U);
|
|
active_workers = MAX2(MIN2(active_workers, _max_worker_id), 1U);
|
|
|
|
// Parallel processing task executor.
|
|
G1CMRefProcTaskExecutor par_task_executor(g1h, this,
|
|
g1h->workers(), active_workers);
|
|
AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
|
|
|
|
// Set the concurrency level. The phase was already set prior to
|
|
// executing the remark task.
|
|
set_concurrency(active_workers);
|
|
|
|
// Set the degree of MT processing here. If the discovery was done MT,
|
|
// the number of threads involved during discovery could differ from
|
|
// the number of active workers. This is OK as long as the discovered
|
|
// Reference lists are balanced (see balance_all_queues() and balance_queues()).
|
|
rp->set_active_mt_degree(active_workers);
|
|
|
|
// Process the weak references.
|
|
const ReferenceProcessorStats& stats =
|
|
rp->process_discovered_references(&g1_is_alive,
|
|
&g1_keep_alive,
|
|
&g1_drain_mark_stack,
|
|
executor,
|
|
_gc_timer_cm);
|
|
_gc_tracer_cm->report_gc_reference_stats(stats);
|
|
|
|
// The do_oop work routines of the keep_alive and drain_marking_stack
|
|
// oop closures will set the has_overflown flag if we overflow the
|
|
// global marking stack.
|
|
|
|
assert(_markStack.overflow() || _markStack.isEmpty(),
|
|
"mark stack should be empty (unless it overflowed)");
|
|
|
|
if (_markStack.overflow()) {
|
|
// This should have been done already when we tried to push an
|
|
// entry on to the global mark stack. But let's do it again.
|
|
set_has_overflown();
|
|
}
|
|
|
|
assert(rp->num_q() == active_workers, "why not");
|
|
|
|
rp->enqueue_discovered_references(executor);
|
|
|
|
rp->verify_no_references_recorded();
|
|
assert(!rp->discovery_enabled(), "Post condition");
|
|
}
|
|
|
|
if (has_overflown()) {
|
|
// We can not trust g1_is_alive if the marking stack overflowed
|
|
return;
|
|
}
|
|
|
|
assert(_markStack.isEmpty(), "Marking should have completed");
|
|
|
|
// Unload Klasses, String, Symbols, Code Cache, etc.
|
|
if (ClassUnloadingWithConcurrentMark) {
|
|
bool purged_classes;
|
|
|
|
{
|
|
GCTraceTime(Debug, gc, phases) trace("System Dictionary Unloading", _gc_timer_cm);
|
|
purged_classes = SystemDictionary::do_unloading(&g1_is_alive, false /* Defer klass cleaning */);
|
|
}
|
|
|
|
{
|
|
GCTraceTime(Debug, gc, phases) trace("Parallel Unloading", _gc_timer_cm);
|
|
weakRefsWorkParallelPart(&g1_is_alive, purged_classes);
|
|
}
|
|
}
|
|
|
|
if (G1StringDedup::is_enabled()) {
|
|
GCTraceTime(Debug, gc, phases) trace("String Deduplication Unlink", _gc_timer_cm);
|
|
G1StringDedup::unlink(&g1_is_alive);
|
|
}
|
|
}
|
|
|
|
void G1ConcurrentMark::swapMarkBitMaps() {
|
|
G1CMBitMapRO* temp = _prevMarkBitMap;
|
|
_prevMarkBitMap = (G1CMBitMapRO*)_nextMarkBitMap;
|
|
_nextMarkBitMap = (G1CMBitMap*) temp;
|
|
}
|
|
|
|
// Closure for marking entries in SATB buffers.
|
|
class G1CMSATBBufferClosure : public SATBBufferClosure {
|
|
private:
|
|
G1CMTask* _task;
|
|
G1CollectedHeap* _g1h;
|
|
|
|
// This is very similar to G1CMTask::deal_with_reference, but with
|
|
// more relaxed requirements for the argument, so this must be more
|
|
// circumspect about treating the argument as an object.
|
|
void do_entry(void* entry) const {
|
|
_task->increment_refs_reached();
|
|
HeapRegion* hr = _g1h->heap_region_containing(entry);
|
|
if (entry < hr->next_top_at_mark_start()) {
|
|
// Until we get here, we don't know whether entry refers to a valid
|
|
// object; it could instead have been a stale reference.
|
|
oop obj = static_cast<oop>(entry);
|
|
assert(obj->is_oop(true /* ignore mark word */),
|
|
"Invalid oop in SATB buffer: " PTR_FORMAT, p2i(obj));
|
|
_task->make_reference_grey(obj, hr);
|
|
}
|
|
}
|
|
|
|
public:
|
|
G1CMSATBBufferClosure(G1CMTask* task, G1CollectedHeap* g1h)
|
|
: _task(task), _g1h(g1h) { }
|
|
|
|
virtual void do_buffer(void** buffer, size_t size) {
|
|
for (size_t i = 0; i < size; ++i) {
|
|
do_entry(buffer[i]);
|
|
}
|
|
}
|
|
};
|
|
|
|
class G1RemarkThreadsClosure : public ThreadClosure {
|
|
G1CMSATBBufferClosure _cm_satb_cl;
|
|
G1CMOopClosure _cm_cl;
|
|
MarkingCodeBlobClosure _code_cl;
|
|
int _thread_parity;
|
|
|
|
public:
|
|
G1RemarkThreadsClosure(G1CollectedHeap* g1h, G1CMTask* task) :
|
|
_cm_satb_cl(task, g1h),
|
|
_cm_cl(g1h, g1h->concurrent_mark(), task),
|
|
_code_cl(&_cm_cl, !CodeBlobToOopClosure::FixRelocations),
|
|
_thread_parity(Threads::thread_claim_parity()) {}
|
|
|
|
void do_thread(Thread* thread) {
|
|
if (thread->is_Java_thread()) {
|
|
if (thread->claim_oops_do(true, _thread_parity)) {
|
|
JavaThread* jt = (JavaThread*)thread;
|
|
|
|
// In theory it should not be neccessary to explicitly walk the nmethods to find roots for concurrent marking
|
|
// however the liveness of oops reachable from nmethods have very complex lifecycles:
|
|
// * Alive if on the stack of an executing method
|
|
// * Weakly reachable otherwise
|
|
// Some objects reachable from nmethods, such as the class loader (or klass_holder) of the receiver should be
|
|
// live by the SATB invariant but other oops recorded in nmethods may behave differently.
|
|
jt->nmethods_do(&_code_cl);
|
|
|
|
jt->satb_mark_queue().apply_closure_and_empty(&_cm_satb_cl);
|
|
}
|
|
} else if (thread->is_VM_thread()) {
|
|
if (thread->claim_oops_do(true, _thread_parity)) {
|
|
JavaThread::satb_mark_queue_set().shared_satb_queue()->apply_closure_and_empty(&_cm_satb_cl);
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
class G1CMRemarkTask: public AbstractGangTask {
|
|
private:
|
|
G1ConcurrentMark* _cm;
|
|
public:
|
|
void work(uint worker_id) {
|
|
// Since all available tasks are actually started, we should
|
|
// only proceed if we're supposed to be active.
|
|
if (worker_id < _cm->active_tasks()) {
|
|
G1CMTask* task = _cm->task(worker_id);
|
|
task->record_start_time();
|
|
{
|
|
ResourceMark rm;
|
|
HandleMark hm;
|
|
|
|
G1RemarkThreadsClosure threads_f(G1CollectedHeap::heap(), task);
|
|
Threads::threads_do(&threads_f);
|
|
}
|
|
|
|
do {
|
|
task->do_marking_step(1000000000.0 /* something very large */,
|
|
true /* do_termination */,
|
|
false /* is_serial */);
|
|
} while (task->has_aborted() && !_cm->has_overflown());
|
|
// If we overflow, then we do not want to restart. We instead
|
|
// want to abort remark and do concurrent marking again.
|
|
task->record_end_time();
|
|
}
|
|
}
|
|
|
|
G1CMRemarkTask(G1ConcurrentMark* cm, uint active_workers) :
|
|
AbstractGangTask("Par Remark"), _cm(cm) {
|
|
_cm->terminator()->reset_for_reuse(active_workers);
|
|
}
|
|
};
|
|
|
|
void G1ConcurrentMark::checkpointRootsFinalWork() {
|
|
ResourceMark rm;
|
|
HandleMark hm;
|
|
G1CollectedHeap* g1h = G1CollectedHeap::heap();
|
|
|
|
GCTraceTime(Debug, gc, phases) trace("Finalize Marking", _gc_timer_cm);
|
|
|
|
g1h->ensure_parsability(false);
|
|
|
|
// this is remark, so we'll use up all active threads
|
|
uint active_workers = g1h->workers()->active_workers();
|
|
set_concurrency_and_phase(active_workers, false /* concurrent */);
|
|
// Leave _parallel_marking_threads at it's
|
|
// value originally calculated in the G1ConcurrentMark
|
|
// constructor and pass values of the active workers
|
|
// through the gang in the task.
|
|
|
|
{
|
|
StrongRootsScope srs(active_workers);
|
|
|
|
G1CMRemarkTask remarkTask(this, active_workers);
|
|
// We will start all available threads, even if we decide that the
|
|
// active_workers will be fewer. The extra ones will just bail out
|
|
// immediately.
|
|
g1h->workers()->run_task(&remarkTask);
|
|
}
|
|
|
|
SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
|
|
guarantee(has_overflown() ||
|
|
satb_mq_set.completed_buffers_num() == 0,
|
|
"Invariant: has_overflown = %s, num buffers = " SIZE_FORMAT,
|
|
BOOL_TO_STR(has_overflown()),
|
|
satb_mq_set.completed_buffers_num());
|
|
|
|
print_stats();
|
|
}
|
|
|
|
void G1ConcurrentMark::clearRangePrevBitmap(MemRegion mr) {
|
|
// Note we are overriding the read-only view of the prev map here, via
|
|
// the cast.
|
|
((G1CMBitMap*)_prevMarkBitMap)->clear_range(mr);
|
|
}
|
|
|
|
HeapRegion*
|
|
G1ConcurrentMark::claim_region(uint worker_id) {
|
|
// "checkpoint" the finger
|
|
HeapWord* finger = _finger;
|
|
|
|
// _heap_end will not change underneath our feet; it only changes at
|
|
// yield points.
|
|
while (finger < _heap_end) {
|
|
assert(_g1h->is_in_g1_reserved(finger), "invariant");
|
|
|
|
HeapRegion* curr_region = _g1h->heap_region_containing(finger);
|
|
|
|
// Above heap_region_containing may return NULL as we always scan claim
|
|
// until the end of the heap. In this case, just jump to the next region.
|
|
HeapWord* end = curr_region != NULL ? curr_region->end() : finger + HeapRegion::GrainWords;
|
|
|
|
// Is the gap between reading the finger and doing the CAS too long?
|
|
HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
|
|
if (res == finger && curr_region != NULL) {
|
|
// we succeeded
|
|
HeapWord* bottom = curr_region->bottom();
|
|
HeapWord* limit = curr_region->next_top_at_mark_start();
|
|
|
|
// notice that _finger == end cannot be guaranteed here since,
|
|
// someone else might have moved the finger even further
|
|
assert(_finger >= end, "the finger should have moved forward");
|
|
|
|
if (limit > bottom) {
|
|
return curr_region;
|
|
} else {
|
|
assert(limit == bottom,
|
|
"the region limit should be at bottom");
|
|
// we return NULL and the caller should try calling
|
|
// claim_region() again.
|
|
return NULL;
|
|
}
|
|
} else {
|
|
assert(_finger > finger, "the finger should have moved forward");
|
|
// read it again
|
|
finger = _finger;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
class VerifyNoCSetOops VALUE_OBJ_CLASS_SPEC {
|
|
private:
|
|
G1CollectedHeap* _g1h;
|
|
const char* _phase;
|
|
int _info;
|
|
|
|
public:
|
|
VerifyNoCSetOops(const char* phase, int info = -1) :
|
|
_g1h(G1CollectedHeap::heap()),
|
|
_phase(phase),
|
|
_info(info)
|
|
{ }
|
|
|
|
void operator()(oop obj) const {
|
|
guarantee(obj->is_oop(),
|
|
"Non-oop " PTR_FORMAT ", phase: %s, info: %d",
|
|
p2i(obj), _phase, _info);
|
|
guarantee(!_g1h->obj_in_cs(obj),
|
|
"obj: " PTR_FORMAT " in CSet, phase: %s, info: %d",
|
|
p2i(obj), _phase, _info);
|
|
}
|
|
};
|
|
|
|
void G1ConcurrentMark::verify_no_cset_oops() {
|
|
assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
|
|
if (!G1CollectedHeap::heap()->collector_state()->mark_in_progress()) {
|
|
return;
|
|
}
|
|
|
|
// Verify entries on the global mark stack
|
|
_markStack.iterate(VerifyNoCSetOops("Stack"));
|
|
|
|
// Verify entries on the task queues
|
|
for (uint i = 0; i < _max_worker_id; ++i) {
|
|
G1CMTaskQueue* queue = _task_queues->queue(i);
|
|
queue->iterate(VerifyNoCSetOops("Queue", i));
|
|
}
|
|
|
|
// Verify the global finger
|
|
HeapWord* global_finger = finger();
|
|
if (global_finger != NULL && global_finger < _heap_end) {
|
|
// Since we always iterate over all regions, we might get a NULL HeapRegion
|
|
// here.
|
|
HeapRegion* global_hr = _g1h->heap_region_containing(global_finger);
|
|
guarantee(global_hr == NULL || global_finger == global_hr->bottom(),
|
|
"global finger: " PTR_FORMAT " region: " HR_FORMAT,
|
|
p2i(global_finger), HR_FORMAT_PARAMS(global_hr));
|
|
}
|
|
|
|
// Verify the task fingers
|
|
assert(parallel_marking_threads() <= _max_worker_id, "sanity");
|
|
for (uint i = 0; i < parallel_marking_threads(); ++i) {
|
|
G1CMTask* task = _tasks[i];
|
|
HeapWord* task_finger = task->finger();
|
|
if (task_finger != NULL && task_finger < _heap_end) {
|
|
// See above note on the global finger verification.
|
|
HeapRegion* task_hr = _g1h->heap_region_containing(task_finger);
|
|
guarantee(task_hr == NULL || task_finger == task_hr->bottom() ||
|
|
!task_hr->in_collection_set(),
|
|
"task finger: " PTR_FORMAT " region: " HR_FORMAT,
|
|
p2i(task_finger), HR_FORMAT_PARAMS(task_hr));
|
|
}
|
|
}
|
|
}
|
|
#endif // PRODUCT
|
|
|
|
// Aggregate the counting data that was constructed concurrently
|
|
// with marking.
|
|
class AggregateCountDataHRClosure: public HeapRegionClosure {
|
|
G1CollectedHeap* _g1h;
|
|
G1ConcurrentMark* _cm;
|
|
CardTableModRefBS* _ct_bs;
|
|
BitMap* _cm_card_bm;
|
|
uint _max_worker_id;
|
|
|
|
public:
|
|
AggregateCountDataHRClosure(G1CollectedHeap* g1h,
|
|
BitMap* cm_card_bm,
|
|
uint max_worker_id) :
|
|
_g1h(g1h), _cm(g1h->concurrent_mark()),
|
|
_ct_bs(barrier_set_cast<CardTableModRefBS>(g1h->barrier_set())),
|
|
_cm_card_bm(cm_card_bm), _max_worker_id(max_worker_id) { }
|
|
|
|
bool doHeapRegion(HeapRegion* hr) {
|
|
HeapWord* start = hr->bottom();
|
|
HeapWord* limit = hr->next_top_at_mark_start();
|
|
HeapWord* end = hr->end();
|
|
|
|
assert(start <= limit && limit <= hr->top() && hr->top() <= hr->end(),
|
|
"Preconditions not met - "
|
|
"start: " PTR_FORMAT ", limit: " PTR_FORMAT ", "
|
|
"top: " PTR_FORMAT ", end: " PTR_FORMAT,
|
|
p2i(start), p2i(limit), p2i(hr->top()), p2i(hr->end()));
|
|
|
|
assert(hr->next_marked_bytes() == 0, "Precondition");
|
|
|
|
if (start == limit) {
|
|
// NTAMS of this region has not been set so nothing to do.
|
|
return false;
|
|
}
|
|
|
|
// 'start' should be in the heap.
|
|
assert(_g1h->is_in_g1_reserved(start) && _ct_bs->is_card_aligned(start), "sanity");
|
|
// 'end' *may* be just beyond the end of the heap (if hr is the last region)
|
|
assert(!_g1h->is_in_g1_reserved(end) || _ct_bs->is_card_aligned(end), "sanity");
|
|
|
|
BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
|
|
BitMap::idx_t limit_idx = _cm->card_bitmap_index_for(limit);
|
|
BitMap::idx_t end_idx = _cm->card_bitmap_index_for(end);
|
|
|
|
// If ntams is not card aligned then we bump card bitmap index
|
|
// for limit so that we get the all the cards spanned by
|
|
// the object ending at ntams.
|
|
// Note: if this is the last region in the heap then ntams
|
|
// could be actually just beyond the end of the the heap;
|
|
// limit_idx will then correspond to a (non-existent) card
|
|
// that is also outside the heap.
|
|
if (_g1h->is_in_g1_reserved(limit) && !_ct_bs->is_card_aligned(limit)) {
|
|
limit_idx += 1;
|
|
}
|
|
|
|
assert(limit_idx <= end_idx, "or else use atomics");
|
|
|
|
// Aggregate the "stripe" in the count data associated with hr.
|
|
uint hrm_index = hr->hrm_index();
|
|
size_t marked_bytes = 0;
|
|
|
|
for (uint i = 0; i < _max_worker_id; i += 1) {
|
|
size_t* marked_bytes_array = _cm->count_marked_bytes_array_for(i);
|
|
BitMap* task_card_bm = _cm->count_card_bitmap_for(i);
|
|
|
|
// Fetch the marked_bytes in this region for task i and
|
|
// add it to the running total for this region.
|
|
marked_bytes += marked_bytes_array[hrm_index];
|
|
|
|
// Now union the bitmaps[0,max_worker_id)[start_idx..limit_idx)
|
|
// into the global card bitmap.
|
|
BitMap::idx_t scan_idx = task_card_bm->get_next_one_offset(start_idx, limit_idx);
|
|
|
|
while (scan_idx < limit_idx) {
|
|
assert(task_card_bm->at(scan_idx) == true, "should be");
|
|
_cm_card_bm->set_bit(scan_idx);
|
|
assert(_cm_card_bm->at(scan_idx) == true, "should be");
|
|
|
|
// BitMap::get_next_one_offset() can handle the case when
|
|
// its left_offset parameter is greater than its right_offset
|
|
// parameter. It does, however, have an early exit if
|
|
// left_offset == right_offset. So let's limit the value
|
|
// passed in for left offset here.
|
|
BitMap::idx_t next_idx = MIN2(scan_idx + 1, limit_idx);
|
|
scan_idx = task_card_bm->get_next_one_offset(next_idx, limit_idx);
|
|
}
|
|
}
|
|
|
|
// Update the marked bytes for this region.
|
|
hr->add_to_marked_bytes(marked_bytes);
|
|
|
|
// Next heap region
|
|
return false;
|
|
}
|
|
};
|
|
|
|
class G1AggregateCountDataTask: public AbstractGangTask {
|
|
protected:
|
|
G1CollectedHeap* _g1h;
|
|
G1ConcurrentMark* _cm;
|
|
BitMap* _cm_card_bm;
|
|
uint _max_worker_id;
|
|
uint _active_workers;
|
|
HeapRegionClaimer _hrclaimer;
|
|
|
|
public:
|
|
G1AggregateCountDataTask(G1CollectedHeap* g1h,
|
|
G1ConcurrentMark* cm,
|
|
BitMap* cm_card_bm,
|
|
uint max_worker_id,
|
|
uint n_workers) :
|
|
AbstractGangTask("Count Aggregation"),
|
|
_g1h(g1h), _cm(cm), _cm_card_bm(cm_card_bm),
|
|
_max_worker_id(max_worker_id),
|
|
_active_workers(n_workers),
|
|
_hrclaimer(_active_workers) {
|
|
}
|
|
|
|
void work(uint worker_id) {
|
|
AggregateCountDataHRClosure cl(_g1h, _cm_card_bm, _max_worker_id);
|
|
|
|
_g1h->heap_region_par_iterate(&cl, worker_id, &_hrclaimer);
|
|
}
|
|
};
|
|
|
|
|
|
void G1ConcurrentMark::aggregate_count_data() {
|
|
uint n_workers = _g1h->workers()->active_workers();
|
|
|
|
G1AggregateCountDataTask g1_par_agg_task(_g1h, this, &_card_bm,
|
|
_max_worker_id, n_workers);
|
|
|
|
_g1h->workers()->run_task(&g1_par_agg_task);
|
|
}
|
|
|
|
// Clear the per-worker arrays used to store the per-region counting data
|
|
void G1ConcurrentMark::clear_all_count_data() {
|
|
// Clear the global card bitmap - it will be filled during
|
|
// liveness count aggregation (during remark) and the
|
|
// final counting task.
|
|
_card_bm.clear();
|
|
|
|
// Clear the global region bitmap - it will be filled as part
|
|
// of the final counting task.
|
|
_region_bm.clear();
|
|
|
|
uint max_regions = _g1h->max_regions();
|
|
assert(_max_worker_id > 0, "uninitialized");
|
|
|
|
for (uint i = 0; i < _max_worker_id; i += 1) {
|
|
BitMap* task_card_bm = count_card_bitmap_for(i);
|
|
size_t* marked_bytes_array = count_marked_bytes_array_for(i);
|
|
|
|
assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
|
|
assert(marked_bytes_array != NULL, "uninitialized");
|
|
|
|
memset(marked_bytes_array, 0, (size_t) max_regions * sizeof(size_t));
|
|
task_card_bm->clear();
|
|
}
|
|
}
|
|
|
|
void G1ConcurrentMark::print_stats() {
|
|
if (!log_is_enabled(Debug, gc, stats)) {
|
|
return;
|
|
}
|
|
log_debug(gc, stats)("---------------------------------------------------------------------");
|
|
for (size_t i = 0; i < _active_tasks; ++i) {
|
|
_tasks[i]->print_stats();
|
|
log_debug(gc, stats)("---------------------------------------------------------------------");
|
|
}
|
|
}
|
|
|
|
// abandon current marking iteration due to a Full GC
|
|
void G1ConcurrentMark::abort() {
|
|
if (!cmThread()->during_cycle() || _has_aborted) {
|
|
// We haven't started a concurrent cycle or we have already aborted it. No need to do anything.
|
|
return;
|
|
}
|
|
|
|
// Clear all marks in the next bitmap for the next marking cycle. This will allow us to skip the next
|
|
// concurrent bitmap clearing.
|
|
clear_bitmap(_nextMarkBitMap, _g1h->workers(), false);
|
|
|
|
// Note we cannot clear the previous marking bitmap here
|
|
// since VerifyDuringGC verifies the objects marked during
|
|
// a full GC against the previous bitmap.
|
|
|
|
// Clear the liveness counting data
|
|
clear_all_count_data();
|
|
// Empty mark stack
|
|
reset_marking_state();
|
|
for (uint i = 0; i < _max_worker_id; ++i) {
|
|
_tasks[i]->clear_region_fields();
|
|
}
|
|
_first_overflow_barrier_sync.abort();
|
|
_second_overflow_barrier_sync.abort();
|
|
_has_aborted = true;
|
|
|
|
SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
|
|
satb_mq_set.abandon_partial_marking();
|
|
// This can be called either during or outside marking, we'll read
|
|
// the expected_active value from the SATB queue set.
|
|
satb_mq_set.set_active_all_threads(
|
|
false, /* new active value */
|
|
satb_mq_set.is_active() /* expected_active */);
|
|
}
|
|
|
|
static void print_ms_time_info(const char* prefix, const char* name,
|
|
NumberSeq& ns) {
|
|
log_trace(gc, marking)("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
|
|
prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
|
|
if (ns.num() > 0) {
|
|
log_trace(gc, marking)("%s [std. dev = %8.2f ms, max = %8.2f ms]",
|
|
prefix, ns.sd(), ns.maximum());
|
|
}
|
|
}
|
|
|
|
void G1ConcurrentMark::print_summary_info() {
|
|
Log(gc, marking) log;
|
|
if (!log.is_trace()) {
|
|
return;
|
|
}
|
|
|
|
log.trace(" Concurrent marking:");
|
|
print_ms_time_info(" ", "init marks", _init_times);
|
|
print_ms_time_info(" ", "remarks", _remark_times);
|
|
{
|
|
print_ms_time_info(" ", "final marks", _remark_mark_times);
|
|
print_ms_time_info(" ", "weak refs", _remark_weak_ref_times);
|
|
|
|
}
|
|
print_ms_time_info(" ", "cleanups", _cleanup_times);
|
|
log.trace(" Final counting total time = %8.2f s (avg = %8.2f ms).",
|
|
_total_counting_time, (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 / (double)_cleanup_times.num() : 0.0));
|
|
if (G1ScrubRemSets) {
|
|
log.trace(" RS scrub total time = %8.2f s (avg = %8.2f ms).",
|
|
_total_rs_scrub_time, (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 / (double)_cleanup_times.num() : 0.0));
|
|
}
|
|
log.trace(" Total stop_world time = %8.2f s.",
|
|
(_init_times.sum() + _remark_times.sum() + _cleanup_times.sum())/1000.0);
|
|
log.trace(" Total concurrent time = %8.2f s (%8.2f s marking).",
|
|
cmThread()->vtime_accum(), cmThread()->vtime_mark_accum());
|
|
}
|
|
|
|
void G1ConcurrentMark::print_worker_threads_on(outputStream* st) const {
|
|
_parallel_workers->print_worker_threads_on(st);
|
|
}
|
|
|
|
void G1ConcurrentMark::print_on_error(outputStream* st) const {
|
|
st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
|
|
p2i(_prevMarkBitMap), p2i(_nextMarkBitMap));
|
|
_prevMarkBitMap->print_on_error(st, " Prev Bits: ");
|
|
_nextMarkBitMap->print_on_error(st, " Next Bits: ");
|
|
}
|
|
|
|
// We take a break if someone is trying to stop the world.
|
|
bool G1ConcurrentMark::do_yield_check(uint worker_id) {
|
|
if (SuspendibleThreadSet::should_yield()) {
|
|
SuspendibleThreadSet::yield();
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Closure for iteration over bitmaps
|
|
class G1CMBitMapClosure : public BitMapClosure {
|
|
private:
|
|
// the bitmap that is being iterated over
|
|
G1CMBitMap* _nextMarkBitMap;
|
|
G1ConcurrentMark* _cm;
|
|
G1CMTask* _task;
|
|
|
|
public:
|
|
G1CMBitMapClosure(G1CMTask *task, G1ConcurrentMark* cm, G1CMBitMap* nextMarkBitMap) :
|
|
_task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }
|
|
|
|
bool do_bit(size_t offset) {
|
|
HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
|
|
assert(_nextMarkBitMap->isMarked(addr), "invariant");
|
|
assert( addr < _cm->finger(), "invariant");
|
|
assert(addr >= _task->finger(), "invariant");
|
|
|
|
// We move that task's local finger along.
|
|
_task->move_finger_to(addr);
|
|
|
|
_task->scan_object(oop(addr));
|
|
// we only partially drain the local queue and global stack
|
|
_task->drain_local_queue(true);
|
|
_task->drain_global_stack(true);
|
|
|
|
// if the has_aborted flag has been raised, we need to bail out of
|
|
// the iteration
|
|
return !_task->has_aborted();
|
|
}
|
|
};
|
|
|
|
static ReferenceProcessor* get_cm_oop_closure_ref_processor(G1CollectedHeap* g1h) {
|
|
ReferenceProcessor* result = g1h->ref_processor_cm();
|
|
assert(result != NULL, "CM reference processor should not be NULL");
|
|
return result;
|
|
}
|
|
|
|
G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
|
|
G1ConcurrentMark* cm,
|
|
G1CMTask* task)
|
|
: MetadataAwareOopClosure(get_cm_oop_closure_ref_processor(g1h)),
|
|
_g1h(g1h), _cm(cm), _task(task)
|
|
{ }
|
|
|
|
void G1CMTask::setup_for_region(HeapRegion* hr) {
|
|
assert(hr != NULL,
|
|
"claim_region() should have filtered out NULL regions");
|
|
_curr_region = hr;
|
|
_finger = hr->bottom();
|
|
update_region_limit();
|
|
}
|
|
|
|
void G1CMTask::update_region_limit() {
|
|
HeapRegion* hr = _curr_region;
|
|
HeapWord* bottom = hr->bottom();
|
|
HeapWord* limit = hr->next_top_at_mark_start();
|
|
|
|
if (limit == bottom) {
|
|
// The region was collected underneath our feet.
|
|
// We set the finger to bottom to ensure that the bitmap
|
|
// iteration that will follow this will not do anything.
|
|
// (this is not a condition that holds when we set the region up,
|
|
// as the region is not supposed to be empty in the first place)
|
|
_finger = bottom;
|
|
} else if (limit >= _region_limit) {
|
|
assert(limit >= _finger, "peace of mind");
|
|
} else {
|
|
assert(limit < _region_limit, "only way to get here");
|
|
// This can happen under some pretty unusual circumstances. An
|
|
// evacuation pause empties the region underneath our feet (NTAMS
|
|
// at bottom). We then do some allocation in the region (NTAMS
|
|
// stays at bottom), followed by the region being used as a GC
|
|
// alloc region (NTAMS will move to top() and the objects
|
|
// originally below it will be grayed). All objects now marked in
|
|
// the region are explicitly grayed, if below the global finger,
|
|
// and we do not need in fact to scan anything else. So, we simply
|
|
// set _finger to be limit to ensure that the bitmap iteration
|
|
// doesn't do anything.
|
|
_finger = limit;
|
|
}
|
|
|
|
_region_limit = limit;
|
|
}
|
|
|
|
void G1CMTask::giveup_current_region() {
|
|
assert(_curr_region != NULL, "invariant");
|
|
clear_region_fields();
|
|
}
|
|
|
|
void G1CMTask::clear_region_fields() {
|
|
// Values for these three fields that indicate that we're not
|
|
// holding on to a region.
|
|
_curr_region = NULL;
|
|
_finger = NULL;
|
|
_region_limit = NULL;
|
|
}
|
|
|
|
void G1CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
|
|
if (cm_oop_closure == NULL) {
|
|
assert(_cm_oop_closure != NULL, "invariant");
|
|
} else {
|
|
assert(_cm_oop_closure == NULL, "invariant");
|
|
}
|
|
_cm_oop_closure = cm_oop_closure;
|
|
}
|
|
|
|
void G1CMTask::reset(G1CMBitMap* nextMarkBitMap) {
|
|
guarantee(nextMarkBitMap != NULL, "invariant");
|
|
_nextMarkBitMap = nextMarkBitMap;
|
|
clear_region_fields();
|
|
|
|
_calls = 0;
|
|
_elapsed_time_ms = 0.0;
|
|
_termination_time_ms = 0.0;
|
|
_termination_start_time_ms = 0.0;
|
|
}
|
|
|
|
bool G1CMTask::should_exit_termination() {
|
|
regular_clock_call();
|
|
// This is called when we are in the termination protocol. We should
|
|
// quit if, for some reason, this task wants to abort or the global
|
|
// stack is not empty (this means that we can get work from it).
|
|
return !_cm->mark_stack_empty() || has_aborted();
|
|
}
|
|
|
|
void G1CMTask::reached_limit() {
|
|
assert(_words_scanned >= _words_scanned_limit ||
|
|
_refs_reached >= _refs_reached_limit ,
|
|
"shouldn't have been called otherwise");
|
|
regular_clock_call();
|
|
}
|
|
|
|
void G1CMTask::regular_clock_call() {
|
|
if (has_aborted()) return;
|
|
|
|
// First, we need to recalculate the words scanned and refs reached
|
|
// limits for the next clock call.
|
|
recalculate_limits();
|
|
|
|
// During the regular clock call we do the following
|
|
|
|
// (1) If an overflow has been flagged, then we abort.
|
|
if (_cm->has_overflown()) {
|
|
set_has_aborted();
|
|
return;
|
|
}
|
|
|
|
// If we are not concurrent (i.e. we're doing remark) we don't need
|
|
// to check anything else. The other steps are only needed during
|
|
// the concurrent marking phase.
|
|
if (!concurrent()) return;
|
|
|
|
// (2) If marking has been aborted for Full GC, then we also abort.
|
|
if (_cm->has_aborted()) {
|
|
set_has_aborted();
|
|
return;
|
|
}
|
|
|
|
double curr_time_ms = os::elapsedVTime() * 1000.0;
|
|
|
|
// (4) We check whether we should yield. If we have to, then we abort.
|
|
if (SuspendibleThreadSet::should_yield()) {
|
|
// We should yield. To do this we abort the task. The caller is
|
|
// responsible for yielding.
|
|
set_has_aborted();
|
|
return;
|
|
}
|
|
|
|
// (5) We check whether we've reached our time quota. If we have,
|
|
// then we abort.
|
|
double elapsed_time_ms = curr_time_ms - _start_time_ms;
|
|
if (elapsed_time_ms > _time_target_ms) {
|
|
set_has_aborted();
|
|
_has_timed_out = true;
|
|
return;
|
|
}
|
|
|
|
// (6) Finally, we check whether there are enough completed STAB
|
|
// buffers available for processing. If there are, we abort.
|
|
SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
|
|
if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
|
|
// we do need to process SATB buffers, we'll abort and restart
|
|
// the marking task to do so
|
|
set_has_aborted();
|
|
return;
|
|
}
|
|
}
|
|
|
|
void G1CMTask::recalculate_limits() {
|
|
_real_words_scanned_limit = _words_scanned + words_scanned_period;
|
|
_words_scanned_limit = _real_words_scanned_limit;
|
|
|
|
_real_refs_reached_limit = _refs_reached + refs_reached_period;
|
|
_refs_reached_limit = _real_refs_reached_limit;
|
|
}
|
|
|
|
void G1CMTask::decrease_limits() {
|
|
// This is called when we believe that we're going to do an infrequent
|
|
// operation which will increase the per byte scanned cost (i.e. move
|
|
// entries to/from the global stack). It basically tries to decrease the
|
|
// scanning limit so that the clock is called earlier.
|
|
|
|
_words_scanned_limit = _real_words_scanned_limit -
|
|
3 * words_scanned_period / 4;
|
|
_refs_reached_limit = _real_refs_reached_limit -
|
|
3 * refs_reached_period / 4;
|
|
}
|
|
|
|
void G1CMTask::move_entries_to_global_stack() {
|
|
// local array where we'll store the entries that will be popped
|
|
// from the local queue
|
|
oop buffer[global_stack_transfer_size];
|
|
|
|
int n = 0;
|
|
oop obj;
|
|
while (n < global_stack_transfer_size && _task_queue->pop_local(obj)) {
|
|
buffer[n] = obj;
|
|
++n;
|
|
}
|
|
|
|
if (n > 0) {
|
|
// we popped at least one entry from the local queue
|
|
|
|
if (!_cm->mark_stack_push(buffer, n)) {
|
|
set_has_aborted();
|
|
}
|
|
}
|
|
|
|
// this operation was quite expensive, so decrease the limits
|
|
decrease_limits();
|
|
}
|
|
|
|
void G1CMTask::get_entries_from_global_stack() {
|
|
// local array where we'll store the entries that will be popped
|
|
// from the global stack.
|
|
oop buffer[global_stack_transfer_size];
|
|
int n;
|
|
_cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
|
|
assert(n <= global_stack_transfer_size,
|
|
"we should not pop more than the given limit");
|
|
if (n > 0) {
|
|
// yes, we did actually pop at least one entry
|
|
for (int i = 0; i < n; ++i) {
|
|
bool success = _task_queue->push(buffer[i]);
|
|
// We only call this when the local queue is empty or under a
|
|
// given target limit. So, we do not expect this push to fail.
|
|
assert(success, "invariant");
|
|
}
|
|
}
|
|
|
|
// this operation was quite expensive, so decrease the limits
|
|
decrease_limits();
|
|
}
|
|
|
|
void G1CMTask::drain_local_queue(bool partially) {
|
|
if (has_aborted()) return;
|
|
|
|
// Decide what the target size is, depending whether we're going to
|
|
// drain it partially (so that other tasks can steal if they run out
|
|
// of things to do) or totally (at the very end).
|
|
size_t target_size;
|
|
if (partially) {
|
|
target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
|
|
} else {
|
|
target_size = 0;
|
|
}
|
|
|
|
if (_task_queue->size() > target_size) {
|
|
oop obj;
|
|
bool ret = _task_queue->pop_local(obj);
|
|
while (ret) {
|
|
assert(_g1h->is_in_g1_reserved((HeapWord*) obj), "invariant" );
|
|
assert(!_g1h->is_on_master_free_list(
|
|
_g1h->heap_region_containing((HeapWord*) obj)), "invariant");
|
|
|
|
scan_object(obj);
|
|
|
|
if (_task_queue->size() <= target_size || has_aborted()) {
|
|
ret = false;
|
|
} else {
|
|
ret = _task_queue->pop_local(obj);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void G1CMTask::drain_global_stack(bool partially) {
|
|
if (has_aborted()) return;
|
|
|
|
// We have a policy to drain the local queue before we attempt to
|
|
// drain the global stack.
|
|
assert(partially || _task_queue->size() == 0, "invariant");
|
|
|
|
// Decide what the target size is, depending whether we're going to
|
|
// drain it partially (so that other tasks can steal if they run out
|
|
// of things to do) or totally (at the very end). Notice that,
|
|
// because we move entries from the global stack in chunks or
|
|
// because another task might be doing the same, we might in fact
|
|
// drop below the target. But, this is not a problem.
|
|
size_t target_size;
|
|
if (partially) {
|
|
target_size = _cm->partial_mark_stack_size_target();
|
|
} else {
|
|
target_size = 0;
|
|
}
|
|
|
|
if (_cm->mark_stack_size() > target_size) {
|
|
while (!has_aborted() && _cm->mark_stack_size() > target_size) {
|
|
get_entries_from_global_stack();
|
|
drain_local_queue(partially);
|
|
}
|
|
}
|
|
}
|
|
|
|
// SATB Queue has several assumptions on whether to call the par or
|
|
// non-par versions of the methods. this is why some of the code is
|
|
// replicated. We should really get rid of the single-threaded version
|
|
// of the code to simplify things.
|
|
void G1CMTask::drain_satb_buffers() {
|
|
if (has_aborted()) return;
|
|
|
|
// We set this so that the regular clock knows that we're in the
|
|
// middle of draining buffers and doesn't set the abort flag when it
|
|
// notices that SATB buffers are available for draining. It'd be
|
|
// very counter productive if it did that. :-)
|
|
_draining_satb_buffers = true;
|
|
|
|
G1CMSATBBufferClosure satb_cl(this, _g1h);
|
|
SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
|
|
|
|
// This keeps claiming and applying the closure to completed buffers
|
|
// until we run out of buffers or we need to abort.
|
|
while (!has_aborted() &&
|
|
satb_mq_set.apply_closure_to_completed_buffer(&satb_cl)) {
|
|
regular_clock_call();
|
|
}
|
|
|
|
_draining_satb_buffers = false;
|
|
|
|
assert(has_aborted() ||
|
|
concurrent() ||
|
|
satb_mq_set.completed_buffers_num() == 0, "invariant");
|
|
|
|
// again, this was a potentially expensive operation, decrease the
|
|
// limits to get the regular clock call early
|
|
decrease_limits();
|
|
}
|
|
|
|
void G1CMTask::print_stats() {
|
|
log_debug(gc, stats)("Marking Stats, task = %u, calls = %d",
|
|
_worker_id, _calls);
|
|
log_debug(gc, stats)(" Elapsed time = %1.2lfms, Termination time = %1.2lfms",
|
|
_elapsed_time_ms, _termination_time_ms);
|
|
log_debug(gc, stats)(" Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
|
|
_step_times_ms.num(), _step_times_ms.avg(),
|
|
_step_times_ms.sd());
|
|
log_debug(gc, stats)(" max = %1.2lfms, total = %1.2lfms",
|
|
_step_times_ms.maximum(), _step_times_ms.sum());
|
|
}
|
|
|
|
bool G1ConcurrentMark::try_stealing(uint worker_id, int* hash_seed, oop& obj) {
|
|
return _task_queues->steal(worker_id, hash_seed, obj);
|
|
}
|
|
|
|
/*****************************************************************************
|
|
|
|
The do_marking_step(time_target_ms, ...) method is the building
|
|
block of the parallel marking framework. It can be called in parallel
|
|
with other invocations of do_marking_step() on different tasks
|
|
(but only one per task, obviously) and concurrently with the
|
|
mutator threads, or during remark, hence it eliminates the need
|
|
for two versions of the code. When called during remark, it will
|
|
pick up from where the task left off during the concurrent marking
|
|
phase. Interestingly, tasks are also claimable during evacuation
|
|
pauses too, since do_marking_step() ensures that it aborts before
|
|
it needs to yield.
|
|
|
|
The data structures that it uses to do marking work are the
|
|
following:
|
|
|
|
(1) Marking Bitmap. If there are gray objects that appear only
|
|
on the bitmap (this happens either when dealing with an overflow
|
|
or when the initial marking phase has simply marked the roots
|
|
and didn't push them on the stack), then tasks claim heap
|
|
regions whose bitmap they then scan to find gray objects. A
|
|
global finger indicates where the end of the last claimed region
|
|
is. A local finger indicates how far into the region a task has
|
|
scanned. The two fingers are used to determine how to gray an
|
|
object (i.e. whether simply marking it is OK, as it will be
|
|
visited by a task in the future, or whether it needs to be also
|
|
pushed on a stack).
|
|
|
|
(2) Local Queue. The local queue of the task which is accessed
|
|
reasonably efficiently by the task. Other tasks can steal from
|
|
it when they run out of work. Throughout the marking phase, a
|
|
task attempts to keep its local queue short but not totally
|
|
empty, so that entries are available for stealing by other
|
|
tasks. Only when there is no more work, a task will totally
|
|
drain its local queue.
|
|
|
|
(3) Global Mark Stack. This handles local queue overflow. During
|
|
marking only sets of entries are moved between it and the local
|
|
queues, as access to it requires a mutex and more fine-grain
|
|
interaction with it which might cause contention. If it
|
|
overflows, then the marking phase should restart and iterate
|
|
over the bitmap to identify gray objects. Throughout the marking
|
|
phase, tasks attempt to keep the global mark stack at a small
|
|
length but not totally empty, so that entries are available for
|
|
popping by other tasks. Only when there is no more work, tasks
|
|
will totally drain the global mark stack.
|
|
|
|
(4) SATB Buffer Queue. This is where completed SATB buffers are
|
|
made available. Buffers are regularly removed from this queue
|
|
and scanned for roots, so that the queue doesn't get too
|
|
long. During remark, all completed buffers are processed, as
|
|
well as the filled in parts of any uncompleted buffers.
|
|
|
|
The do_marking_step() method tries to abort when the time target
|
|
has been reached. There are a few other cases when the
|
|
do_marking_step() method also aborts:
|
|
|
|
(1) When the marking phase has been aborted (after a Full GC).
|
|
|
|
(2) When a global overflow (on the global stack) has been
|
|
triggered. Before the task aborts, it will actually sync up with
|
|
the other tasks to ensure that all the marking data structures
|
|
(local queues, stacks, fingers etc.) are re-initialized so that
|
|
when do_marking_step() completes, the marking phase can
|
|
immediately restart.
|
|
|
|
(3) When enough completed SATB buffers are available. The
|
|
do_marking_step() method only tries to drain SATB buffers right
|
|
at the beginning. So, if enough buffers are available, the
|
|
marking step aborts and the SATB buffers are processed at
|
|
the beginning of the next invocation.
|
|
|
|
(4) To yield. when we have to yield then we abort and yield
|
|
right at the end of do_marking_step(). This saves us from a lot
|
|
of hassle as, by yielding we might allow a Full GC. If this
|
|
happens then objects will be compacted underneath our feet, the
|
|
heap might shrink, etc. We save checking for this by just
|
|
aborting and doing the yield right at the end.
|
|
|
|
From the above it follows that the do_marking_step() method should
|
|
be called in a loop (or, otherwise, regularly) until it completes.
|
|
|
|
If a marking step completes without its has_aborted() flag being
|
|
true, it means it has completed the current marking phase (and
|
|
also all other marking tasks have done so and have all synced up).
|
|
|
|
A method called regular_clock_call() is invoked "regularly" (in
|
|
sub ms intervals) throughout marking. It is this clock method that
|
|
checks all the abort conditions which were mentioned above and
|
|
decides when the task should abort. A work-based scheme is used to
|
|
trigger this clock method: when the number of object words the
|
|
marking phase has scanned or the number of references the marking
|
|
phase has visited reach a given limit. Additional invocations to
|
|
the method clock have been planted in a few other strategic places
|
|
too. The initial reason for the clock method was to avoid calling
|
|
vtime too regularly, as it is quite expensive. So, once it was in
|
|
place, it was natural to piggy-back all the other conditions on it
|
|
too and not constantly check them throughout the code.
|
|
|
|
If do_termination is true then do_marking_step will enter its
|
|
termination protocol.
|
|
|
|
The value of is_serial must be true when do_marking_step is being
|
|
called serially (i.e. by the VMThread) and do_marking_step should
|
|
skip any synchronization in the termination and overflow code.
|
|
Examples include the serial remark code and the serial reference
|
|
processing closures.
|
|
|
|
The value of is_serial must be false when do_marking_step is
|
|
being called by any of the worker threads in a work gang.
|
|
Examples include the concurrent marking code (CMMarkingTask),
|
|
the MT remark code, and the MT reference processing closures.
|
|
|
|
*****************************************************************************/
|
|
|
|
void G1CMTask::do_marking_step(double time_target_ms,
|
|
bool do_termination,
|
|
bool is_serial) {
|
|
assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
|
|
assert(concurrent() == _cm->concurrent(), "they should be the same");
|
|
|
|
G1CollectorPolicy* g1_policy = _g1h->g1_policy();
|
|
assert(_task_queues != NULL, "invariant");
|
|
assert(_task_queue != NULL, "invariant");
|
|
assert(_task_queues->queue(_worker_id) == _task_queue, "invariant");
|
|
|
|
assert(!_claimed,
|
|
"only one thread should claim this task at any one time");
|
|
|
|
// OK, this doesn't safeguard again all possible scenarios, as it is
|
|
// possible for two threads to set the _claimed flag at the same
|
|
// time. But it is only for debugging purposes anyway and it will
|
|
// catch most problems.
|
|
_claimed = true;
|
|
|
|
_start_time_ms = os::elapsedVTime() * 1000.0;
|
|
|
|
// If do_stealing is true then do_marking_step will attempt to
|
|
// steal work from the other G1CMTasks. It only makes sense to
|
|
// enable stealing when the termination protocol is enabled
|
|
// and do_marking_step() is not being called serially.
|
|
bool do_stealing = do_termination && !is_serial;
|
|
|
|
double diff_prediction_ms = _g1h->g1_policy()->predictor().get_new_prediction(&_marking_step_diffs_ms);
|
|
_time_target_ms = time_target_ms - diff_prediction_ms;
|
|
|
|
// set up the variables that are used in the work-based scheme to
|
|
// call the regular clock method
|
|
_words_scanned = 0;
|
|
_refs_reached = 0;
|
|
recalculate_limits();
|
|
|
|
// clear all flags
|
|
clear_has_aborted();
|
|
_has_timed_out = false;
|
|
_draining_satb_buffers = false;
|
|
|
|
++_calls;
|
|
|
|
// Set up the bitmap and oop closures. Anything that uses them is
|
|
// eventually called from this method, so it is OK to allocate these
|
|
// statically.
|
|
G1CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
|
|
G1CMOopClosure cm_oop_closure(_g1h, _cm, this);
|
|
set_cm_oop_closure(&cm_oop_closure);
|
|
|
|
if (_cm->has_overflown()) {
|
|
// This can happen if the mark stack overflows during a GC pause
|
|
// and this task, after a yield point, restarts. We have to abort
|
|
// as we need to get into the overflow protocol which happens
|
|
// right at the end of this task.
|
|
set_has_aborted();
|
|
}
|
|
|
|
// First drain any available SATB buffers. After this, we will not
|
|
// look at SATB buffers before the next invocation of this method.
|
|
// If enough completed SATB buffers are queued up, the regular clock
|
|
// will abort this task so that it restarts.
|
|
drain_satb_buffers();
|
|
// ...then partially drain the local queue and the global stack
|
|
drain_local_queue(true);
|
|
drain_global_stack(true);
|
|
|
|
do {
|
|
if (!has_aborted() && _curr_region != NULL) {
|
|
// This means that we're already holding on to a region.
|
|
assert(_finger != NULL, "if region is not NULL, then the finger "
|
|
"should not be NULL either");
|
|
|
|
// We might have restarted this task after an evacuation pause
|
|
// which might have evacuated the region we're holding on to
|
|
// underneath our feet. Let's read its limit again to make sure
|
|
// that we do not iterate over a region of the heap that
|
|
// contains garbage (update_region_limit() will also move
|
|
// _finger to the start of the region if it is found empty).
|
|
update_region_limit();
|
|
// We will start from _finger not from the start of the region,
|
|
// as we might be restarting this task after aborting half-way
|
|
// through scanning this region. In this case, _finger points to
|
|
// the address where we last found a marked object. If this is a
|
|
// fresh region, _finger points to start().
|
|
MemRegion mr = MemRegion(_finger, _region_limit);
|
|
|
|
assert(!_curr_region->is_humongous() || mr.start() == _curr_region->bottom(),
|
|
"humongous regions should go around loop once only");
|
|
|
|
// Some special cases:
|
|
// If the memory region is empty, we can just give up the region.
|
|
// If the current region is humongous then we only need to check
|
|
// the bitmap for the bit associated with the start of the object,
|
|
// scan the object if it's live, and give up the region.
|
|
// Otherwise, let's iterate over the bitmap of the part of the region
|
|
// that is left.
|
|
// If the iteration is successful, give up the region.
|
|
if (mr.is_empty()) {
|
|
giveup_current_region();
|
|
regular_clock_call();
|
|
} else if (_curr_region->is_humongous() && mr.start() == _curr_region->bottom()) {
|
|
if (_nextMarkBitMap->isMarked(mr.start())) {
|
|
// The object is marked - apply the closure
|
|
BitMap::idx_t offset = _nextMarkBitMap->heapWordToOffset(mr.start());
|
|
bitmap_closure.do_bit(offset);
|
|
}
|
|
// Even if this task aborted while scanning the humongous object
|
|
// we can (and should) give up the current region.
|
|
giveup_current_region();
|
|
regular_clock_call();
|
|
} else if (_nextMarkBitMap->iterate(&bitmap_closure, mr)) {
|
|
giveup_current_region();
|
|
regular_clock_call();
|
|
} else {
|
|
assert(has_aborted(), "currently the only way to do so");
|
|
// The only way to abort the bitmap iteration is to return
|
|
// false from the do_bit() method. However, inside the
|
|
// do_bit() method we move the _finger to point to the
|
|
// object currently being looked at. So, if we bail out, we
|
|
// have definitely set _finger to something non-null.
|
|
assert(_finger != NULL, "invariant");
|
|
|
|
// Region iteration was actually aborted. So now _finger
|
|
// points to the address of the object we last scanned. If we
|
|
// leave it there, when we restart this task, we will rescan
|
|
// the object. It is easy to avoid this. We move the finger by
|
|
// enough to point to the next possible object header (the
|
|
// bitmap knows by how much we need to move it as it knows its
|
|
// granularity).
|
|
assert(_finger < _region_limit, "invariant");
|
|
HeapWord* new_finger = _nextMarkBitMap->nextObject(_finger);
|
|
// Check if bitmap iteration was aborted while scanning the last object
|
|
if (new_finger >= _region_limit) {
|
|
giveup_current_region();
|
|
} else {
|
|
move_finger_to(new_finger);
|
|
}
|
|
}
|
|
}
|
|
// At this point we have either completed iterating over the
|
|
// region we were holding on to, or we have aborted.
|
|
|
|
// We then partially drain the local queue and the global stack.
|
|
// (Do we really need this?)
|
|
drain_local_queue(true);
|
|
drain_global_stack(true);
|
|
|
|
// Read the note on the claim_region() method on why it might
|
|
// return NULL with potentially more regions available for
|
|
// claiming and why we have to check out_of_regions() to determine
|
|
// whether we're done or not.
|
|
while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
|
|
// We are going to try to claim a new region. We should have
|
|
// given up on the previous one.
|
|
// Separated the asserts so that we know which one fires.
|
|
assert(_curr_region == NULL, "invariant");
|
|
assert(_finger == NULL, "invariant");
|
|
assert(_region_limit == NULL, "invariant");
|
|
HeapRegion* claimed_region = _cm->claim_region(_worker_id);
|
|
if (claimed_region != NULL) {
|
|
// Yes, we managed to claim one
|
|
setup_for_region(claimed_region);
|
|
assert(_curr_region == claimed_region, "invariant");
|
|
}
|
|
// It is important to call the regular clock here. It might take
|
|
// a while to claim a region if, for example, we hit a large
|
|
// block of empty regions. So we need to call the regular clock
|
|
// method once round the loop to make sure it's called
|
|
// frequently enough.
|
|
regular_clock_call();
|
|
}
|
|
|
|
if (!has_aborted() && _curr_region == NULL) {
|
|
assert(_cm->out_of_regions(),
|
|
"at this point we should be out of regions");
|
|
}
|
|
} while ( _curr_region != NULL && !has_aborted());
|
|
|
|
if (!has_aborted()) {
|
|
// We cannot check whether the global stack is empty, since other
|
|
// tasks might be pushing objects to it concurrently.
|
|
assert(_cm->out_of_regions(),
|
|
"at this point we should be out of regions");
|
|
// Try to reduce the number of available SATB buffers so that
|
|
// remark has less work to do.
|
|
drain_satb_buffers();
|
|
}
|
|
|
|
// Since we've done everything else, we can now totally drain the
|
|
// local queue and global stack.
|
|
drain_local_queue(false);
|
|
drain_global_stack(false);
|
|
|
|
// Attempt at work stealing from other task's queues.
|
|
if (do_stealing && !has_aborted()) {
|
|
// We have not aborted. This means that we have finished all that
|
|
// we could. Let's try to do some stealing...
|
|
|
|
// We cannot check whether the global stack is empty, since other
|
|
// tasks might be pushing objects to it concurrently.
|
|
assert(_cm->out_of_regions() && _task_queue->size() == 0,
|
|
"only way to reach here");
|
|
while (!has_aborted()) {
|
|
oop obj;
|
|
if (_cm->try_stealing(_worker_id, &_hash_seed, obj)) {
|
|
assert(_nextMarkBitMap->isMarked((HeapWord*) obj),
|
|
"any stolen object should be marked");
|
|
scan_object(obj);
|
|
|
|
// And since we're towards the end, let's totally drain the
|
|
// local queue and global stack.
|
|
drain_local_queue(false);
|
|
drain_global_stack(false);
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// We still haven't aborted. Now, let's try to get into the
|
|
// termination protocol.
|
|
if (do_termination && !has_aborted()) {
|
|
// We cannot check whether the global stack is empty, since other
|
|
// tasks might be concurrently pushing objects on it.
|
|
// Separated the asserts so that we know which one fires.
|
|
assert(_cm->out_of_regions(), "only way to reach here");
|
|
assert(_task_queue->size() == 0, "only way to reach here");
|
|
_termination_start_time_ms = os::elapsedVTime() * 1000.0;
|
|
|
|
// The G1CMTask class also extends the TerminatorTerminator class,
|
|
// hence its should_exit_termination() method will also decide
|
|
// whether to exit the termination protocol or not.
|
|
bool finished = (is_serial ||
|
|
_cm->terminator()->offer_termination(this));
|
|
double termination_end_time_ms = os::elapsedVTime() * 1000.0;
|
|
_termination_time_ms +=
|
|
termination_end_time_ms - _termination_start_time_ms;
|
|
|
|
if (finished) {
|
|
// We're all done.
|
|
|
|
if (_worker_id == 0) {
|
|
// let's allow task 0 to do this
|
|
if (concurrent()) {
|
|
assert(_cm->concurrent_marking_in_progress(), "invariant");
|
|
// we need to set this to false before the next
|
|
// safepoint. This way we ensure that the marking phase
|
|
// doesn't observe any more heap expansions.
|
|
_cm->clear_concurrent_marking_in_progress();
|
|
}
|
|
}
|
|
|
|
// We can now guarantee that the global stack is empty, since
|
|
// all other tasks have finished. We separated the guarantees so
|
|
// that, if a condition is false, we can immediately find out
|
|
// which one.
|
|
guarantee(_cm->out_of_regions(), "only way to reach here");
|
|
guarantee(_cm->mark_stack_empty(), "only way to reach here");
|
|
guarantee(_task_queue->size() == 0, "only way to reach here");
|
|
guarantee(!_cm->has_overflown(), "only way to reach here");
|
|
guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
|
|
} else {
|
|
// Apparently there's more work to do. Let's abort this task. It
|
|
// will restart it and we can hopefully find more things to do.
|
|
set_has_aborted();
|
|
}
|
|
}
|
|
|
|
// Mainly for debugging purposes to make sure that a pointer to the
|
|
// closure which was statically allocated in this frame doesn't
|
|
// escape it by accident.
|
|
set_cm_oop_closure(NULL);
|
|
double end_time_ms = os::elapsedVTime() * 1000.0;
|
|
double elapsed_time_ms = end_time_ms - _start_time_ms;
|
|
// Update the step history.
|
|
_step_times_ms.add(elapsed_time_ms);
|
|
|
|
if (has_aborted()) {
|
|
// The task was aborted for some reason.
|
|
if (_has_timed_out) {
|
|
double diff_ms = elapsed_time_ms - _time_target_ms;
|
|
// Keep statistics of how well we did with respect to hitting
|
|
// our target only if we actually timed out (if we aborted for
|
|
// other reasons, then the results might get skewed).
|
|
_marking_step_diffs_ms.add(diff_ms);
|
|
}
|
|
|
|
if (_cm->has_overflown()) {
|
|
// This is the interesting one. We aborted because a global
|
|
// overflow was raised. This means we have to restart the
|
|
// marking phase and start iterating over regions. However, in
|
|
// order to do this we have to make sure that all tasks stop
|
|
// what they are doing and re-initialize in a safe manner. We
|
|
// will achieve this with the use of two barrier sync points.
|
|
|
|
if (!is_serial) {
|
|
// We only need to enter the sync barrier if being called
|
|
// from a parallel context
|
|
_cm->enter_first_sync_barrier(_worker_id);
|
|
|
|
// When we exit this sync barrier we know that all tasks have
|
|
// stopped doing marking work. So, it's now safe to
|
|
// re-initialize our data structures. At the end of this method,
|
|
// task 0 will clear the global data structures.
|
|
}
|
|
|
|
// We clear the local state of this task...
|
|
clear_region_fields();
|
|
|
|
if (!is_serial) {
|
|
// ...and enter the second barrier.
|
|
_cm->enter_second_sync_barrier(_worker_id);
|
|
}
|
|
// At this point, if we're during the concurrent phase of
|
|
// marking, everything has been re-initialized and we're
|
|
// ready to restart.
|
|
}
|
|
}
|
|
|
|
_claimed = false;
|
|
}
|
|
|
|
G1CMTask::G1CMTask(uint worker_id,
|
|
G1ConcurrentMark* cm,
|
|
size_t* marked_bytes,
|
|
BitMap* card_bm,
|
|
G1CMTaskQueue* task_queue,
|
|
G1CMTaskQueueSet* task_queues)
|
|
: _g1h(G1CollectedHeap::heap()),
|
|
_worker_id(worker_id), _cm(cm),
|
|
_claimed(false),
|
|
_nextMarkBitMap(NULL), _hash_seed(17),
|
|
_task_queue(task_queue),
|
|
_task_queues(task_queues),
|
|
_cm_oop_closure(NULL),
|
|
_marked_bytes_array(marked_bytes),
|
|
_card_bm(card_bm) {
|
|
guarantee(task_queue != NULL, "invariant");
|
|
guarantee(task_queues != NULL, "invariant");
|
|
|
|
_marking_step_diffs_ms.add(0.5);
|
|
}
|
|
|
|
// These are formatting macros that are used below to ensure
|
|
// consistent formatting. The *_H_* versions are used to format the
|
|
// header for a particular value and they should be kept consistent
|
|
// with the corresponding macro. Also note that most of the macros add
|
|
// the necessary white space (as a prefix) which makes them a bit
|
|
// easier to compose.
|
|
|
|
// All the output lines are prefixed with this string to be able to
|
|
// identify them easily in a large log file.
|
|
#define G1PPRL_LINE_PREFIX "###"
|
|
|
|
#define G1PPRL_ADDR_BASE_FORMAT " " PTR_FORMAT "-" PTR_FORMAT
|
|
#ifdef _LP64
|
|
#define G1PPRL_ADDR_BASE_H_FORMAT " %37s"
|
|
#else // _LP64
|
|
#define G1PPRL_ADDR_BASE_H_FORMAT " %21s"
|
|
#endif // _LP64
|
|
|
|
// For per-region info
|
|
#define G1PPRL_TYPE_FORMAT " %-4s"
|
|
#define G1PPRL_TYPE_H_FORMAT " %4s"
|
|
#define G1PPRL_BYTE_FORMAT " " SIZE_FORMAT_W(9)
|
|
#define G1PPRL_BYTE_H_FORMAT " %9s"
|
|
#define G1PPRL_DOUBLE_FORMAT " %14.1f"
|
|
#define G1PPRL_DOUBLE_H_FORMAT " %14s"
|
|
|
|
// For summary info
|
|
#define G1PPRL_SUM_ADDR_FORMAT(tag) " " tag ":" G1PPRL_ADDR_BASE_FORMAT
|
|
#define G1PPRL_SUM_BYTE_FORMAT(tag) " " tag ": " SIZE_FORMAT
|
|
#define G1PPRL_SUM_MB_FORMAT(tag) " " tag ": %1.2f MB"
|
|
#define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag) " / %1.2f %%"
|
|
|
|
G1PrintRegionLivenessInfoClosure::
|
|
G1PrintRegionLivenessInfoClosure(const char* phase_name)
|
|
: _total_used_bytes(0), _total_capacity_bytes(0),
|
|
_total_prev_live_bytes(0), _total_next_live_bytes(0),
|
|
_total_remset_bytes(0), _total_strong_code_roots_bytes(0) {
|
|
G1CollectedHeap* g1h = G1CollectedHeap::heap();
|
|
MemRegion g1_reserved = g1h->g1_reserved();
|
|
double now = os::elapsedTime();
|
|
|
|
// Print the header of the output.
|
|
log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
|
|
log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" HEAP"
|
|
G1PPRL_SUM_ADDR_FORMAT("reserved")
|
|
G1PPRL_SUM_BYTE_FORMAT("region-size"),
|
|
p2i(g1_reserved.start()), p2i(g1_reserved.end()),
|
|
HeapRegion::GrainBytes);
|
|
log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
|
|
log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
|
|
G1PPRL_TYPE_H_FORMAT
|
|
G1PPRL_ADDR_BASE_H_FORMAT
|
|
G1PPRL_BYTE_H_FORMAT
|
|
G1PPRL_BYTE_H_FORMAT
|
|
G1PPRL_BYTE_H_FORMAT
|
|
G1PPRL_DOUBLE_H_FORMAT
|
|
G1PPRL_BYTE_H_FORMAT
|
|
G1PPRL_BYTE_H_FORMAT,
|
|
"type", "address-range",
|
|
"used", "prev-live", "next-live", "gc-eff",
|
|
"remset", "code-roots");
|
|
log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
|
|
G1PPRL_TYPE_H_FORMAT
|
|
G1PPRL_ADDR_BASE_H_FORMAT
|
|
G1PPRL_BYTE_H_FORMAT
|
|
G1PPRL_BYTE_H_FORMAT
|
|
G1PPRL_BYTE_H_FORMAT
|
|
G1PPRL_DOUBLE_H_FORMAT
|
|
G1PPRL_BYTE_H_FORMAT
|
|
G1PPRL_BYTE_H_FORMAT,
|
|
"", "",
|
|
"(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
|
|
"(bytes)", "(bytes)");
|
|
}
|
|
|
|
bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
|
|
const char* type = r->get_type_str();
|
|
HeapWord* bottom = r->bottom();
|
|
HeapWord* end = r->end();
|
|
size_t capacity_bytes = r->capacity();
|
|
size_t used_bytes = r->used();
|
|
size_t prev_live_bytes = r->live_bytes();
|
|
size_t next_live_bytes = r->next_live_bytes();
|
|
double gc_eff = r->gc_efficiency();
|
|
size_t remset_bytes = r->rem_set()->mem_size();
|
|
size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();
|
|
|
|
_total_used_bytes += used_bytes;
|
|
_total_capacity_bytes += capacity_bytes;
|
|
_total_prev_live_bytes += prev_live_bytes;
|
|
_total_next_live_bytes += next_live_bytes;
|
|
_total_remset_bytes += remset_bytes;
|
|
_total_strong_code_roots_bytes += strong_code_roots_bytes;
|
|
|
|
// Print a line for this particular region.
|
|
log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
|
|
G1PPRL_TYPE_FORMAT
|
|
G1PPRL_ADDR_BASE_FORMAT
|
|
G1PPRL_BYTE_FORMAT
|
|
G1PPRL_BYTE_FORMAT
|
|
G1PPRL_BYTE_FORMAT
|
|
G1PPRL_DOUBLE_FORMAT
|
|
G1PPRL_BYTE_FORMAT
|
|
G1PPRL_BYTE_FORMAT,
|
|
type, p2i(bottom), p2i(end),
|
|
used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
|
|
remset_bytes, strong_code_roots_bytes);
|
|
|
|
return false;
|
|
}
|
|
|
|
G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
|
|
// add static memory usages to remembered set sizes
|
|
_total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
|
|
// Print the footer of the output.
|
|
log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
|
|
log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
|
|
" SUMMARY"
|
|
G1PPRL_SUM_MB_FORMAT("capacity")
|
|
G1PPRL_SUM_MB_PERC_FORMAT("used")
|
|
G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
|
|
G1PPRL_SUM_MB_PERC_FORMAT("next-live")
|
|
G1PPRL_SUM_MB_FORMAT("remset")
|
|
G1PPRL_SUM_MB_FORMAT("code-roots"),
|
|
bytes_to_mb(_total_capacity_bytes),
|
|
bytes_to_mb(_total_used_bytes),
|
|
perc(_total_used_bytes, _total_capacity_bytes),
|
|
bytes_to_mb(_total_prev_live_bytes),
|
|
perc(_total_prev_live_bytes, _total_capacity_bytes),
|
|
bytes_to_mb(_total_next_live_bytes),
|
|
perc(_total_next_live_bytes, _total_capacity_bytes),
|
|
bytes_to_mb(_total_remset_bytes),
|
|
bytes_to_mb(_total_strong_code_roots_bytes));
|
|
}
|