jdk-24/test/hotspot/gtest/metaspace/metaspaceGtestRangeHelpers.hpp
Thomas Stuefe 7ba6a6bf00 8251158: Implementation of JEP 387: Elastic Metaspace
Reviewed-by: lkorinth, coleenp, iklam, rrich
2020-10-20 06:48:09 +00:00

185 lines
6.0 KiB
C++

/*
* Copyright (c) 2020, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2020 SAP SE. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef GTEST_METASPACE_METASPACEGTESTRANGEHELPERS_HPP
#define GTEST_METASPACE_METASPACEGTESTRANGEHELPERS_HPP
// We use ranges-of-things in these tests a lot so some helpers help
// keeping the code small.
#include "memory/allocation.hpp"
#include "memory/metaspace/chunklevel.hpp"
#include "runtime/os.hpp" // For os::random
#include "utilities/align.hpp"
#include "utilities/debug.hpp"
#include "utilities/globalDefinitions.hpp"
using metaspace::chunklevel_t;
using namespace metaspace::chunklevel;
// A range of numerical values.
template <typename T, typename Td>
class Range : public StackObj {
// start and size of range
T _start;
Td _size;
static Td random_uncapped_offset() {
if (sizeof(Td) > 4) {
return (Td)((uint64_t)os::random() * os::random());
} else {
return (Td)os::random();
}
}
protected:
static void swap_if_needed(T& lo, T& hi) {
if (lo > hi) {
T v = lo;
lo = hi;
hi = v;
}
}
public:
// Lowest value in range
T lowest() const { return _start; }
// Highest value in range (including)
T highest() const { return _start + (_size - 1); }
T start() const { return _start; }
T end() const { return _start + _size; }
// Number of values in range
Td size() const { return _size; }
bool is_empty() const { return size() == 0; }
bool contains(T v) const {
return v >= _start && v < end();
}
bool contains(Range<T, Td> r) const {
return contains(r.lowest()) && contains(r.highest());
}
// Create a range from [start, end)
Range(T start, T end) : _start(start), _size(end - start) {
assert(end >= start, "start and end reversed");
}
// a range with a given size, starting at 0
Range(Td size) : _start(0), _size(size) {}
// Return a random offset
Td random_offset() const {
assert(!is_empty(), "Range too small");
Td v = random_uncapped_offset() % size();
return v;
}
// Return a random value within the range
T random_value() const {
assert(!is_empty(), "Range too small");
T v = _start + random_offset();
assert(contains(v), "Sanity");
return v;
}
// Return the head of this range up to but excluding <split_point>
Range<T, Td> head(Td split_point) const {
assert(_size >= split_point, "Sanity");
return Range<T, Td>(_start, _start + split_point);
}
// Return the tail of this range, starting at <split_point>
Range<T, Td> tail(Td split_point) const {
assert(_size > split_point, "Sanity");
return Range<T, Td>(_start + split_point, end());
}
// Return a non-empty random sub range.
Range<T, Td> random_subrange() const {
assert(size() > 1, "Range too small");
Td sz = MAX2((Td)1, random_offset());
return random_sized_subrange(sz);
}
// Return a subrange of given size at a random start position
Range<T, Td> random_sized_subrange(Td subrange_size) const {
assert(subrange_size > 0 && subrange_size < _size, "invalid size");
T start = head(_size - subrange_size).random_value();
return Range<T, Td>(start, start + subrange_size);
}
//// aligned ranges ////
bool range_is_aligned(Td alignment) const {
return is_aligned(_size, alignment) && is_aligned(_start, alignment);
}
// Return a non-empty aligned random sub range.
Range<T, Td> random_aligned_subrange(Td alignment) const {
assert(alignment > 0, "Sanity");
assert(range_is_aligned(alignment), "Outer range needs to be aligned"); // to keep matters simple
assert(_size >= alignment, "Outer range too small.");
Td sz = MAX2((Td)1, random_offset());
sz = align_up(sz, alignment);
return random_aligned_sized_subrange(sz, alignment);
}
// Return a subrange of given size at a random aligned start position
Range<T, Td> random_aligned_sized_subrange(Td subrange_size, Td alignment) const {
assert(alignment > 0, "Sanity");
assert(range_is_aligned(alignment), "Outer range needs to be aligned"); // to keep matters simple
assert(subrange_size > 0 && subrange_size <= _size &&
is_aligned(subrange_size, alignment), "invalid subrange size");
if (_size == subrange_size) {
return *this;
}
T start = head(_size - subrange_size).random_value();
start = align_down(start, alignment);
return Range<T, Td>(start, start + subrange_size);
}
};
typedef Range<int, int> IntRange;
typedef Range<size_t, size_t> SizeRange;
typedef Range<chunklevel_t, int> ChunkLevelRange;
struct ChunkLevelRanges : public AllStatic {
static ChunkLevelRange small_chunks() { return ChunkLevelRange(CHUNK_LEVEL_32K, CHUNK_LEVEL_1K + 1); }
static ChunkLevelRange medium_chunks() { return ChunkLevelRange(CHUNK_LEVEL_512K, CHUNK_LEVEL_32K + 1); }
static ChunkLevelRange large_chunks() { return ChunkLevelRange(CHUNK_LEVEL_4M, CHUNK_LEVEL_512K + 1); }
static ChunkLevelRange all_chunks() { return ChunkLevelRange(CHUNK_LEVEL_4M, CHUNK_LEVEL_1K + 1); }
};
#endif // GTEST_METASPACE_METASPACEGTESTRANGEHELPERS_HPP