jdk-24/src/hotspot/cpu/x86/macroAssembler_x86.cpp
2019-11-20 09:10:02 -05:00

10026 lines
325 KiB
C++

/*
* Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "jvm.h"
#include "asm/assembler.hpp"
#include "asm/assembler.inline.hpp"
#include "compiler/disassembler.hpp"
#include "gc/shared/barrierSet.hpp"
#include "gc/shared/barrierSetAssembler.hpp"
#include "gc/shared/collectedHeap.inline.hpp"
#include "interpreter/interpreter.hpp"
#include "memory/resourceArea.hpp"
#include "memory/universe.hpp"
#include "oops/accessDecorators.hpp"
#include "oops/compressedOops.inline.hpp"
#include "oops/klass.inline.hpp"
#include "prims/methodHandles.hpp"
#include "runtime/biasedLocking.hpp"
#include "runtime/flags/flagSetting.hpp"
#include "runtime/interfaceSupport.inline.hpp"
#include "runtime/objectMonitor.hpp"
#include "runtime/os.hpp"
#include "runtime/safepoint.hpp"
#include "runtime/safepointMechanism.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#include "runtime/thread.hpp"
#include "utilities/macros.hpp"
#include "crc32c.h"
#ifdef COMPILER2
#include "opto/intrinsicnode.hpp"
#endif
#ifdef PRODUCT
#define BLOCK_COMMENT(str) /* nothing */
#define STOP(error) stop(error)
#else
#define BLOCK_COMMENT(str) block_comment(str)
#define STOP(error) block_comment(error); stop(error)
#endif
#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
#ifdef ASSERT
bool AbstractAssembler::pd_check_instruction_mark() { return true; }
#endif
static Assembler::Condition reverse[] = {
Assembler::noOverflow /* overflow = 0x0 */ ,
Assembler::overflow /* noOverflow = 0x1 */ ,
Assembler::aboveEqual /* carrySet = 0x2, below = 0x2 */ ,
Assembler::below /* aboveEqual = 0x3, carryClear = 0x3 */ ,
Assembler::notZero /* zero = 0x4, equal = 0x4 */ ,
Assembler::zero /* notZero = 0x5, notEqual = 0x5 */ ,
Assembler::above /* belowEqual = 0x6 */ ,
Assembler::belowEqual /* above = 0x7 */ ,
Assembler::positive /* negative = 0x8 */ ,
Assembler::negative /* positive = 0x9 */ ,
Assembler::noParity /* parity = 0xa */ ,
Assembler::parity /* noParity = 0xb */ ,
Assembler::greaterEqual /* less = 0xc */ ,
Assembler::less /* greaterEqual = 0xd */ ,
Assembler::greater /* lessEqual = 0xe */ ,
Assembler::lessEqual /* greater = 0xf, */
};
// Implementation of MacroAssembler
// First all the versions that have distinct versions depending on 32/64 bit
// Unless the difference is trivial (1 line or so).
#ifndef _LP64
// 32bit versions
Address MacroAssembler::as_Address(AddressLiteral adr) {
return Address(adr.target(), adr.rspec());
}
Address MacroAssembler::as_Address(ArrayAddress adr) {
return Address::make_array(adr);
}
void MacroAssembler::call_VM_leaf_base(address entry_point,
int number_of_arguments) {
call(RuntimeAddress(entry_point));
increment(rsp, number_of_arguments * wordSize);
}
void MacroAssembler::cmpklass(Address src1, Metadata* obj) {
cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
}
void MacroAssembler::cmpklass(Register src1, Metadata* obj) {
cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
}
void MacroAssembler::cmpoop_raw(Address src1, jobject obj) {
cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
}
void MacroAssembler::cmpoop_raw(Register src1, jobject obj) {
cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
}
void MacroAssembler::cmpoop(Address src1, jobject obj) {
BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
bs->obj_equals(this, src1, obj);
}
void MacroAssembler::cmpoop(Register src1, jobject obj) {
BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
bs->obj_equals(this, src1, obj);
}
void MacroAssembler::extend_sign(Register hi, Register lo) {
// According to Intel Doc. AP-526, "Integer Divide", p.18.
if (VM_Version::is_P6() && hi == rdx && lo == rax) {
cdql();
} else {
movl(hi, lo);
sarl(hi, 31);
}
}
void MacroAssembler::jC2(Register tmp, Label& L) {
// set parity bit if FPU flag C2 is set (via rax)
save_rax(tmp);
fwait(); fnstsw_ax();
sahf();
restore_rax(tmp);
// branch
jcc(Assembler::parity, L);
}
void MacroAssembler::jnC2(Register tmp, Label& L) {
// set parity bit if FPU flag C2 is set (via rax)
save_rax(tmp);
fwait(); fnstsw_ax();
sahf();
restore_rax(tmp);
// branch
jcc(Assembler::noParity, L);
}
// 32bit can do a case table jump in one instruction but we no longer allow the base
// to be installed in the Address class
void MacroAssembler::jump(ArrayAddress entry) {
jmp(as_Address(entry));
}
// Note: y_lo will be destroyed
void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
// Long compare for Java (semantics as described in JVM spec.)
Label high, low, done;
cmpl(x_hi, y_hi);
jcc(Assembler::less, low);
jcc(Assembler::greater, high);
// x_hi is the return register
xorl(x_hi, x_hi);
cmpl(x_lo, y_lo);
jcc(Assembler::below, low);
jcc(Assembler::equal, done);
bind(high);
xorl(x_hi, x_hi);
increment(x_hi);
jmp(done);
bind(low);
xorl(x_hi, x_hi);
decrementl(x_hi);
bind(done);
}
void MacroAssembler::lea(Register dst, AddressLiteral src) {
mov_literal32(dst, (int32_t)src.target(), src.rspec());
}
void MacroAssembler::lea(Address dst, AddressLiteral adr) {
// leal(dst, as_Address(adr));
// see note in movl as to why we must use a move
mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
}
void MacroAssembler::leave() {
mov(rsp, rbp);
pop(rbp);
}
void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
// Multiplication of two Java long values stored on the stack
// as illustrated below. Result is in rdx:rax.
//
// rsp ---> [ ?? ] \ \
// .... | y_rsp_offset |
// [ y_lo ] / (in bytes) | x_rsp_offset
// [ y_hi ] | (in bytes)
// .... |
// [ x_lo ] /
// [ x_hi ]
// ....
//
// Basic idea: lo(result) = lo(x_lo * y_lo)
// hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
Label quick;
// load x_hi, y_hi and check if quick
// multiplication is possible
movl(rbx, x_hi);
movl(rcx, y_hi);
movl(rax, rbx);
orl(rbx, rcx); // rbx, = 0 <=> x_hi = 0 and y_hi = 0
jcc(Assembler::zero, quick); // if rbx, = 0 do quick multiply
// do full multiplication
// 1st step
mull(y_lo); // x_hi * y_lo
movl(rbx, rax); // save lo(x_hi * y_lo) in rbx,
// 2nd step
movl(rax, x_lo);
mull(rcx); // x_lo * y_hi
addl(rbx, rax); // add lo(x_lo * y_hi) to rbx,
// 3rd step
bind(quick); // note: rbx, = 0 if quick multiply!
movl(rax, x_lo);
mull(y_lo); // x_lo * y_lo
addl(rdx, rbx); // correct hi(x_lo * y_lo)
}
void MacroAssembler::lneg(Register hi, Register lo) {
negl(lo);
adcl(hi, 0);
negl(hi);
}
void MacroAssembler::lshl(Register hi, Register lo) {
// Java shift left long support (semantics as described in JVM spec., p.305)
// (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
// shift value is in rcx !
assert(hi != rcx, "must not use rcx");
assert(lo != rcx, "must not use rcx");
const Register s = rcx; // shift count
const int n = BitsPerWord;
Label L;
andl(s, 0x3f); // s := s & 0x3f (s < 0x40)
cmpl(s, n); // if (s < n)
jcc(Assembler::less, L); // else (s >= n)
movl(hi, lo); // x := x << n
xorl(lo, lo);
// Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
bind(L); // s (mod n) < n
shldl(hi, lo); // x := x << s
shll(lo);
}
void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
// Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
// (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
assert(hi != rcx, "must not use rcx");
assert(lo != rcx, "must not use rcx");
const Register s = rcx; // shift count
const int n = BitsPerWord;
Label L;
andl(s, 0x3f); // s := s & 0x3f (s < 0x40)
cmpl(s, n); // if (s < n)
jcc(Assembler::less, L); // else (s >= n)
movl(lo, hi); // x := x >> n
if (sign_extension) sarl(hi, 31);
else xorl(hi, hi);
// Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
bind(L); // s (mod n) < n
shrdl(lo, hi); // x := x >> s
if (sign_extension) sarl(hi);
else shrl(hi);
}
void MacroAssembler::movoop(Register dst, jobject obj) {
mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
}
void MacroAssembler::movoop(Address dst, jobject obj) {
mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
}
void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
}
void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
}
void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
// scratch register is not used,
// it is defined to match parameters of 64-bit version of this method.
if (src.is_lval()) {
mov_literal32(dst, (intptr_t)src.target(), src.rspec());
} else {
movl(dst, as_Address(src));
}
}
void MacroAssembler::movptr(ArrayAddress dst, Register src) {
movl(as_Address(dst), src);
}
void MacroAssembler::movptr(Register dst, ArrayAddress src) {
movl(dst, as_Address(src));
}
// src should NEVER be a real pointer. Use AddressLiteral for true pointers
void MacroAssembler::movptr(Address dst, intptr_t src) {
movl(dst, src);
}
void MacroAssembler::pop_callee_saved_registers() {
pop(rcx);
pop(rdx);
pop(rdi);
pop(rsi);
}
void MacroAssembler::pop_fTOS() {
fld_d(Address(rsp, 0));
addl(rsp, 2 * wordSize);
}
void MacroAssembler::push_callee_saved_registers() {
push(rsi);
push(rdi);
push(rdx);
push(rcx);
}
void MacroAssembler::push_fTOS() {
subl(rsp, 2 * wordSize);
fstp_d(Address(rsp, 0));
}
void MacroAssembler::pushoop(jobject obj) {
push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
}
void MacroAssembler::pushklass(Metadata* obj) {
push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate());
}
void MacroAssembler::pushptr(AddressLiteral src) {
if (src.is_lval()) {
push_literal32((int32_t)src.target(), src.rspec());
} else {
pushl(as_Address(src));
}
}
void MacroAssembler::set_word_if_not_zero(Register dst) {
xorl(dst, dst);
set_byte_if_not_zero(dst);
}
static void pass_arg0(MacroAssembler* masm, Register arg) {
masm->push(arg);
}
static void pass_arg1(MacroAssembler* masm, Register arg) {
masm->push(arg);
}
static void pass_arg2(MacroAssembler* masm, Register arg) {
masm->push(arg);
}
static void pass_arg3(MacroAssembler* masm, Register arg) {
masm->push(arg);
}
#ifndef PRODUCT
extern "C" void findpc(intptr_t x);
#endif
void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
// In order to get locks to work, we need to fake a in_VM state
JavaThread* thread = JavaThread::current();
JavaThreadState saved_state = thread->thread_state();
thread->set_thread_state(_thread_in_vm);
if (ShowMessageBoxOnError) {
JavaThread* thread = JavaThread::current();
JavaThreadState saved_state = thread->thread_state();
thread->set_thread_state(_thread_in_vm);
if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
ttyLocker ttyl;
BytecodeCounter::print();
}
// To see where a verify_oop failed, get $ebx+40/X for this frame.
// This is the value of eip which points to where verify_oop will return.
if (os::message_box(msg, "Execution stopped, print registers?")) {
print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip);
BREAKPOINT;
}
}
fatal("DEBUG MESSAGE: %s", msg);
}
void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) {
ttyLocker ttyl;
FlagSetting fs(Debugging, true);
tty->print_cr("eip = 0x%08x", eip);
#ifndef PRODUCT
if ((WizardMode || Verbose) && PrintMiscellaneous) {
tty->cr();
findpc(eip);
tty->cr();
}
#endif
#define PRINT_REG(rax) \
{ tty->print("%s = ", #rax); os::print_location(tty, rax); }
PRINT_REG(rax);
PRINT_REG(rbx);
PRINT_REG(rcx);
PRINT_REG(rdx);
PRINT_REG(rdi);
PRINT_REG(rsi);
PRINT_REG(rbp);
PRINT_REG(rsp);
#undef PRINT_REG
// Print some words near top of staack.
int* dump_sp = (int*) rsp;
for (int col1 = 0; col1 < 8; col1++) {
tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
os::print_location(tty, *dump_sp++);
}
for (int row = 0; row < 16; row++) {
tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
for (int col = 0; col < 8; col++) {
tty->print(" 0x%08x", *dump_sp++);
}
tty->cr();
}
// Print some instructions around pc:
Disassembler::decode((address)eip-64, (address)eip);
tty->print_cr("--------");
Disassembler::decode((address)eip, (address)eip+32);
}
void MacroAssembler::stop(const char* msg) {
ExternalAddress message((address)msg);
// push address of message
pushptr(message.addr());
{ Label L; call(L, relocInfo::none); bind(L); } // push eip
pusha(); // push registers
call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
hlt();
}
void MacroAssembler::warn(const char* msg) {
push_CPU_state();
ExternalAddress message((address) msg);
// push address of message
pushptr(message.addr());
call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
addl(rsp, wordSize); // discard argument
pop_CPU_state();
}
void MacroAssembler::print_state() {
{ Label L; call(L, relocInfo::none); bind(L); } // push eip
pusha(); // push registers
push_CPU_state();
call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32)));
pop_CPU_state();
popa();
addl(rsp, wordSize);
}
#else // _LP64
// 64 bit versions
Address MacroAssembler::as_Address(AddressLiteral adr) {
// amd64 always does this as a pc-rel
// we can be absolute or disp based on the instruction type
// jmp/call are displacements others are absolute
assert(!adr.is_lval(), "must be rval");
assert(reachable(adr), "must be");
return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
}
Address MacroAssembler::as_Address(ArrayAddress adr) {
AddressLiteral base = adr.base();
lea(rscratch1, base);
Address index = adr.index();
assert(index._disp == 0, "must not have disp"); // maybe it can?
Address array(rscratch1, index._index, index._scale, index._disp);
return array;
}
void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
Label L, E;
#ifdef _WIN64
// Windows always allocates space for it's register args
assert(num_args <= 4, "only register arguments supported");
subq(rsp, frame::arg_reg_save_area_bytes);
#endif
// Align stack if necessary
testl(rsp, 15);
jcc(Assembler::zero, L);
subq(rsp, 8);
{
call(RuntimeAddress(entry_point));
}
addq(rsp, 8);
jmp(E);
bind(L);
{
call(RuntimeAddress(entry_point));
}
bind(E);
#ifdef _WIN64
// restore stack pointer
addq(rsp, frame::arg_reg_save_area_bytes);
#endif
}
void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
assert(!src2.is_lval(), "should use cmpptr");
if (reachable(src2)) {
cmpq(src1, as_Address(src2));
} else {
lea(rscratch1, src2);
Assembler::cmpq(src1, Address(rscratch1, 0));
}
}
int MacroAssembler::corrected_idivq(Register reg) {
// Full implementation of Java ldiv and lrem; checks for special
// case as described in JVM spec., p.243 & p.271. The function
// returns the (pc) offset of the idivl instruction - may be needed
// for implicit exceptions.
//
// normal case special case
//
// input : rax: dividend min_long
// reg: divisor (may not be eax/edx) -1
//
// output: rax: quotient (= rax idiv reg) min_long
// rdx: remainder (= rax irem reg) 0
assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
static const int64_t min_long = 0x8000000000000000;
Label normal_case, special_case;
// check for special case
cmp64(rax, ExternalAddress((address) &min_long));
jcc(Assembler::notEqual, normal_case);
xorl(rdx, rdx); // prepare rdx for possible special case (where
// remainder = 0)
cmpq(reg, -1);
jcc(Assembler::equal, special_case);
// handle normal case
bind(normal_case);
cdqq();
int idivq_offset = offset();
idivq(reg);
// normal and special case exit
bind(special_case);
return idivq_offset;
}
void MacroAssembler::decrementq(Register reg, int value) {
if (value == min_jint) { subq(reg, value); return; }
if (value < 0) { incrementq(reg, -value); return; }
if (value == 0) { ; return; }
if (value == 1 && UseIncDec) { decq(reg) ; return; }
/* else */ { subq(reg, value) ; return; }
}
void MacroAssembler::decrementq(Address dst, int value) {
if (value == min_jint) { subq(dst, value); return; }
if (value < 0) { incrementq(dst, -value); return; }
if (value == 0) { ; return; }
if (value == 1 && UseIncDec) { decq(dst) ; return; }
/* else */ { subq(dst, value) ; return; }
}
void MacroAssembler::incrementq(AddressLiteral dst) {
if (reachable(dst)) {
incrementq(as_Address(dst));
} else {
lea(rscratch1, dst);
incrementq(Address(rscratch1, 0));
}
}
void MacroAssembler::incrementq(Register reg, int value) {
if (value == min_jint) { addq(reg, value); return; }
if (value < 0) { decrementq(reg, -value); return; }
if (value == 0) { ; return; }
if (value == 1 && UseIncDec) { incq(reg) ; return; }
/* else */ { addq(reg, value) ; return; }
}
void MacroAssembler::incrementq(Address dst, int value) {
if (value == min_jint) { addq(dst, value); return; }
if (value < 0) { decrementq(dst, -value); return; }
if (value == 0) { ; return; }
if (value == 1 && UseIncDec) { incq(dst) ; return; }
/* else */ { addq(dst, value) ; return; }
}
// 32bit can do a case table jump in one instruction but we no longer allow the base
// to be installed in the Address class
void MacroAssembler::jump(ArrayAddress entry) {
lea(rscratch1, entry.base());
Address dispatch = entry.index();
assert(dispatch._base == noreg, "must be");
dispatch._base = rscratch1;
jmp(dispatch);
}
void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
ShouldNotReachHere(); // 64bit doesn't use two regs
cmpq(x_lo, y_lo);
}
void MacroAssembler::lea(Register dst, AddressLiteral src) {
mov_literal64(dst, (intptr_t)src.target(), src.rspec());
}
void MacroAssembler::lea(Address dst, AddressLiteral adr) {
mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
movptr(dst, rscratch1);
}
void MacroAssembler::leave() {
// %%% is this really better? Why not on 32bit too?
emit_int8((unsigned char)0xC9); // LEAVE
}
void MacroAssembler::lneg(Register hi, Register lo) {
ShouldNotReachHere(); // 64bit doesn't use two regs
negq(lo);
}
void MacroAssembler::movoop(Register dst, jobject obj) {
mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
}
void MacroAssembler::movoop(Address dst, jobject obj) {
mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
movq(dst, rscratch1);
}
void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
}
void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
mov_literal64(rscratch1, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
movq(dst, rscratch1);
}
void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
if (src.is_lval()) {
mov_literal64(dst, (intptr_t)src.target(), src.rspec());
} else {
if (reachable(src)) {
movq(dst, as_Address(src));
} else {
lea(scratch, src);
movq(dst, Address(scratch, 0));
}
}
}
void MacroAssembler::movptr(ArrayAddress dst, Register src) {
movq(as_Address(dst), src);
}
void MacroAssembler::movptr(Register dst, ArrayAddress src) {
movq(dst, as_Address(src));
}
// src should NEVER be a real pointer. Use AddressLiteral for true pointers
void MacroAssembler::movptr(Address dst, intptr_t src) {
mov64(rscratch1, src);
movq(dst, rscratch1);
}
// These are mostly for initializing NULL
void MacroAssembler::movptr(Address dst, int32_t src) {
movslq(dst, src);
}
void MacroAssembler::movptr(Register dst, int32_t src) {
mov64(dst, (intptr_t)src);
}
void MacroAssembler::pushoop(jobject obj) {
movoop(rscratch1, obj);
push(rscratch1);
}
void MacroAssembler::pushklass(Metadata* obj) {
mov_metadata(rscratch1, obj);
push(rscratch1);
}
void MacroAssembler::pushptr(AddressLiteral src) {
lea(rscratch1, src);
if (src.is_lval()) {
push(rscratch1);
} else {
pushq(Address(rscratch1, 0));
}
}
void MacroAssembler::reset_last_Java_frame(bool clear_fp) {
// we must set sp to zero to clear frame
movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
// must clear fp, so that compiled frames are not confused; it is
// possible that we need it only for debugging
if (clear_fp) {
movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
}
// Always clear the pc because it could have been set by make_walkable()
movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
vzeroupper();
}
void MacroAssembler::set_last_Java_frame(Register last_java_sp,
Register last_java_fp,
address last_java_pc) {
vzeroupper();
// determine last_java_sp register
if (!last_java_sp->is_valid()) {
last_java_sp = rsp;
}
// last_java_fp is optional
if (last_java_fp->is_valid()) {
movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
last_java_fp);
}
// last_java_pc is optional
if (last_java_pc != NULL) {
Address java_pc(r15_thread,
JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
lea(rscratch1, InternalAddress(last_java_pc));
movptr(java_pc, rscratch1);
}
movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
}
static void pass_arg0(MacroAssembler* masm, Register arg) {
if (c_rarg0 != arg ) {
masm->mov(c_rarg0, arg);
}
}
static void pass_arg1(MacroAssembler* masm, Register arg) {
if (c_rarg1 != arg ) {
masm->mov(c_rarg1, arg);
}
}
static void pass_arg2(MacroAssembler* masm, Register arg) {
if (c_rarg2 != arg ) {
masm->mov(c_rarg2, arg);
}
}
static void pass_arg3(MacroAssembler* masm, Register arg) {
if (c_rarg3 != arg ) {
masm->mov(c_rarg3, arg);
}
}
void MacroAssembler::stop(const char* msg) {
if (ShowMessageBoxOnError) {
address rip = pc();
pusha(); // get regs on stack
lea(c_rarg1, InternalAddress(rip));
movq(c_rarg2, rsp); // pass pointer to regs array
}
lea(c_rarg0, ExternalAddress((address) msg));
andq(rsp, -16); // align stack as required by ABI
call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
hlt();
}
void MacroAssembler::warn(const char* msg) {
push(rbp);
movq(rbp, rsp);
andq(rsp, -16); // align stack as required by push_CPU_state and call
push_CPU_state(); // keeps alignment at 16 bytes
lea(c_rarg0, ExternalAddress((address) msg));
lea(rax, ExternalAddress(CAST_FROM_FN_PTR(address, warning)));
call(rax);
pop_CPU_state();
mov(rsp, rbp);
pop(rbp);
}
void MacroAssembler::print_state() {
address rip = pc();
pusha(); // get regs on stack
push(rbp);
movq(rbp, rsp);
andq(rsp, -16); // align stack as required by push_CPU_state and call
push_CPU_state(); // keeps alignment at 16 bytes
lea(c_rarg0, InternalAddress(rip));
lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array
call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1);
pop_CPU_state();
mov(rsp, rbp);
pop(rbp);
popa();
}
#ifndef PRODUCT
extern "C" void findpc(intptr_t x);
#endif
void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
// In order to get locks to work, we need to fake a in_VM state
if (ShowMessageBoxOnError) {
JavaThread* thread = JavaThread::current();
JavaThreadState saved_state = thread->thread_state();
thread->set_thread_state(_thread_in_vm);
#ifndef PRODUCT
if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
ttyLocker ttyl;
BytecodeCounter::print();
}
#endif
// To see where a verify_oop failed, get $ebx+40/X for this frame.
// XXX correct this offset for amd64
// This is the value of eip which points to where verify_oop will return.
if (os::message_box(msg, "Execution stopped, print registers?")) {
print_state64(pc, regs);
BREAKPOINT;
}
}
fatal("DEBUG MESSAGE: %s", msg);
}
void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) {
ttyLocker ttyl;
FlagSetting fs(Debugging, true);
tty->print_cr("rip = 0x%016lx", (intptr_t)pc);
#ifndef PRODUCT
tty->cr();
findpc(pc);
tty->cr();
#endif
#define PRINT_REG(rax, value) \
{ tty->print("%s = ", #rax); os::print_location(tty, value); }
PRINT_REG(rax, regs[15]);
PRINT_REG(rbx, regs[12]);
PRINT_REG(rcx, regs[14]);
PRINT_REG(rdx, regs[13]);
PRINT_REG(rdi, regs[8]);
PRINT_REG(rsi, regs[9]);
PRINT_REG(rbp, regs[10]);
PRINT_REG(rsp, regs[11]);
PRINT_REG(r8 , regs[7]);
PRINT_REG(r9 , regs[6]);
PRINT_REG(r10, regs[5]);
PRINT_REG(r11, regs[4]);
PRINT_REG(r12, regs[3]);
PRINT_REG(r13, regs[2]);
PRINT_REG(r14, regs[1]);
PRINT_REG(r15, regs[0]);
#undef PRINT_REG
// Print some words near top of staack.
int64_t* rsp = (int64_t*) regs[11];
int64_t* dump_sp = rsp;
for (int col1 = 0; col1 < 8; col1++) {
tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
os::print_location(tty, *dump_sp++);
}
for (int row = 0; row < 25; row++) {
tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
for (int col = 0; col < 4; col++) {
tty->print(" 0x%016lx", (intptr_t)*dump_sp++);
}
tty->cr();
}
// Print some instructions around pc:
Disassembler::decode((address)pc-64, (address)pc);
tty->print_cr("--------");
Disassembler::decode((address)pc, (address)pc+32);
}
#endif // _LP64
// Now versions that are common to 32/64 bit
void MacroAssembler::addptr(Register dst, int32_t imm32) {
LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
}
void MacroAssembler::addptr(Register dst, Register src) {
LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
}
void MacroAssembler::addptr(Address dst, Register src) {
LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
}
void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src) {
if (reachable(src)) {
Assembler::addsd(dst, as_Address(src));
} else {
lea(rscratch1, src);
Assembler::addsd(dst, Address(rscratch1, 0));
}
}
void MacroAssembler::addss(XMMRegister dst, AddressLiteral src) {
if (reachable(src)) {
addss(dst, as_Address(src));
} else {
lea(rscratch1, src);
addss(dst, Address(rscratch1, 0));
}
}
void MacroAssembler::addpd(XMMRegister dst, AddressLiteral src) {
if (reachable(src)) {
Assembler::addpd(dst, as_Address(src));
} else {
lea(rscratch1, src);
Assembler::addpd(dst, Address(rscratch1, 0));
}
}
void MacroAssembler::align(int modulus) {
align(modulus, offset());
}
void MacroAssembler::align(int modulus, int target) {
if (target % modulus != 0) {
nop(modulus - (target % modulus));
}
}
void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src, Register scratch_reg) {
// Used in sign-masking with aligned address.
assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
if (reachable(src)) {
Assembler::andpd(dst, as_Address(src));
} else {
lea(scratch_reg, src);
Assembler::andpd(dst, Address(scratch_reg, 0));
}
}
void MacroAssembler::andps(XMMRegister dst, AddressLiteral src, Register scratch_reg) {
// Used in sign-masking with aligned address.
assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
if (reachable(src)) {
Assembler::andps(dst, as_Address(src));
} else {
lea(scratch_reg, src);
Assembler::andps(dst, Address(scratch_reg, 0));
}
}
void MacroAssembler::andptr(Register dst, int32_t imm32) {
LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
}
void MacroAssembler::atomic_incl(Address counter_addr) {
lock();
incrementl(counter_addr);
}
void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register scr) {
if (reachable(counter_addr)) {
atomic_incl(as_Address(counter_addr));
} else {
lea(scr, counter_addr);
atomic_incl(Address(scr, 0));
}
}
#ifdef _LP64
void MacroAssembler::atomic_incq(Address counter_addr) {
lock();
incrementq(counter_addr);
}
void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register scr) {
if (reachable(counter_addr)) {
atomic_incq(as_Address(counter_addr));
} else {
lea(scr, counter_addr);
atomic_incq(Address(scr, 0));
}
}
#endif
// Writes to stack successive pages until offset reached to check for
// stack overflow + shadow pages. This clobbers tmp.
void MacroAssembler::bang_stack_size(Register size, Register tmp) {
movptr(tmp, rsp);
// Bang stack for total size given plus shadow page size.
// Bang one page at a time because large size can bang beyond yellow and
// red zones.
Label loop;
bind(loop);
movl(Address(tmp, (-os::vm_page_size())), size );
subptr(tmp, os::vm_page_size());
subl(size, os::vm_page_size());
jcc(Assembler::greater, loop);
// Bang down shadow pages too.
// At this point, (tmp-0) is the last address touched, so don't
// touch it again. (It was touched as (tmp-pagesize) but then tmp
// was post-decremented.) Skip this address by starting at i=1, and
// touch a few more pages below. N.B. It is important to touch all
// the way down including all pages in the shadow zone.
for (int i = 1; i < ((int)JavaThread::stack_shadow_zone_size() / os::vm_page_size()); i++) {
// this could be any sized move but this is can be a debugging crumb
// so the bigger the better.
movptr(Address(tmp, (-i*os::vm_page_size())), size );
}
}
void MacroAssembler::reserved_stack_check() {
// testing if reserved zone needs to be enabled
Label no_reserved_zone_enabling;
Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread);
NOT_LP64(get_thread(rsi);)
cmpptr(rsp, Address(thread, JavaThread::reserved_stack_activation_offset()));
jcc(Assembler::below, no_reserved_zone_enabling);
call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), thread);
jump(RuntimeAddress(StubRoutines::throw_delayed_StackOverflowError_entry()));
should_not_reach_here();
bind(no_reserved_zone_enabling);
}
int MacroAssembler::biased_locking_enter(Register lock_reg,
Register obj_reg,
Register swap_reg,
Register tmp_reg,
bool swap_reg_contains_mark,
Label& done,
Label* slow_case,
BiasedLockingCounters* counters) {
assert(UseBiasedLocking, "why call this otherwise?");
assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
assert(tmp_reg != noreg, "tmp_reg must be supplied");
assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
assert(markWord::age_shift == markWord::lock_bits + markWord::biased_lock_bits, "biased locking makes assumptions about bit layout");
Address mark_addr (obj_reg, oopDesc::mark_offset_in_bytes());
NOT_LP64( Address saved_mark_addr(lock_reg, 0); )
if (PrintBiasedLockingStatistics && counters == NULL) {
counters = BiasedLocking::counters();
}
// Biased locking
// See whether the lock is currently biased toward our thread and
// whether the epoch is still valid
// Note that the runtime guarantees sufficient alignment of JavaThread
// pointers to allow age to be placed into low bits
// First check to see whether biasing is even enabled for this object
Label cas_label;
int null_check_offset = -1;
if (!swap_reg_contains_mark) {
null_check_offset = offset();
movptr(swap_reg, mark_addr);
}
movptr(tmp_reg, swap_reg);
andptr(tmp_reg, markWord::biased_lock_mask_in_place);
cmpptr(tmp_reg, markWord::biased_lock_pattern);
jcc(Assembler::notEqual, cas_label);
// The bias pattern is present in the object's header. Need to check
// whether the bias owner and the epoch are both still current.
#ifndef _LP64
// Note that because there is no current thread register on x86_32 we
// need to store off the mark word we read out of the object to
// avoid reloading it and needing to recheck invariants below. This
// store is unfortunate but it makes the overall code shorter and
// simpler.
movptr(saved_mark_addr, swap_reg);
#endif
if (swap_reg_contains_mark) {
null_check_offset = offset();
}
load_prototype_header(tmp_reg, obj_reg);
#ifdef _LP64
orptr(tmp_reg, r15_thread);
xorptr(tmp_reg, swap_reg);
Register header_reg = tmp_reg;
#else
xorptr(tmp_reg, swap_reg);
get_thread(swap_reg);
xorptr(swap_reg, tmp_reg);
Register header_reg = swap_reg;
#endif
andptr(header_reg, ~((int) markWord::age_mask_in_place));
if (counters != NULL) {
cond_inc32(Assembler::zero,
ExternalAddress((address) counters->biased_lock_entry_count_addr()));
}
jcc(Assembler::equal, done);
Label try_revoke_bias;
Label try_rebias;
// At this point we know that the header has the bias pattern and
// that we are not the bias owner in the current epoch. We need to
// figure out more details about the state of the header in order to
// know what operations can be legally performed on the object's
// header.
// If the low three bits in the xor result aren't clear, that means
// the prototype header is no longer biased and we have to revoke
// the bias on this object.
testptr(header_reg, markWord::biased_lock_mask_in_place);
jccb(Assembler::notZero, try_revoke_bias);
// Biasing is still enabled for this data type. See whether the
// epoch of the current bias is still valid, meaning that the epoch
// bits of the mark word are equal to the epoch bits of the
// prototype header. (Note that the prototype header's epoch bits
// only change at a safepoint.) If not, attempt to rebias the object
// toward the current thread. Note that we must be absolutely sure
// that the current epoch is invalid in order to do this because
// otherwise the manipulations it performs on the mark word are
// illegal.
testptr(header_reg, markWord::epoch_mask_in_place);
jccb(Assembler::notZero, try_rebias);
// The epoch of the current bias is still valid but we know nothing
// about the owner; it might be set or it might be clear. Try to
// acquire the bias of the object using an atomic operation. If this
// fails we will go in to the runtime to revoke the object's bias.
// Note that we first construct the presumed unbiased header so we
// don't accidentally blow away another thread's valid bias.
NOT_LP64( movptr(swap_reg, saved_mark_addr); )
andptr(swap_reg,
markWord::biased_lock_mask_in_place | markWord::age_mask_in_place | markWord::epoch_mask_in_place);
#ifdef _LP64
movptr(tmp_reg, swap_reg);
orptr(tmp_reg, r15_thread);
#else
get_thread(tmp_reg);
orptr(tmp_reg, swap_reg);
#endif
lock();
cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
// If the biasing toward our thread failed, this means that
// another thread succeeded in biasing it toward itself and we
// need to revoke that bias. The revocation will occur in the
// interpreter runtime in the slow case.
if (counters != NULL) {
cond_inc32(Assembler::zero,
ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
}
if (slow_case != NULL) {
jcc(Assembler::notZero, *slow_case);
}
jmp(done);
bind(try_rebias);
// At this point we know the epoch has expired, meaning that the
// current "bias owner", if any, is actually invalid. Under these
// circumstances _only_, we are allowed to use the current header's
// value as the comparison value when doing the cas to acquire the
// bias in the current epoch. In other words, we allow transfer of
// the bias from one thread to another directly in this situation.
//
// FIXME: due to a lack of registers we currently blow away the age
// bits in this situation. Should attempt to preserve them.
load_prototype_header(tmp_reg, obj_reg);
#ifdef _LP64
orptr(tmp_reg, r15_thread);
#else
get_thread(swap_reg);
orptr(tmp_reg, swap_reg);
movptr(swap_reg, saved_mark_addr);
#endif
lock();
cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
// If the biasing toward our thread failed, then another thread
// succeeded in biasing it toward itself and we need to revoke that
// bias. The revocation will occur in the runtime in the slow case.
if (counters != NULL) {
cond_inc32(Assembler::zero,
ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
}
if (slow_case != NULL) {
jcc(Assembler::notZero, *slow_case);
}
jmp(done);
bind(try_revoke_bias);
// The prototype mark in the klass doesn't have the bias bit set any
// more, indicating that objects of this data type are not supposed
// to be biased any more. We are going to try to reset the mark of
// this object to the prototype value and fall through to the
// CAS-based locking scheme. Note that if our CAS fails, it means
// that another thread raced us for the privilege of revoking the
// bias of this particular object, so it's okay to continue in the
// normal locking code.
//
// FIXME: due to a lack of registers we currently blow away the age
// bits in this situation. Should attempt to preserve them.
NOT_LP64( movptr(swap_reg, saved_mark_addr); )
load_prototype_header(tmp_reg, obj_reg);
lock();
cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
// Fall through to the normal CAS-based lock, because no matter what
// the result of the above CAS, some thread must have succeeded in
// removing the bias bit from the object's header.
if (counters != NULL) {
cond_inc32(Assembler::zero,
ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
}
bind(cas_label);
return null_check_offset;
}
void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
assert(UseBiasedLocking, "why call this otherwise?");
// Check for biased locking unlock case, which is a no-op
// Note: we do not have to check the thread ID for two reasons.
// First, the interpreter checks for IllegalMonitorStateException at
// a higher level. Second, if the bias was revoked while we held the
// lock, the object could not be rebiased toward another thread, so
// the bias bit would be clear.
movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
andptr(temp_reg, markWord::biased_lock_mask_in_place);
cmpptr(temp_reg, markWord::biased_lock_pattern);
jcc(Assembler::equal, done);
}
#ifdef COMPILER2
#if INCLUDE_RTM_OPT
// Update rtm_counters based on abort status
// input: abort_status
// rtm_counters (RTMLockingCounters*)
// flags are killed
void MacroAssembler::rtm_counters_update(Register abort_status, Register rtm_counters) {
atomic_incptr(Address(rtm_counters, RTMLockingCounters::abort_count_offset()));
if (PrintPreciseRTMLockingStatistics) {
for (int i = 0; i < RTMLockingCounters::ABORT_STATUS_LIMIT; i++) {
Label check_abort;
testl(abort_status, (1<<i));
jccb(Assembler::equal, check_abort);
atomic_incptr(Address(rtm_counters, RTMLockingCounters::abortX_count_offset() + (i * sizeof(uintx))));
bind(check_abort);
}
}
}
// Branch if (random & (count-1) != 0), count is 2^n
// tmp, scr and flags are killed
void MacroAssembler::branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel) {
assert(tmp == rax, "");
assert(scr == rdx, "");
rdtsc(); // modifies EDX:EAX
andptr(tmp, count-1);
jccb(Assembler::notZero, brLabel);
}
// Perform abort ratio calculation, set no_rtm bit if high ratio
// input: rtm_counters_Reg (RTMLockingCounters* address)
// tmpReg, rtm_counters_Reg and flags are killed
void MacroAssembler::rtm_abort_ratio_calculation(Register tmpReg,
Register rtm_counters_Reg,
RTMLockingCounters* rtm_counters,
Metadata* method_data) {
Label L_done, L_check_always_rtm1, L_check_always_rtm2;
if (RTMLockingCalculationDelay > 0) {
// Delay calculation
movptr(tmpReg, ExternalAddress((address) RTMLockingCounters::rtm_calculation_flag_addr()), tmpReg);
testptr(tmpReg, tmpReg);
jccb(Assembler::equal, L_done);
}
// Abort ratio calculation only if abort_count > RTMAbortThreshold
// Aborted transactions = abort_count * 100
// All transactions = total_count * RTMTotalCountIncrRate
// Set no_rtm bit if (Aborted transactions >= All transactions * RTMAbortRatio)
movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::abort_count_offset()));
cmpptr(tmpReg, RTMAbortThreshold);
jccb(Assembler::below, L_check_always_rtm2);
imulptr(tmpReg, tmpReg, 100);
Register scrReg = rtm_counters_Reg;
movptr(scrReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
imulptr(scrReg, scrReg, RTMTotalCountIncrRate);
imulptr(scrReg, scrReg, RTMAbortRatio);
cmpptr(tmpReg, scrReg);
jccb(Assembler::below, L_check_always_rtm1);
if (method_data != NULL) {
// set rtm_state to "no rtm" in MDO
mov_metadata(tmpReg, method_data);
lock();
orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), NoRTM);
}
jmpb(L_done);
bind(L_check_always_rtm1);
// Reload RTMLockingCounters* address
lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
bind(L_check_always_rtm2);
movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
cmpptr(tmpReg, RTMLockingThreshold / RTMTotalCountIncrRate);
jccb(Assembler::below, L_done);
if (method_data != NULL) {
// set rtm_state to "always rtm" in MDO
mov_metadata(tmpReg, method_data);
lock();
orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), UseRTM);
}
bind(L_done);
}
// Update counters and perform abort ratio calculation
// input: abort_status_Reg
// rtm_counters_Reg, flags are killed
void MacroAssembler::rtm_profiling(Register abort_status_Reg,
Register rtm_counters_Reg,
RTMLockingCounters* rtm_counters,
Metadata* method_data,
bool profile_rtm) {
assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
// update rtm counters based on rax value at abort
// reads abort_status_Reg, updates flags
lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
rtm_counters_update(abort_status_Reg, rtm_counters_Reg);
if (profile_rtm) {
// Save abort status because abort_status_Reg is used by following code.
if (RTMRetryCount > 0) {
push(abort_status_Reg);
}
assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
rtm_abort_ratio_calculation(abort_status_Reg, rtm_counters_Reg, rtm_counters, method_data);
// restore abort status
if (RTMRetryCount > 0) {
pop(abort_status_Reg);
}
}
}
// Retry on abort if abort's status is 0x6: can retry (0x2) | memory conflict (0x4)
// inputs: retry_count_Reg
// : abort_status_Reg
// output: retry_count_Reg decremented by 1
// flags are killed
void MacroAssembler::rtm_retry_lock_on_abort(Register retry_count_Reg, Register abort_status_Reg, Label& retryLabel) {
Label doneRetry;
assert(abort_status_Reg == rax, "");
// The abort reason bits are in eax (see all states in rtmLocking.hpp)
// 0x6 = conflict on which we can retry (0x2) | memory conflict (0x4)
// if reason is in 0x6 and retry count != 0 then retry
andptr(abort_status_Reg, 0x6);
jccb(Assembler::zero, doneRetry);
testl(retry_count_Reg, retry_count_Reg);
jccb(Assembler::zero, doneRetry);
pause();
decrementl(retry_count_Reg);
jmp(retryLabel);
bind(doneRetry);
}
// Spin and retry if lock is busy,
// inputs: box_Reg (monitor address)
// : retry_count_Reg
// output: retry_count_Reg decremented by 1
// : clear z flag if retry count exceeded
// tmp_Reg, scr_Reg, flags are killed
void MacroAssembler::rtm_retry_lock_on_busy(Register retry_count_Reg, Register box_Reg,
Register tmp_Reg, Register scr_Reg, Label& retryLabel) {
Label SpinLoop, SpinExit, doneRetry;
int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
testl(retry_count_Reg, retry_count_Reg);
jccb(Assembler::zero, doneRetry);
decrementl(retry_count_Reg);
movptr(scr_Reg, RTMSpinLoopCount);
bind(SpinLoop);
pause();
decrementl(scr_Reg);
jccb(Assembler::lessEqual, SpinExit);
movptr(tmp_Reg, Address(box_Reg, owner_offset));
testptr(tmp_Reg, tmp_Reg);
jccb(Assembler::notZero, SpinLoop);
bind(SpinExit);
jmp(retryLabel);
bind(doneRetry);
incrementl(retry_count_Reg); // clear z flag
}
// Use RTM for normal stack locks
// Input: objReg (object to lock)
void MacroAssembler::rtm_stack_locking(Register objReg, Register tmpReg, Register scrReg,
Register retry_on_abort_count_Reg,
RTMLockingCounters* stack_rtm_counters,
Metadata* method_data, bool profile_rtm,
Label& DONE_LABEL, Label& IsInflated) {
assert(UseRTMForStackLocks, "why call this otherwise?");
assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
assert(tmpReg == rax, "");
assert(scrReg == rdx, "");
Label L_rtm_retry, L_decrement_retry, L_on_abort;
if (RTMRetryCount > 0) {
movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
bind(L_rtm_retry);
}
movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));
testptr(tmpReg, markWord::monitor_value); // inflated vs stack-locked|neutral|biased
jcc(Assembler::notZero, IsInflated);
if (PrintPreciseRTMLockingStatistics || profile_rtm) {
Label L_noincrement;
if (RTMTotalCountIncrRate > 1) {
// tmpReg, scrReg and flags are killed
branch_on_random_using_rdtsc(tmpReg, scrReg, RTMTotalCountIncrRate, L_noincrement);
}
assert(stack_rtm_counters != NULL, "should not be NULL when profiling RTM");
atomic_incptr(ExternalAddress((address)stack_rtm_counters->total_count_addr()), scrReg);
bind(L_noincrement);
}
xbegin(L_on_abort);
movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes())); // fetch markword
andptr(tmpReg, markWord::biased_lock_mask_in_place); // look at 3 lock bits
cmpptr(tmpReg, markWord::unlocked_value); // bits = 001 unlocked
jcc(Assembler::equal, DONE_LABEL); // all done if unlocked
Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
if (UseRTMXendForLockBusy) {
xend();
movptr(abort_status_Reg, 0x2); // Set the abort status to 2 (so we can retry)
jmp(L_decrement_retry);
}
else {
xabort(0);
}
bind(L_on_abort);
if (PrintPreciseRTMLockingStatistics || profile_rtm) {
rtm_profiling(abort_status_Reg, scrReg, stack_rtm_counters, method_data, profile_rtm);
}
bind(L_decrement_retry);
if (RTMRetryCount > 0) {
// retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
}
}
// Use RTM for inflating locks
// inputs: objReg (object to lock)
// boxReg (on-stack box address (displaced header location) - KILLED)
// tmpReg (ObjectMonitor address + markWord::monitor_value)
void MacroAssembler::rtm_inflated_locking(Register objReg, Register boxReg, Register tmpReg,
Register scrReg, Register retry_on_busy_count_Reg,
Register retry_on_abort_count_Reg,
RTMLockingCounters* rtm_counters,
Metadata* method_data, bool profile_rtm,
Label& DONE_LABEL) {
assert(UseRTMLocking, "why call this otherwise?");
assert(tmpReg == rax, "");
assert(scrReg == rdx, "");
Label L_rtm_retry, L_decrement_retry, L_on_abort;
int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
// Without cast to int32_t this style of movptr will destroy r10 which is typically obj.
movptr(Address(boxReg, 0), (int32_t)intptr_t(markWord::unused_mark().value()));
movptr(boxReg, tmpReg); // Save ObjectMonitor address
if (RTMRetryCount > 0) {
movl(retry_on_busy_count_Reg, RTMRetryCount); // Retry on lock busy
movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
bind(L_rtm_retry);
}
if (PrintPreciseRTMLockingStatistics || profile_rtm) {
Label L_noincrement;
if (RTMTotalCountIncrRate > 1) {
// tmpReg, scrReg and flags are killed
branch_on_random_using_rdtsc(tmpReg, scrReg, RTMTotalCountIncrRate, L_noincrement);
}
assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
atomic_incptr(ExternalAddress((address)rtm_counters->total_count_addr()), scrReg);
bind(L_noincrement);
}
xbegin(L_on_abort);
movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));
movptr(tmpReg, Address(tmpReg, owner_offset));
testptr(tmpReg, tmpReg);
jcc(Assembler::zero, DONE_LABEL);
if (UseRTMXendForLockBusy) {
xend();
jmp(L_decrement_retry);
}
else {
xabort(0);
}
bind(L_on_abort);
Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
if (PrintPreciseRTMLockingStatistics || profile_rtm) {
rtm_profiling(abort_status_Reg, scrReg, rtm_counters, method_data, profile_rtm);
}
if (RTMRetryCount > 0) {
// retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
}
movptr(tmpReg, Address(boxReg, owner_offset)) ;
testptr(tmpReg, tmpReg) ;
jccb(Assembler::notZero, L_decrement_retry) ;
// Appears unlocked - try to swing _owner from null to non-null.
// Invariant: tmpReg == 0. tmpReg is EAX which is the implicit cmpxchg comparand.
#ifdef _LP64
Register threadReg = r15_thread;
#else
get_thread(scrReg);
Register threadReg = scrReg;
#endif
lock();
cmpxchgptr(threadReg, Address(boxReg, owner_offset)); // Updates tmpReg
if (RTMRetryCount > 0) {
// success done else retry
jccb(Assembler::equal, DONE_LABEL) ;
bind(L_decrement_retry);
// Spin and retry if lock is busy.
rtm_retry_lock_on_busy(retry_on_busy_count_Reg, boxReg, tmpReg, scrReg, L_rtm_retry);
}
else {
bind(L_decrement_retry);
}
}
#endif // INCLUDE_RTM_OPT
// fast_lock and fast_unlock used by C2
// Because the transitions from emitted code to the runtime
// monitorenter/exit helper stubs are so slow it's critical that
// we inline both the stack-locking fast path and the inflated fast path.
//
// See also: cmpFastLock and cmpFastUnlock.
//
// What follows is a specialized inline transliteration of the code
// in enter() and exit(). If we're concerned about I$ bloat another
// option would be to emit TrySlowEnter and TrySlowExit methods
// at startup-time. These methods would accept arguments as
// (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
// indications in the icc.ZFlag. fast_lock and fast_unlock would simply
// marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
// In practice, however, the # of lock sites is bounded and is usually small.
// Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
// if the processor uses simple bimodal branch predictors keyed by EIP
// Since the helper routines would be called from multiple synchronization
// sites.
//
// An even better approach would be write "MonitorEnter()" and "MonitorExit()"
// in java - using j.u.c and unsafe - and just bind the lock and unlock sites
// to those specialized methods. That'd give us a mostly platform-independent
// implementation that the JITs could optimize and inline at their pleasure.
// Done correctly, the only time we'd need to cross to native could would be
// to park() or unpark() threads. We'd also need a few more unsafe operators
// to (a) prevent compiler-JIT reordering of non-volatile accesses, and
// (b) explicit barriers or fence operations.
//
// TODO:
//
// * Arrange for C2 to pass "Self" into fast_lock and fast_unlock in one of the registers (scr).
// This avoids manifesting the Self pointer in the fast_lock and fast_unlock terminals.
// Given TLAB allocation, Self is usually manifested in a register, so passing it into
// the lock operators would typically be faster than reifying Self.
//
// * Ideally I'd define the primitives as:
// fast_lock (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
// fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
// Unfortunately ADLC bugs prevent us from expressing the ideal form.
// Instead, we're stuck with a rather awkward and brittle register assignments below.
// Furthermore the register assignments are overconstrained, possibly resulting in
// sub-optimal code near the synchronization site.
//
// * Eliminate the sp-proximity tests and just use "== Self" tests instead.
// Alternately, use a better sp-proximity test.
//
// * Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
// Either one is sufficient to uniquely identify a thread.
// TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
//
// * Intrinsify notify() and notifyAll() for the common cases where the
// object is locked by the calling thread but the waitlist is empty.
// avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
//
// * use jccb and jmpb instead of jcc and jmp to improve code density.
// But beware of excessive branch density on AMD Opterons.
//
// * Both fast_lock and fast_unlock set the ICC.ZF to indicate success
// or failure of the fast path. If the fast path fails then we pass
// control to the slow path, typically in C. In fast_lock and
// fast_unlock we often branch to DONE_LABEL, just to find that C2
// will emit a conditional branch immediately after the node.
// So we have branches to branches and lots of ICC.ZF games.
// Instead, it might be better to have C2 pass a "FailureLabel"
// into fast_lock and fast_unlock. In the case of success, control
// will drop through the node. ICC.ZF is undefined at exit.
// In the case of failure, the node will branch directly to the
// FailureLabel
// obj: object to lock
// box: on-stack box address (displaced header location) - KILLED
// rax,: tmp -- KILLED
// scr: tmp -- KILLED
void MacroAssembler::fast_lock(Register objReg, Register boxReg, Register tmpReg,
Register scrReg, Register cx1Reg, Register cx2Reg,
BiasedLockingCounters* counters,
RTMLockingCounters* rtm_counters,
RTMLockingCounters* stack_rtm_counters,
Metadata* method_data,
bool use_rtm, bool profile_rtm) {
// Ensure the register assignments are disjoint
assert(tmpReg == rax, "");
if (use_rtm) {
assert_different_registers(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg);
} else {
assert(cx1Reg == noreg, "");
assert(cx2Reg == noreg, "");
assert_different_registers(objReg, boxReg, tmpReg, scrReg);
}
if (counters != NULL) {
atomic_incl(ExternalAddress((address)counters->total_entry_count_addr()), scrReg);
}
// Possible cases that we'll encounter in fast_lock
// ------------------------------------------------
// * Inflated
// -- unlocked
// -- Locked
// = by self
// = by other
// * biased
// -- by Self
// -- by other
// * neutral
// * stack-locked
// -- by self
// = sp-proximity test hits
// = sp-proximity test generates false-negative
// -- by other
//
Label IsInflated, DONE_LABEL;
// it's stack-locked, biased or neutral
// TODO: optimize away redundant LDs of obj->mark and improve the markword triage
// order to reduce the number of conditional branches in the most common cases.
// Beware -- there's a subtle invariant that fetch of the markword
// at [FETCH], below, will never observe a biased encoding (*101b).
// If this invariant is not held we risk exclusion (safety) failure.
if (UseBiasedLocking && !UseOptoBiasInlining) {
biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, counters);
}
#if INCLUDE_RTM_OPT
if (UseRTMForStackLocks && use_rtm) {
rtm_stack_locking(objReg, tmpReg, scrReg, cx2Reg,
stack_rtm_counters, method_data, profile_rtm,
DONE_LABEL, IsInflated);
}
#endif // INCLUDE_RTM_OPT
movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes())); // [FETCH]
testptr(tmpReg, markWord::monitor_value); // inflated vs stack-locked|neutral|biased
jccb(Assembler::notZero, IsInflated);
// Attempt stack-locking ...
orptr (tmpReg, markWord::unlocked_value);
movptr(Address(boxReg, 0), tmpReg); // Anticipate successful CAS
lock();
cmpxchgptr(boxReg, Address(objReg, oopDesc::mark_offset_in_bytes())); // Updates tmpReg
if (counters != NULL) {
cond_inc32(Assembler::equal,
ExternalAddress((address)counters->fast_path_entry_count_addr()));
}
jcc(Assembler::equal, DONE_LABEL); // Success
// Recursive locking.
// The object is stack-locked: markword contains stack pointer to BasicLock.
// Locked by current thread if difference with current SP is less than one page.
subptr(tmpReg, rsp);
// Next instruction set ZFlag == 1 (Success) if difference is less then one page.
andptr(tmpReg, (int32_t) (NOT_LP64(0xFFFFF003) LP64_ONLY(7 - os::vm_page_size())) );
movptr(Address(boxReg, 0), tmpReg);
if (counters != NULL) {
cond_inc32(Assembler::equal,
ExternalAddress((address)counters->fast_path_entry_count_addr()));
}
jmp(DONE_LABEL);
bind(IsInflated);
// The object is inflated. tmpReg contains pointer to ObjectMonitor* + markWord::monitor_value
#if INCLUDE_RTM_OPT
// Use the same RTM locking code in 32- and 64-bit VM.
if (use_rtm) {
rtm_inflated_locking(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg,
rtm_counters, method_data, profile_rtm, DONE_LABEL);
} else {
#endif // INCLUDE_RTM_OPT
#ifndef _LP64
// The object is inflated.
// boxReg refers to the on-stack BasicLock in the current frame.
// We'd like to write:
// set box->_displaced_header = markWord::unused_mark(). Any non-0 value suffices.
// This is convenient but results a ST-before-CAS penalty. The following CAS suffers
// additional latency as we have another ST in the store buffer that must drain.
// avoid ST-before-CAS
// register juggle because we need tmpReg for cmpxchgptr below
movptr(scrReg, boxReg);
movptr(boxReg, tmpReg); // consider: LEA box, [tmp-2]
// Optimistic form: consider XORL tmpReg,tmpReg
movptr(tmpReg, NULL_WORD);
// Appears unlocked - try to swing _owner from null to non-null.
// Ideally, I'd manifest "Self" with get_thread and then attempt
// to CAS the register containing Self into m->Owner.
// But we don't have enough registers, so instead we can either try to CAS
// rsp or the address of the box (in scr) into &m->owner. If the CAS succeeds
// we later store "Self" into m->Owner. Transiently storing a stack address
// (rsp or the address of the box) into m->owner is harmless.
// Invariant: tmpReg == 0. tmpReg is EAX which is the implicit cmpxchg comparand.
lock();
cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
movptr(Address(scrReg, 0), 3); // box->_displaced_header = 3
// If we weren't able to swing _owner from NULL to the BasicLock
// then take the slow path.
jccb (Assembler::notZero, DONE_LABEL);
// update _owner from BasicLock to thread
get_thread (scrReg); // beware: clobbers ICCs
movptr(Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), scrReg);
xorptr(boxReg, boxReg); // set icc.ZFlag = 1 to indicate success
// If the CAS fails we can either retry or pass control to the slow path.
// We use the latter tactic.
// Pass the CAS result in the icc.ZFlag into DONE_LABEL
// If the CAS was successful ...
// Self has acquired the lock
// Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
// Intentional fall-through into DONE_LABEL ...
#else // _LP64
// It's inflated and we use scrReg for ObjectMonitor* in this section.
movq(scrReg, tmpReg);
xorq(tmpReg, tmpReg);
lock();
cmpxchgptr(r15_thread, Address(scrReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
// Unconditionally set box->_displaced_header = markWord::unused_mark().
// Without cast to int32_t this style of movptr will destroy r10 which is typically obj.
movptr(Address(boxReg, 0), (int32_t)intptr_t(markWord::unused_mark().value()));
// Intentional fall-through into DONE_LABEL ...
// Propagate ICC.ZF from CAS above into DONE_LABEL.
#endif // _LP64
#if INCLUDE_RTM_OPT
} // use_rtm()
#endif
// DONE_LABEL is a hot target - we'd really like to place it at the
// start of cache line by padding with NOPs.
// See the AMD and Intel software optimization manuals for the
// most efficient "long" NOP encodings.
// Unfortunately none of our alignment mechanisms suffice.
bind(DONE_LABEL);
// At DONE_LABEL the icc ZFlag is set as follows ...
// fast_unlock uses the same protocol.
// ZFlag == 1 -> Success
// ZFlag == 0 -> Failure - force control through the slow path
}
// obj: object to unlock
// box: box address (displaced header location), killed. Must be EAX.
// tmp: killed, cannot be obj nor box.
//
// Some commentary on balanced locking:
//
// fast_lock and fast_unlock are emitted only for provably balanced lock sites.
// Methods that don't have provably balanced locking are forced to run in the
// interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
// The interpreter provides two properties:
// I1: At return-time the interpreter automatically and quietly unlocks any
// objects acquired the current activation (frame). Recall that the
// interpreter maintains an on-stack list of locks currently held by
// a frame.
// I2: If a method attempts to unlock an object that is not held by the
// the frame the interpreter throws IMSX.
//
// Lets say A(), which has provably balanced locking, acquires O and then calls B().
// B() doesn't have provably balanced locking so it runs in the interpreter.
// Control returns to A() and A() unlocks O. By I1 and I2, above, we know that O
// is still locked by A().
//
// The only other source of unbalanced locking would be JNI. The "Java Native Interface:
// Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
// should not be unlocked by "normal" java-level locking and vice-versa. The specification
// doesn't specify what will occur if a program engages in such mixed-mode locking, however.
// Arguably given that the spec legislates the JNI case as undefined our implementation
// could reasonably *avoid* checking owner in fast_unlock().
// In the interest of performance we elide m->Owner==Self check in unlock.
// A perfectly viable alternative is to elide the owner check except when
// Xcheck:jni is enabled.
void MacroAssembler::fast_unlock(Register objReg, Register boxReg, Register tmpReg, bool use_rtm) {
assert(boxReg == rax, "");
assert_different_registers(objReg, boxReg, tmpReg);
Label DONE_LABEL, Stacked, CheckSucc;
// Critically, the biased locking test must have precedence over
// and appear before the (box->dhw == 0) recursive stack-lock test.
if (UseBiasedLocking && !UseOptoBiasInlining) {
biased_locking_exit(objReg, tmpReg, DONE_LABEL);
}
#if INCLUDE_RTM_OPT
if (UseRTMForStackLocks && use_rtm) {
assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
Label L_regular_unlock;
movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes())); // fetch markword
andptr(tmpReg, markWord::biased_lock_mask_in_place); // look at 3 lock bits
cmpptr(tmpReg, markWord::unlocked_value); // bits = 001 unlocked
jccb(Assembler::notEqual, L_regular_unlock); // if !HLE RegularLock
xend(); // otherwise end...
jmp(DONE_LABEL); // ... and we're done
bind(L_regular_unlock);
}
#endif
cmpptr(Address(boxReg, 0), (int32_t)NULL_WORD); // Examine the displaced header
jcc (Assembler::zero, DONE_LABEL); // 0 indicates recursive stack-lock
movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes())); // Examine the object's markword
testptr(tmpReg, markWord::monitor_value); // Inflated?
jccb (Assembler::zero, Stacked);
// It's inflated.
#if INCLUDE_RTM_OPT
if (use_rtm) {
Label L_regular_inflated_unlock;
int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
movptr(boxReg, Address(tmpReg, owner_offset));
testptr(boxReg, boxReg);
jccb(Assembler::notZero, L_regular_inflated_unlock);
xend();
jmpb(DONE_LABEL);
bind(L_regular_inflated_unlock);
}
#endif
// Despite our balanced locking property we still check that m->_owner == Self
// as java routines or native JNI code called by this thread might
// have released the lock.
// Refer to the comments in synchronizer.cpp for how we might encode extra
// state in _succ so we can avoid fetching EntryList|cxq.
//
// I'd like to add more cases in fast_lock() and fast_unlock() --
// such as recursive enter and exit -- but we have to be wary of
// I$ bloat, T$ effects and BP$ effects.
//
// If there's no contention try a 1-0 exit. That is, exit without
// a costly MEMBAR or CAS. See synchronizer.cpp for details on how
// we detect and recover from the race that the 1-0 exit admits.
//
// Conceptually fast_unlock() must execute a STST|LDST "release" barrier
// before it STs null into _owner, releasing the lock. Updates
// to data protected by the critical section must be visible before
// we drop the lock (and thus before any other thread could acquire
// the lock and observe the fields protected by the lock).
// IA32's memory-model is SPO, so STs are ordered with respect to
// each other and there's no need for an explicit barrier (fence).
// See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
#ifndef _LP64
get_thread (boxReg);
// Note that we could employ various encoding schemes to reduce
// the number of loads below (currently 4) to just 2 or 3.
// Refer to the comments in synchronizer.cpp.
// In practice the chain of fetches doesn't seem to impact performance, however.
xorptr(boxReg, boxReg);
orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
jccb (Assembler::notZero, DONE_LABEL);
movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
jccb (Assembler::notZero, CheckSucc);
movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
jmpb (DONE_LABEL);
bind (Stacked);
// It's not inflated and it's not recursively stack-locked and it's not biased.
// It must be stack-locked.
// Try to reset the header to displaced header.
// The "box" value on the stack is stable, so we can reload
// and be assured we observe the same value as above.
movptr(tmpReg, Address(boxReg, 0));
lock();
cmpxchgptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes())); // Uses RAX which is box
// Intention fall-thru into DONE_LABEL
// DONE_LABEL is a hot target - we'd really like to place it at the
// start of cache line by padding with NOPs.
// See the AMD and Intel software optimization manuals for the
// most efficient "long" NOP encodings.
// Unfortunately none of our alignment mechanisms suffice.
bind (CheckSucc);
#else // _LP64
// It's inflated
xorptr(boxReg, boxReg);
orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
jccb (Assembler::notZero, DONE_LABEL);
movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
jccb (Assembler::notZero, CheckSucc);
// Without cast to int32_t this style of movptr will destroy r10 which is typically obj.
movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
jmpb (DONE_LABEL);
// Try to avoid passing control into the slow_path ...
Label LSuccess, LGoSlowPath ;
bind (CheckSucc);
// The following optional optimization can be elided if necessary
// Effectively: if (succ == null) goto slow path
// The code reduces the window for a race, however,
// and thus benefits performance.
cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
jccb (Assembler::zero, LGoSlowPath);
xorptr(boxReg, boxReg);
// Without cast to int32_t this style of movptr will destroy r10 which is typically obj.
movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
// Memory barrier/fence
// Dekker pivot point -- fulcrum : ST Owner; MEMBAR; LD Succ
// Instead of MFENCE we use a dummy locked add of 0 to the top-of-stack.
// This is faster on Nehalem and AMD Shanghai/Barcelona.
// See https://blogs.oracle.com/dave/entry/instruction_selection_for_volatile_fences
// We might also restructure (ST Owner=0;barrier;LD _Succ) to
// (mov box,0; xchgq box, &m->Owner; LD _succ) .
lock(); addl(Address(rsp, 0), 0);
cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
jccb (Assembler::notZero, LSuccess);
// Rare inopportune interleaving - race.
// The successor vanished in the small window above.
// The lock is contended -- (cxq|EntryList) != null -- and there's no apparent successor.
// We need to ensure progress and succession.
// Try to reacquire the lock.
// If that fails then the new owner is responsible for succession and this
// thread needs to take no further action and can exit via the fast path (success).
// If the re-acquire succeeds then pass control into the slow path.
// As implemented, this latter mode is horrible because we generated more
// coherence traffic on the lock *and* artifically extended the critical section
// length while by virtue of passing control into the slow path.
// box is really RAX -- the following CMPXCHG depends on that binding
// cmpxchg R,[M] is equivalent to rax = CAS(M,rax,R)
lock();
cmpxchgptr(r15_thread, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
// There's no successor so we tried to regrab the lock.
// If that didn't work, then another thread grabbed the
// lock so we're done (and exit was a success).
jccb (Assembler::notEqual, LSuccess);
// Intentional fall-through into slow path
bind (LGoSlowPath);
orl (boxReg, 1); // set ICC.ZF=0 to indicate failure
jmpb (DONE_LABEL);
bind (LSuccess);
testl (boxReg, 0); // set ICC.ZF=1 to indicate success
jmpb (DONE_LABEL);
bind (Stacked);
movptr(tmpReg, Address (boxReg, 0)); // re-fetch
lock();
cmpxchgptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes())); // Uses RAX which is box
#endif
bind(DONE_LABEL);
}
#endif // COMPILER2
void MacroAssembler::c2bool(Register x) {
// implements x == 0 ? 0 : 1
// note: must only look at least-significant byte of x
// since C-style booleans are stored in one byte
// only! (was bug)
andl(x, 0xFF);
setb(Assembler::notZero, x);
}
// Wouldn't need if AddressLiteral version had new name
void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
Assembler::call(L, rtype);
}
void MacroAssembler::call(Register entry) {
Assembler::call(entry);
}
void MacroAssembler::call(AddressLiteral entry) {
if (reachable(entry)) {
Assembler::call_literal(entry.target(), entry.rspec());
} else {
lea(rscratch1, entry);
Assembler::call(rscratch1);
}
}
void MacroAssembler::ic_call(address entry, jint method_index) {
RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index);
movptr(rax, (intptr_t)Universe::non_oop_word());
call(AddressLiteral(entry, rh));
}
// Implementation of call_VM versions
void MacroAssembler::call_VM(Register oop_result,
address entry_point,
bool check_exceptions) {
Label C, E;
call(C, relocInfo::none);
jmp(E);
bind(C);
call_VM_helper(oop_result, entry_point, 0, check_exceptions);
ret(0);
bind(E);
}
void MacroAssembler::call_VM(Register oop_result,
address entry_point,
Register arg_1,
bool check_exceptions) {
Label C, E;
call(C, relocInfo::none);
jmp(E);
bind(C);
pass_arg1(this, arg_1);
call_VM_helper(oop_result, entry_point, 1, check_exceptions);
ret(0);
bind(E);
}
void MacroAssembler::call_VM(Register oop_result,
address entry_point,
Register arg_1,
Register arg_2,
bool check_exceptions) {
Label C, E;
call(C, relocInfo::none);
jmp(E);
bind(C);
LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
pass_arg2(this, arg_2);
pass_arg1(this, arg_1);
call_VM_helper(oop_result, entry_point, 2, check_exceptions);
ret(0);
bind(E);
}
void MacroAssembler::call_VM(Register oop_result,
address entry_point,
Register arg_1,
Register arg_2,
Register arg_3,
bool check_exceptions) {
Label C, E;
call(C, relocInfo::none);
jmp(E);
bind(C);
LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
pass_arg3(this, arg_3);
LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
pass_arg2(this, arg_2);
pass_arg1(this, arg_1);
call_VM_helper(oop_result, entry_point, 3, check_exceptions);
ret(0);
bind(E);
}
void MacroAssembler::call_VM(Register oop_result,
Register last_java_sp,
address entry_point,
int number_of_arguments,
bool check_exceptions) {
Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
}
void MacroAssembler::call_VM(Register oop_result,
Register last_java_sp,
address entry_point,
Register arg_1,
bool check_exceptions) {
pass_arg1(this, arg_1);
call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
}
void MacroAssembler::call_VM(Register oop_result,
Register last_java_sp,
address entry_point,
Register arg_1,
Register arg_2,
bool check_exceptions) {
LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
pass_arg2(this, arg_2);
pass_arg1(this, arg_1);
call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
}
void MacroAssembler::call_VM(Register oop_result,
Register last_java_sp,
address entry_point,
Register arg_1,
Register arg_2,
Register arg_3,
bool check_exceptions) {
LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
pass_arg3(this, arg_3);
LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
pass_arg2(this, arg_2);
pass_arg1(this, arg_1);
call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
}
void MacroAssembler::super_call_VM(Register oop_result,
Register last_java_sp,
address entry_point,
int number_of_arguments,
bool check_exceptions) {
Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
}
void MacroAssembler::super_call_VM(Register oop_result,
Register last_java_sp,
address entry_point,
Register arg_1,
bool check_exceptions) {
pass_arg1(this, arg_1);
super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
}
void MacroAssembler::super_call_VM(Register oop_result,
Register last_java_sp,
address entry_point,
Register arg_1,
Register arg_2,
bool check_exceptions) {
LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
pass_arg2(this, arg_2);
pass_arg1(this, arg_1);
super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
}
void MacroAssembler::super_call_VM(Register oop_result,
Register last_java_sp,
address entry_point,
Register arg_1,
Register arg_2,
Register arg_3,
bool check_exceptions) {
LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
pass_arg3(this, arg_3);
LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
pass_arg2(this, arg_2);
pass_arg1(this, arg_1);
super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
}
void MacroAssembler::call_VM_base(Register oop_result,
Register java_thread,
Register last_java_sp,
address entry_point,
int number_of_arguments,
bool check_exceptions) {
// determine java_thread register
if (!java_thread->is_valid()) {
#ifdef _LP64
java_thread = r15_thread;
#else
java_thread = rdi;
get_thread(java_thread);
#endif // LP64
}
// determine last_java_sp register
if (!last_java_sp->is_valid()) {
last_java_sp = rsp;
}
// debugging support
assert(number_of_arguments >= 0 , "cannot have negative number of arguments");
LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
#ifdef ASSERT
// TraceBytecodes does not use r12 but saves it over the call, so don't verify
// r12 is the heapbase.
LP64_ONLY(if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");)
#endif // ASSERT
assert(java_thread != oop_result , "cannot use the same register for java_thread & oop_result");
assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
// push java thread (becomes first argument of C function)
NOT_LP64(push(java_thread); number_of_arguments++);
LP64_ONLY(mov(c_rarg0, r15_thread));
// set last Java frame before call
assert(last_java_sp != rbp, "can't use ebp/rbp");
// Only interpreter should have to set fp
set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
// do the call, remove parameters
MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
// restore the thread (cannot use the pushed argument since arguments
// may be overwritten by C code generated by an optimizing compiler);
// however can use the register value directly if it is callee saved.
if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
// rdi & rsi (also r15) are callee saved -> nothing to do
#ifdef ASSERT
guarantee(java_thread != rax, "change this code");
push(rax);
{ Label L;
get_thread(rax);
cmpptr(java_thread, rax);
jcc(Assembler::equal, L);
STOP("MacroAssembler::call_VM_base: rdi not callee saved?");
bind(L);
}
pop(rax);
#endif
} else {
get_thread(java_thread);
}
// reset last Java frame
// Only interpreter should have to clear fp
reset_last_Java_frame(java_thread, true);
// C++ interp handles this in the interpreter
check_and_handle_popframe(java_thread);
check_and_handle_earlyret(java_thread);
if (check_exceptions) {
// check for pending exceptions (java_thread is set upon return)
cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
#ifndef _LP64
jump_cc(Assembler::notEqual,
RuntimeAddress(StubRoutines::forward_exception_entry()));
#else
// This used to conditionally jump to forward_exception however it is
// possible if we relocate that the branch will not reach. So we must jump
// around so we can always reach
Label ok;
jcc(Assembler::equal, ok);
jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
bind(ok);
#endif // LP64
}
// get oop result if there is one and reset the value in the thread
if (oop_result->is_valid()) {
get_vm_result(oop_result, java_thread);
}
}
void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
// Calculate the value for last_Java_sp
// somewhat subtle. call_VM does an intermediate call
// which places a return address on the stack just under the
// stack pointer as the user finsihed with it. This allows
// use to retrieve last_Java_pc from last_Java_sp[-1].
// On 32bit we then have to push additional args on the stack to accomplish
// the actual requested call. On 64bit call_VM only can use register args
// so the only extra space is the return address that call_VM created.
// This hopefully explains the calculations here.
#ifdef _LP64
// We've pushed one address, correct last_Java_sp
lea(rax, Address(rsp, wordSize));
#else
lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
#endif // LP64
call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
}
// Use this method when MacroAssembler version of call_VM_leaf_base() should be called from Interpreter.
void MacroAssembler::call_VM_leaf0(address entry_point) {
MacroAssembler::call_VM_leaf_base(entry_point, 0);
}
void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
call_VM_leaf_base(entry_point, number_of_arguments);
}
void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
pass_arg0(this, arg_0);
call_VM_leaf(entry_point, 1);
}
void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
pass_arg1(this, arg_1);
pass_arg0(this, arg_0);
call_VM_leaf(entry_point, 2);
}
void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
pass_arg2(this, arg_2);
LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
pass_arg1(this, arg_1);
pass_arg0(this, arg_0);
call_VM_leaf(entry_point, 3);
}
void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
pass_arg0(this, arg_0);
MacroAssembler::call_VM_leaf_base(entry_point, 1);
}
void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
pass_arg1(this, arg_1);
pass_arg0(this, arg_0);
MacroAssembler::call_VM_leaf_base(entry_point, 2);
}
void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
pass_arg2(this, arg_2);
LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
pass_arg1(this, arg_1);
pass_arg0(this, arg_0);
MacroAssembler::call_VM_leaf_base(entry_point, 3);
}
void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg"));
LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
pass_arg3(this, arg_3);
LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
pass_arg2(this, arg_2);
LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
pass_arg1(this, arg_1);
pass_arg0(this, arg_0);
MacroAssembler::call_VM_leaf_base(entry_point, 4);
}
void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
verify_oop(oop_result, "broken oop in call_VM_base");
}
void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD);
}
void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
}
void MacroAssembler::check_and_handle_popframe(Register java_thread) {
}
void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
if (reachable(src1)) {
cmpl(as_Address(src1), imm);
} else {
lea(rscratch1, src1);
cmpl(Address(rscratch1, 0), imm);
}
}
void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
assert(!src2.is_lval(), "use cmpptr");
if (reachable(src2)) {
cmpl(src1, as_Address(src2));
} else {
lea(rscratch1, src2);
cmpl(src1, Address(rscratch1, 0));
}
}
void MacroAssembler::cmp32(Register src1, int32_t imm) {
Assembler::cmpl(src1, imm);
}
void MacroAssembler::cmp32(Register src1, Address src2) {
Assembler::cmpl(src1, src2);
}
void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
ucomisd(opr1, opr2);
Label L;
if (unordered_is_less) {
movl(dst, -1);
jcc(Assembler::parity, L);
jcc(Assembler::below , L);
movl(dst, 0);
jcc(Assembler::equal , L);
increment(dst);
} else { // unordered is greater
movl(dst, 1);
jcc(Assembler::parity, L);
jcc(Assembler::above , L);
movl(dst, 0);
jcc(Assembler::equal , L);
decrementl(dst);
}
bind(L);
}
void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
ucomiss(opr1, opr2);
Label L;
if (unordered_is_less) {
movl(dst, -1);
jcc(Assembler::parity, L);
jcc(Assembler::below , L);
movl(dst, 0);
jcc(Assembler::equal , L);
increment(dst);
} else { // unordered is greater
movl(dst, 1);
jcc(Assembler::parity, L);
jcc(Assembler::above , L);
movl(dst, 0);
jcc(Assembler::equal , L);
decrementl(dst);
}
bind(L);
}
void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
if (reachable(src1)) {
cmpb(as_Address(src1), imm);
} else {
lea(rscratch1, src1);
cmpb(Address(rscratch1, 0), imm);
}
}
void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
#ifdef _LP64
if (src2.is_lval()) {
movptr(rscratch1, src2);
Assembler::cmpq(src1, rscratch1);
} else if (reachable(src2)) {
cmpq(src1, as_Address(src2));
} else {
lea(rscratch1, src2);
Assembler::cmpq(src1, Address(rscratch1, 0));
}
#else
if (src2.is_lval()) {
cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
} else {
cmpl(src1, as_Address(src2));
}
#endif // _LP64
}
void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
assert(src2.is_lval(), "not a mem-mem compare");
#ifdef _LP64
// moves src2's literal address
movptr(rscratch1, src2);
Assembler::cmpq(src1, rscratch1);
#else
cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
#endif // _LP64
}
void MacroAssembler::cmpoop(Register src1, Register src2) {
BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
bs->obj_equals(this, src1, src2);
}
void MacroAssembler::cmpoop(Register src1, Address src2) {
BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
bs->obj_equals(this, src1, src2);
}
#ifdef _LP64
void MacroAssembler::cmpoop(Register src1, jobject src2) {
movoop(rscratch1, src2);
BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
bs->obj_equals(this, src1, rscratch1);
}
#endif
void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
if (reachable(adr)) {
lock();
cmpxchgptr(reg, as_Address(adr));
} else {
lea(rscratch1, adr);
lock();
cmpxchgptr(reg, Address(rscratch1, 0));
}
}
void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
}
void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
if (reachable(src)) {
Assembler::comisd(dst, as_Address(src));
} else {
lea(rscratch1, src);
Assembler::comisd(dst, Address(rscratch1, 0));
}
}
void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
if (reachable(src)) {
Assembler::comiss(dst, as_Address(src));
} else {
lea(rscratch1, src);
Assembler::comiss(dst, Address(rscratch1, 0));
}
}
void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
Condition negated_cond = negate_condition(cond);
Label L;
jcc(negated_cond, L);
pushf(); // Preserve flags
atomic_incl(counter_addr);
popf();
bind(L);
}
int MacroAssembler::corrected_idivl(Register reg) {
// Full implementation of Java idiv and irem; checks for
// special case as described in JVM spec., p.243 & p.271.
// The function returns the (pc) offset of the idivl
// instruction - may be needed for implicit exceptions.
//
// normal case special case
//
// input : rax,: dividend min_int
// reg: divisor (may not be rax,/rdx) -1
//
// output: rax,: quotient (= rax, idiv reg) min_int
// rdx: remainder (= rax, irem reg) 0
assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
const int min_int = 0x80000000;
Label normal_case, special_case;
// check for special case
cmpl(rax, min_int);
jcc(Assembler::notEqual, normal_case);
xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
cmpl(reg, -1);
jcc(Assembler::equal, special_case);
// handle normal case
bind(normal_case);
cdql();
int idivl_offset = offset();
idivl(reg);
// normal and special case exit
bind(special_case);
return idivl_offset;
}
void MacroAssembler::decrementl(Register reg, int value) {
if (value == min_jint) {subl(reg, value) ; return; }
if (value < 0) { incrementl(reg, -value); return; }
if (value == 0) { ; return; }
if (value == 1 && UseIncDec) { decl(reg) ; return; }
/* else */ { subl(reg, value) ; return; }
}
void MacroAssembler::decrementl(Address dst, int value) {
if (value == min_jint) {subl(dst, value) ; return; }
if (value < 0) { incrementl(dst, -value); return; }
if (value == 0) { ; return; }
if (value == 1 && UseIncDec) { decl(dst) ; return; }
/* else */ { subl(dst, value) ; return; }
}
void MacroAssembler::division_with_shift (Register reg, int shift_value) {
assert (shift_value > 0, "illegal shift value");
Label _is_positive;
testl (reg, reg);
jcc (Assembler::positive, _is_positive);
int offset = (1 << shift_value) - 1 ;
if (offset == 1) {
incrementl(reg);
} else {
addl(reg, offset);
}
bind (_is_positive);
sarl(reg, shift_value);
}
void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src) {
if (reachable(src)) {
Assembler::divsd(dst, as_Address(src));
} else {
lea(rscratch1, src);
Assembler::divsd(dst, Address(rscratch1, 0));
}
}
void MacroAssembler::divss(XMMRegister dst, AddressLiteral src) {
if (reachable(src)) {
Assembler::divss(dst, as_Address(src));
} else {
lea(rscratch1, src);
Assembler::divss(dst, Address(rscratch1, 0));
}
}
// !defined(COMPILER2) is because of stupid core builds
#if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2) || INCLUDE_JVMCI
void MacroAssembler::empty_FPU_stack() {
if (VM_Version::supports_mmx()) {
emms();
} else {
for (int i = 8; i-- > 0; ) ffree(i);
}
}
#endif // !LP64 || C1 || !C2 || INCLUDE_JVMCI
void MacroAssembler::enter() {
push(rbp);
mov(rbp, rsp);
}
// A 5 byte nop that is safe for patching (see patch_verified_entry)
void MacroAssembler::fat_nop() {
if (UseAddressNop) {
addr_nop_5();
} else {
emit_int8(0x26); // es:
emit_int8(0x2e); // cs:
emit_int8(0x64); // fs:
emit_int8(0x65); // gs:
emit_int8((unsigned char)0x90);
}
}
void MacroAssembler::fcmp(Register tmp) {
fcmp(tmp, 1, true, true);
}
void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
assert(!pop_right || pop_left, "usage error");
if (VM_Version::supports_cmov()) {
assert(tmp == noreg, "unneeded temp");
if (pop_left) {
fucomip(index);
} else {
fucomi(index);
}
if (pop_right) {
fpop();
}
} else {
assert(tmp != noreg, "need temp");
if (pop_left) {
if (pop_right) {
fcompp();
} else {
fcomp(index);
}
} else {
fcom(index);
}
// convert FPU condition into eflags condition via rax,
save_rax(tmp);
fwait(); fnstsw_ax();
sahf();
restore_rax(tmp);
}
// condition codes set as follows:
//
// CF (corresponds to C0) if x < y
// PF (corresponds to C2) if unordered
// ZF (corresponds to C3) if x = y
}
void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
fcmp2int(dst, unordered_is_less, 1, true, true);
}
void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
Label L;
if (unordered_is_less) {
movl(dst, -1);
jcc(Assembler::parity, L);
jcc(Assembler::below , L);
movl(dst, 0);
jcc(Assembler::equal , L);
increment(dst);
} else { // unordered is greater
movl(dst, 1);
jcc(Assembler::parity, L);
jcc(Assembler::above , L);
movl(dst, 0);
jcc(Assembler::equal , L);
decrementl(dst);
}
bind(L);
}
void MacroAssembler::fld_d(AddressLiteral src) {
fld_d(as_Address(src));
}
void MacroAssembler::fld_s(AddressLiteral src) {
fld_s(as_Address(src));
}
void MacroAssembler::fld_x(AddressLiteral src) {
Assembler::fld_x(as_Address(src));
}
void MacroAssembler::fldcw(AddressLiteral src) {
Assembler::fldcw(as_Address(src));
}
void MacroAssembler::mulpd(XMMRegister dst, AddressLiteral src) {
if (reachable(src)) {
Assembler::mulpd(dst, as_Address(src));
} else {
lea(rscratch1, src);
Assembler::mulpd(dst, Address(rscratch1, 0));
}
}
void MacroAssembler::increase_precision() {
subptr(rsp, BytesPerWord);
fnstcw(Address(rsp, 0));
movl(rax, Address(rsp, 0));
orl(rax, 0x300);
push(rax);
fldcw(Address(rsp, 0));
pop(rax);
}
void MacroAssembler::restore_precision() {
fldcw(Address(rsp, 0));
addptr(rsp, BytesPerWord);
}
void MacroAssembler::fpop() {
ffree();
fincstp();
}
void MacroAssembler::load_float(Address src) {
if (UseSSE >= 1) {
movflt(xmm0, src);
} else {
LP64_ONLY(ShouldNotReachHere());
NOT_LP64(fld_s(src));
}
}
void MacroAssembler::store_float(Address dst) {
if (UseSSE >= 1) {
movflt(dst, xmm0);
} else {
LP64_ONLY(ShouldNotReachHere());
NOT_LP64(fstp_s(dst));
}
}
void MacroAssembler::load_double(Address src) {
if (UseSSE >= 2) {
movdbl(xmm0, src);
} else {
LP64_ONLY(ShouldNotReachHere());
NOT_LP64(fld_d(src));
}
}
void MacroAssembler::store_double(Address dst) {
if (UseSSE >= 2) {
movdbl(dst, xmm0);
} else {
LP64_ONLY(ShouldNotReachHere());
NOT_LP64(fstp_d(dst));
}
}
void MacroAssembler::fremr(Register tmp) {
save_rax(tmp);
{ Label L;
bind(L);
fprem();
fwait(); fnstsw_ax();
#ifdef _LP64
testl(rax, 0x400);
jcc(Assembler::notEqual, L);
#else
sahf();
jcc(Assembler::parity, L);
#endif // _LP64
}
restore_rax(tmp);
// Result is in ST0.
// Note: fxch & fpop to get rid of ST1
// (otherwise FPU stack could overflow eventually)
fxch(1);
fpop();
}
// dst = c = a * b + c
void MacroAssembler::fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) {
Assembler::vfmadd231sd(c, a, b);
if (dst != c) {
movdbl(dst, c);
}
}
// dst = c = a * b + c
void MacroAssembler::fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) {
Assembler::vfmadd231ss(c, a, b);
if (dst != c) {
movflt(dst, c);
}
}
// dst = c = a * b + c
void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) {
Assembler::vfmadd231pd(c, a, b, vector_len);
if (dst != c) {
vmovdqu(dst, c);
}
}
// dst = c = a * b + c
void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) {
Assembler::vfmadd231ps(c, a, b, vector_len);
if (dst != c) {
vmovdqu(dst, c);
}
}
// dst = c = a * b + c
void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) {
Assembler::vfmadd231pd(c, a, b, vector_len);
if (dst != c) {
vmovdqu(dst, c);
}
}
// dst = c = a * b + c
void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) {
Assembler::vfmadd231ps(c, a, b, vector_len);
if (dst != c) {
vmovdqu(dst, c);
}
}
void MacroAssembler::incrementl(AddressLiteral dst) {
if (reachable(dst)) {
incrementl(as_Address(dst));
} else {
lea(rscratch1, dst);
incrementl(Address(rscratch1, 0));
}
}
void MacroAssembler::incrementl(ArrayAddress dst) {
incrementl(as_Address(dst));
}
void MacroAssembler::incrementl(Register reg, int value) {
if (value == min_jint) {addl(reg, value) ; return; }
if (value < 0) { decrementl(reg, -value); return; }
if (value == 0) { ; return; }
if (value == 1 && UseIncDec) { incl(reg) ; return; }
/* else */ { addl(reg, value) ; return; }
}
void MacroAssembler::incrementl(Address dst, int value) {
if (value == min_jint) {addl(dst, value) ; return; }
if (value < 0) { decrementl(dst, -value); return; }
if (value == 0) { ; return; }
if (value == 1 && UseIncDec) { incl(dst) ; return; }
/* else */ { addl(dst, value) ; return; }
}
void MacroAssembler::jump(AddressLiteral dst) {
if (reachable(dst)) {
jmp_literal(dst.target(), dst.rspec());
} else {
lea(rscratch1, dst);
jmp(rscratch1);
}
}
void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
if (reachable(dst)) {
InstructionMark im(this);
relocate(dst.reloc());
const int short_size = 2;
const int long_size = 6;
int offs = (intptr_t)dst.target() - ((intptr_t)pc());
if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
// 0111 tttn #8-bit disp
emit_int8(0x70 | cc);
emit_int8((offs - short_size) & 0xFF);
} else {
// 0000 1111 1000 tttn #32-bit disp
emit_int8(0x0F);
emit_int8((unsigned char)(0x80 | cc));
emit_int32(offs - long_size);
}
} else {
#ifdef ASSERT
warning("reversing conditional branch");
#endif /* ASSERT */
Label skip;
jccb(reverse[cc], skip);
lea(rscratch1, dst);
Assembler::jmp(rscratch1);
bind(skip);
}
}
void MacroAssembler::ldmxcsr(AddressLiteral src) {
if (reachable(src)) {
Assembler::ldmxcsr(as_Address(src));
} else {
lea(rscratch1, src);
Assembler::ldmxcsr(Address(rscratch1, 0));
}
}
int MacroAssembler::load_signed_byte(Register dst, Address src) {
int off;
if (LP64_ONLY(true ||) VM_Version::is_P6()) {
off = offset();
movsbl(dst, src); // movsxb
} else {
off = load_unsigned_byte(dst, src);
shll(dst, 24);
sarl(dst, 24);
}
return off;
}
// Note: load_signed_short used to be called load_signed_word.
// Although the 'w' in x86 opcodes refers to the term "word" in the assembler
// manual, which means 16 bits, that usage is found nowhere in HotSpot code.
// The term "word" in HotSpot means a 32- or 64-bit machine word.
int MacroAssembler::load_signed_short(Register dst, Address src) {
int off;
if (LP64_ONLY(true ||) VM_Version::is_P6()) {
// This is dubious to me since it seems safe to do a signed 16 => 64 bit
// version but this is what 64bit has always done. This seems to imply
// that users are only using 32bits worth.
off = offset();
movswl(dst, src); // movsxw
} else {
off = load_unsigned_short(dst, src);
shll(dst, 16);
sarl(dst, 16);
}
return off;
}
int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
// According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
// and "3.9 Partial Register Penalties", p. 22).
int off;
if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
off = offset();
movzbl(dst, src); // movzxb
} else {
xorl(dst, dst);
off = offset();
movb(dst, src);
}
return off;
}
// Note: load_unsigned_short used to be called load_unsigned_word.
int MacroAssembler::load_unsigned_short(Register dst, Address src) {
// According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
// and "3.9 Partial Register Penalties", p. 22).
int off;
if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
off = offset();
movzwl(dst, src); // movzxw
} else {
xorl(dst, dst);
off = offset();
movw(dst, src);
}
return off;
}
void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
switch (size_in_bytes) {
#ifndef _LP64
case 8:
assert(dst2 != noreg, "second dest register required");
movl(dst, src);
movl(dst2, src.plus_disp(BytesPerInt));
break;
#else
case 8: movq(dst, src); break;
#endif
case 4: movl(dst, src); break;
case 2: is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
case 1: is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
default: ShouldNotReachHere();
}
}
void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
switch (size_in_bytes) {
#ifndef _LP64
case 8:
assert(src2 != noreg, "second source register required");
movl(dst, src);
movl(dst.plus_disp(BytesPerInt), src2);
break;
#else
case 8: movq(dst, src); break;
#endif
case 4: movl(dst, src); break;
case 2: movw(dst, src); break;
case 1: movb(dst, src); break;
default: ShouldNotReachHere();
}
}
void MacroAssembler::mov32(AddressLiteral dst, Register src) {
if (reachable(dst)) {
movl(as_Address(dst), src);
} else {
lea(rscratch1, dst);
movl(Address(rscratch1, 0), src);
}
}
void MacroAssembler::mov32(Register dst, AddressLiteral src) {
if (reachable(src)) {
movl(dst, as_Address(src));
} else {
lea(rscratch1, src);
movl(dst, Address(rscratch1, 0));
}
}
// C++ bool manipulation
void MacroAssembler::movbool(Register dst, Address src) {
if(sizeof(bool) == 1)
movb(dst, src);
else if(sizeof(bool) == 2)
movw(dst, src);
else if(sizeof(bool) == 4)
movl(dst, src);
else
// unsupported
ShouldNotReachHere();
}
void MacroAssembler::movbool(Address dst, bool boolconst) {
if(sizeof(bool) == 1)
movb(dst, (int) boolconst);
else if(sizeof(bool) == 2)
movw(dst, (int) boolconst);
else if(sizeof(bool) == 4)
movl(dst, (int) boolconst);
else
// unsupported
ShouldNotReachHere();
}
void MacroAssembler::movbool(Address dst, Register src) {
if(sizeof(bool) == 1)
movb(dst, src);
else if(sizeof(bool) == 2)
movw(dst, src);
else if(sizeof(bool) == 4)
movl(dst, src);
else
// unsupported
ShouldNotReachHere();
}
void MacroAssembler::movbyte(ArrayAddress dst, int src) {
movb(as_Address(dst), src);
}
void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src) {
if (reachable(src)) {
movdl(dst, as_Address(src));
} else {
lea(rscratch1, src);
movdl(dst, Address(rscratch1, 0));
}
}
void MacroAssembler::movq(XMMRegister dst, AddressLiteral src) {
if (reachable(src)) {
movq(dst, as_Address(src));
} else {
lea(rscratch1, src);
movq(dst, Address(rscratch1, 0));
}
}
#ifdef COMPILER2
void MacroAssembler::setvectmask(Register dst, Register src) {
guarantee(PostLoopMultiversioning, "must be");
Assembler::movl(dst, 1);
Assembler::shlxl(dst, dst, src);
Assembler::decl(dst);
Assembler::kmovdl(k1, dst);
Assembler::movl(dst, src);
}
void MacroAssembler::restorevectmask() {
guarantee(PostLoopMultiversioning, "must be");
Assembler::knotwl(k1, k0);
}
#endif // COMPILER2
void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
if (reachable(src)) {
if (UseXmmLoadAndClearUpper) {
movsd (dst, as_Address(src));
} else {
movlpd(dst, as_Address(src));
}
} else {
lea(rscratch1, src);
if (UseXmmLoadAndClearUpper) {
movsd (dst, Address(rscratch1, 0));
} else {
movlpd(dst, Address(rscratch1, 0));
}
}
}
void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
if (reachable(src)) {
movss(dst, as_Address(src));
} else {
lea(rscratch1, src);
movss(dst, Address(rscratch1, 0));
}
}
void MacroAssembler::movptr(Register dst, Register src) {
LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
}
void MacroAssembler::movptr(Register dst, Address src) {
LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
}
// src should NEVER be a real pointer. Use AddressLiteral for true pointers
void MacroAssembler::movptr(Register dst, intptr_t src) {
LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
}
void MacroAssembler::movptr(Address dst, Register src) {
LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
}
void MacroAssembler::movdqu(Address dst, XMMRegister src) {
assert(((src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
Assembler::movdqu(dst, src);
}
void MacroAssembler::movdqu(XMMRegister dst, Address src) {
assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
Assembler::movdqu(dst, src);
}
void MacroAssembler::movdqu(XMMRegister dst, XMMRegister src) {
assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
Assembler::movdqu(dst, src);
}
void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src, Register scratchReg) {
if (reachable(src)) {
movdqu(dst, as_Address(src));
} else {
lea(scratchReg, src);
movdqu(dst, Address(scratchReg, 0));
}
}
void MacroAssembler::vmovdqu(Address dst, XMMRegister src) {
assert(((src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
Assembler::vmovdqu(dst, src);
}
void MacroAssembler::vmovdqu(XMMRegister dst, Address src) {
assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
Assembler::vmovdqu(dst, src);
}
void MacroAssembler::vmovdqu(XMMRegister dst, XMMRegister src) {
assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
Assembler::vmovdqu(dst, src);
}
void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src, Register scratch_reg) {
if (reachable(src)) {
vmovdqu(dst, as_Address(src));
}
else {
lea(scratch_reg, src);
vmovdqu(dst, Address(scratch_reg, 0));
}
}
void MacroAssembler::evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
if (reachable(src)) {
Assembler::evmovdquq(dst, as_Address(src), vector_len);
} else {
lea(rscratch, src);
Assembler::evmovdquq(dst, Address(rscratch, 0), vector_len);
}
}
void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src) {
if (reachable(src)) {
Assembler::movdqa(dst, as_Address(src));
} else {
lea(rscratch1, src);
Assembler::movdqa(dst, Address(rscratch1, 0));
}
}
void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
if (reachable(src)) {
Assembler::movsd(dst, as_Address(src));
} else {
lea(rscratch1, src);
Assembler::movsd(dst, Address(rscratch1, 0));
}
}
void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
if (reachable(src)) {
Assembler::movss(dst, as_Address(src));
} else {
lea(rscratch1, src);
Assembler::movss(dst, Address(rscratch1, 0));
}
}
void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src) {
if (reachable(src)) {
Assembler::mulsd(dst, as_Address(src));
} else {
lea(rscratch1, src);
Assembler::mulsd(dst, Address(rscratch1, 0));
}
}
void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src) {
if (reachable(src)) {
Assembler::mulss(dst, as_Address(src));
} else {
lea(rscratch1, src);
Assembler::mulss(dst, Address(rscratch1, 0));
}
}
void MacroAssembler::null_check(Register reg, int offset) {
if (needs_explicit_null_check(offset)) {
// provoke OS NULL exception if reg = NULL by
// accessing M[reg] w/o changing any (non-CC) registers
// NOTE: cmpl is plenty here to provoke a segv
cmpptr(rax, Address(reg, 0));
// Note: should probably use testl(rax, Address(reg, 0));
// may be shorter code (however, this version of
// testl needs to be implemented first)
} else {
// nothing to do, (later) access of M[reg + offset]
// will provoke OS NULL exception if reg = NULL
}
}
void MacroAssembler::os_breakpoint() {
// instead of directly emitting a breakpoint, call os:breakpoint for better debugability
// (e.g., MSVC can't call ps() otherwise)
call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
}
void MacroAssembler::unimplemented(const char* what) {
const char* buf = NULL;
{
ResourceMark rm;
stringStream ss;
ss.print("unimplemented: %s", what);
buf = code_string(ss.as_string());
}
stop(buf);
}
#ifdef _LP64
#define XSTATE_BV 0x200
#endif
void MacroAssembler::pop_CPU_state() {
pop_FPU_state();
pop_IU_state();
}
void MacroAssembler::pop_FPU_state() {
#ifndef _LP64
frstor(Address(rsp, 0));
#else
fxrstor(Address(rsp, 0));
#endif
addptr(rsp, FPUStateSizeInWords * wordSize);
}
void MacroAssembler::pop_IU_state() {
popa();
LP64_ONLY(addq(rsp, 8));
popf();
}
// Save Integer and Float state
// Warning: Stack must be 16 byte aligned (64bit)
void MacroAssembler::push_CPU_state() {
push_IU_state();
push_FPU_state();
}
void MacroAssembler::push_FPU_state() {
subptr(rsp, FPUStateSizeInWords * wordSize);
#ifndef _LP64
fnsave(Address(rsp, 0));
fwait();
#else
fxsave(Address(rsp, 0));
#endif // LP64
}
void MacroAssembler::push_IU_state() {
// Push flags first because pusha kills them
pushf();
// Make sure rsp stays 16-byte aligned
LP64_ONLY(subq(rsp, 8));
pusha();
}
void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp) { // determine java_thread register
if (!java_thread->is_valid()) {
java_thread = rdi;
get_thread(java_thread);
}
// we must set sp to zero to clear frame
movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
if (clear_fp) {
movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
}
// Always clear the pc because it could have been set by make_walkable()
movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
vzeroupper();
}
void MacroAssembler::restore_rax(Register tmp) {
if (tmp == noreg) pop(rax);
else if (tmp != rax) mov(rax, tmp);
}
void MacroAssembler::round_to(Register reg, int modulus) {
addptr(reg, modulus - 1);
andptr(reg, -modulus);
}
void MacroAssembler::save_rax(Register tmp) {
if (tmp == noreg) push(rax);
else if (tmp != rax) mov(tmp, rax);
}
void MacroAssembler::safepoint_poll(Label& slow_path, Register thread_reg, Register temp_reg) {
if (SafepointMechanism::uses_thread_local_poll()) {
#ifdef _LP64
assert(thread_reg == r15_thread, "should be");
#else
if (thread_reg == noreg) {
thread_reg = temp_reg;
get_thread(thread_reg);
}
#endif
testb(Address(thread_reg, Thread::polling_page_offset()), SafepointMechanism::poll_bit());
jcc(Assembler::notZero, slow_path); // handshake bit set implies poll
} else {
cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
SafepointSynchronize::_not_synchronized);
jcc(Assembler::notEqual, slow_path);
}
}
// Calls to C land
//
// When entering C land, the rbp, & rsp of the last Java frame have to be recorded
// in the (thread-local) JavaThread object. When leaving C land, the last Java fp
// has to be reset to 0. This is required to allow proper stack traversal.
void MacroAssembler::set_last_Java_frame(Register java_thread,
Register last_java_sp,
Register last_java_fp,
address last_java_pc) {
vzeroupper();
// determine java_thread register
if (!java_thread->is_valid()) {
java_thread = rdi;
get_thread(java_thread);
}
// determine last_java_sp register
if (!last_java_sp->is_valid()) {
last_java_sp = rsp;
}
// last_java_fp is optional
if (last_java_fp->is_valid()) {
movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
}
// last_java_pc is optional
if (last_java_pc != NULL) {
lea(Address(java_thread,
JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
InternalAddress(last_java_pc));
}
movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
}
void MacroAssembler::shlptr(Register dst, int imm8) {
LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
}
void MacroAssembler::shrptr(Register dst, int imm8) {
LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
}
void MacroAssembler::sign_extend_byte(Register reg) {
if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
movsbl(reg, reg); // movsxb
} else {
shll(reg, 24);
sarl(reg, 24);
}
}
void MacroAssembler::sign_extend_short(Register reg) {
if (LP64_ONLY(true ||) VM_Version::is_P6()) {
movswl(reg, reg); // movsxw
} else {
shll(reg, 16);
sarl(reg, 16);
}
}
void MacroAssembler::testl(Register dst, AddressLiteral src) {
assert(reachable(src), "Address should be reachable");
testl(dst, as_Address(src));
}
void MacroAssembler::pcmpeqb(XMMRegister dst, XMMRegister src) {
assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
Assembler::pcmpeqb(dst, src);
}
void MacroAssembler::pcmpeqw(XMMRegister dst, XMMRegister src) {
assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
Assembler::pcmpeqw(dst, src);
}
void MacroAssembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
assert((dst->encoding() < 16),"XMM register should be 0-15");
Assembler::pcmpestri(dst, src, imm8);
}
void MacroAssembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15");
Assembler::pcmpestri(dst, src, imm8);
}
void MacroAssembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
Assembler::pmovzxbw(dst, src);
}
void MacroAssembler::pmovzxbw(XMMRegister dst, Address src) {
assert(((dst->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
Assembler::pmovzxbw(dst, src);
}
void MacroAssembler::pmovmskb(Register dst, XMMRegister src) {
assert((src->encoding() < 16),"XMM register should be 0-15");
Assembler::pmovmskb(dst, src);
}
void MacroAssembler::ptest(XMMRegister dst, XMMRegister src) {
assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15");
Assembler::ptest(dst, src);
}
void MacroAssembler::sqrtsd(XMMRegister dst, AddressLiteral src) {
if (reachable(src)) {
Assembler::sqrtsd(dst, as_Address(src));
} else {
lea(rscratch1, src);
Assembler::sqrtsd(dst, Address(rscratch1, 0));
}
}
void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src) {
if (reachable(src)) {
Assembler::sqrtss(dst, as_Address(src));
} else {
lea(rscratch1, src);
Assembler::sqrtss(dst, Address(rscratch1, 0));
}
}
void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src) {
if (reachable(src)) {
Assembler::subsd(dst, as_Address(src));
} else {
lea(rscratch1, src);
Assembler::subsd(dst, Address(rscratch1, 0));
}
}
void MacroAssembler::roundsd(XMMRegister dst, AddressLiteral src, int32_t rmode, Register scratch_reg) {
if (reachable(src)) {
Assembler::roundsd(dst, as_Address(src), rmode);
} else {
lea(scratch_reg, src);
Assembler::roundsd(dst, Address(scratch_reg, 0), rmode);
}
}
void MacroAssembler::subss(XMMRegister dst, AddressLiteral src) {
if (reachable(src)) {
Assembler::subss(dst, as_Address(src));
} else {
lea(rscratch1, src);
Assembler::subss(dst, Address(rscratch1, 0));
}
}
void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
if (reachable(src)) {
Assembler::ucomisd(dst, as_Address(src));
} else {
lea(rscratch1, src);
Assembler::ucomisd(dst, Address(rscratch1, 0));
}
}
void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
if (reachable(src)) {
Assembler::ucomiss(dst, as_Address(src));
} else {
lea(rscratch1, src);
Assembler::ucomiss(dst, Address(rscratch1, 0));
}
}
void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src, Register scratch_reg) {
// Used in sign-bit flipping with aligned address.
assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
if (reachable(src)) {
Assembler::xorpd(dst, as_Address(src));
} else {
lea(scratch_reg, src);
Assembler::xorpd(dst, Address(scratch_reg, 0));
}
}
void MacroAssembler::xorpd(XMMRegister dst, XMMRegister src) {
if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) {
Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
}
else {
Assembler::xorpd(dst, src);
}
}
void MacroAssembler::xorps(XMMRegister dst, XMMRegister src) {
if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) {
Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
} else {
Assembler::xorps(dst, src);
}
}
void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src, Register scratch_reg) {
// Used in sign-bit flipping with aligned address.
assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
if (reachable(src)) {
Assembler::xorps(dst, as_Address(src));
} else {
lea(scratch_reg, src);
Assembler::xorps(dst, Address(scratch_reg, 0));
}
}
void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src) {
// Used in sign-bit flipping with aligned address.
bool aligned_adr = (((intptr_t)src.target() & 15) == 0);
assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes");
if (reachable(src)) {
Assembler::pshufb(dst, as_Address(src));
} else {
lea(rscratch1, src);
Assembler::pshufb(dst, Address(rscratch1, 0));
}
}
// AVX 3-operands instructions
void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
if (reachable(src)) {
vaddsd(dst, nds, as_Address(src));
} else {
lea(rscratch1, src);
vaddsd(dst, nds, Address(rscratch1, 0));
}
}
void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
if (reachable(src)) {
vaddss(dst, nds, as_Address(src));
} else {
lea(rscratch1, src);
vaddss(dst, nds, Address(rscratch1, 0));
}
}
void MacroAssembler::vpaddd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
assert(UseAVX > 0, "requires some form of AVX");
if (reachable(src)) {
Assembler::vpaddd(dst, nds, as_Address(src), vector_len);
} else {
lea(rscratch, src);
Assembler::vpaddd(dst, nds, Address(rscratch, 0), vector_len);
}
}
void MacroAssembler::vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len) {
assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
vandps(dst, nds, negate_field, vector_len);
}
void MacroAssembler::vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len) {
assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
vandpd(dst, nds, negate_field, vector_len);
}
void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
Assembler::vpaddb(dst, nds, src, vector_len);
}
void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
Assembler::vpaddb(dst, nds, src, vector_len);
}
void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
Assembler::vpaddw(dst, nds, src, vector_len);
}
void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
Assembler::vpaddw(dst, nds, src, vector_len);
}
void MacroAssembler::vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg) {
if (reachable(src)) {
Assembler::vpand(dst, nds, as_Address(src), vector_len);
} else {
lea(scratch_reg, src);
Assembler::vpand(dst, nds, Address(scratch_reg, 0), vector_len);
}
}
void MacroAssembler::vpbroadcastw(XMMRegister dst, XMMRegister src, int vector_len) {
assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
Assembler::vpbroadcastw(dst, src, vector_len);
}
void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
Assembler::vpcmpeqb(dst, nds, src, vector_len);
}
void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
Assembler::vpcmpeqw(dst, nds, src, vector_len);
}
void MacroAssembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) {
assert(((dst->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
Assembler::vpmovzxbw(dst, src, vector_len);
}
void MacroAssembler::vpmovmskb(Register dst, XMMRegister src) {
assert((src->encoding() < 16),"XMM register should be 0-15");
Assembler::vpmovmskb(dst, src);
}
void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
Assembler::vpmullw(dst, nds, src, vector_len);
}
void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
Assembler::vpmullw(dst, nds, src, vector_len);
}
void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
Assembler::vpsubb(dst, nds, src, vector_len);
}
void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
Assembler::vpsubb(dst, nds, src, vector_len);
}
void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
Assembler::vpsubw(dst, nds, src, vector_len);
}
void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
Assembler::vpsubw(dst, nds, src, vector_len);
}
void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
Assembler::vpsraw(dst, nds, shift, vector_len);
}
void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
Assembler::vpsraw(dst, nds, shift, vector_len);
}
void MacroAssembler::evpsraq(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
assert(UseAVX > 2,"");
if (!VM_Version::supports_avx512vl() && vector_len < 2) {
vector_len = 2;
}
Assembler::evpsraq(dst, nds, shift, vector_len);
}
void MacroAssembler::evpsraq(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
assert(UseAVX > 2,"");
if (!VM_Version::supports_avx512vl() && vector_len < 2) {
vector_len = 2;
}
Assembler::evpsraq(dst, nds, shift, vector_len);
}
void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
Assembler::vpsrlw(dst, nds, shift, vector_len);
}
void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
Assembler::vpsrlw(dst, nds, shift, vector_len);
}
void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
Assembler::vpsllw(dst, nds, shift, vector_len);
}
void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
Assembler::vpsllw(dst, nds, shift, vector_len);
}
void MacroAssembler::vptest(XMMRegister dst, XMMRegister src) {
assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15");
Assembler::vptest(dst, src);
}
void MacroAssembler::punpcklbw(XMMRegister dst, XMMRegister src) {
assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
Assembler::punpcklbw(dst, src);
}
void MacroAssembler::pshufd(XMMRegister dst, Address src, int mode) {
assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
Assembler::pshufd(dst, src, mode);
}
void MacroAssembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
Assembler::pshuflw(dst, src, mode);
}
void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg) {
if (reachable(src)) {
vandpd(dst, nds, as_Address(src), vector_len);
} else {
lea(scratch_reg, src);
vandpd(dst, nds, Address(scratch_reg, 0), vector_len);
}
}
void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg) {
if (reachable(src)) {
vandps(dst, nds, as_Address(src), vector_len);
} else {
lea(scratch_reg, src);
vandps(dst, nds, Address(scratch_reg, 0), vector_len);
}
}
void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
if (reachable(src)) {
vdivsd(dst, nds, as_Address(src));
} else {
lea(rscratch1, src);
vdivsd(dst, nds, Address(rscratch1, 0));
}
}
void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
if (reachable(src)) {
vdivss(dst, nds, as_Address(src));
} else {
lea(rscratch1, src);
vdivss(dst, nds, Address(rscratch1, 0));
}
}
void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
if (reachable(src)) {
vmulsd(dst, nds, as_Address(src));
} else {
lea(rscratch1, src);
vmulsd(dst, nds, Address(rscratch1, 0));
}
}
void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
if (reachable(src)) {
vmulss(dst, nds, as_Address(src));
} else {
lea(rscratch1, src);
vmulss(dst, nds, Address(rscratch1, 0));
}
}
void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
if (reachable(src)) {
vsubsd(dst, nds, as_Address(src));
} else {
lea(rscratch1, src);
vsubsd(dst, nds, Address(rscratch1, 0));
}
}
void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
if (reachable(src)) {
vsubss(dst, nds, as_Address(src));
} else {
lea(rscratch1, src);
vsubss(dst, nds, Address(rscratch1, 0));
}
}
void MacroAssembler::vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
vxorps(dst, nds, src, Assembler::AVX_128bit);
}
void MacroAssembler::vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
vxorpd(dst, nds, src, Assembler::AVX_128bit);
}
void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg) {
if (reachable(src)) {
vxorpd(dst, nds, as_Address(src), vector_len);
} else {
lea(scratch_reg, src);
vxorpd(dst, nds, Address(scratch_reg, 0), vector_len);
}
}
void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg) {
if (reachable(src)) {
vxorps(dst, nds, as_Address(src), vector_len);
} else {
lea(scratch_reg, src);
vxorps(dst, nds, Address(scratch_reg, 0), vector_len);
}
}
void MacroAssembler::vpxor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg) {
if (UseAVX > 1 || (vector_len < 1)) {
if (reachable(src)) {
Assembler::vpxor(dst, nds, as_Address(src), vector_len);
} else {
lea(scratch_reg, src);
Assembler::vpxor(dst, nds, Address(scratch_reg, 0), vector_len);
}
}
else {
MacroAssembler::vxorpd(dst, nds, src, vector_len, scratch_reg);
}
}
//-------------------------------------------------------------------------------------------
#ifdef COMPILER2
// Generic instructions support for use in .ad files C2 code generation
void MacroAssembler::vabsnegd(int opcode, XMMRegister dst, Register scr) {
if (opcode == Op_AbsVD) {
andpd(dst, ExternalAddress(StubRoutines::x86::vector_double_sign_mask()), scr);
} else {
assert((opcode == Op_NegVD),"opcode should be Op_NegD");
xorpd(dst, ExternalAddress(StubRoutines::x86::vector_double_sign_flip()), scr);
}
}
void MacroAssembler::vabsnegd(int opcode, XMMRegister dst, XMMRegister src, int vector_len, Register scr) {
if (opcode == Op_AbsVD) {
vandpd(dst, src, ExternalAddress(StubRoutines::x86::vector_double_sign_mask()), vector_len, scr);
} else {
assert((opcode == Op_NegVD),"opcode should be Op_NegD");
vxorpd(dst, src, ExternalAddress(StubRoutines::x86::vector_double_sign_flip()), vector_len, scr);
}
}
void MacroAssembler::vabsnegf(int opcode, XMMRegister dst, Register scr) {
if (opcode == Op_AbsVF) {
andps(dst, ExternalAddress(StubRoutines::x86::vector_float_sign_mask()), scr);
} else {
assert((opcode == Op_NegVF),"opcode should be Op_NegF");
xorps(dst, ExternalAddress(StubRoutines::x86::vector_float_sign_flip()), scr);
}
}
void MacroAssembler::vabsnegf(int opcode, XMMRegister dst, XMMRegister src, int vector_len, Register scr) {
if (opcode == Op_AbsVF) {
vandps(dst, src, ExternalAddress(StubRoutines::x86::vector_float_sign_mask()), vector_len, scr);
} else {
assert((opcode == Op_NegVF),"opcode should be Op_NegF");
vxorps(dst, src, ExternalAddress(StubRoutines::x86::vector_float_sign_flip()), vector_len, scr);
}
}
void MacroAssembler::vextendbw(bool sign, XMMRegister dst, XMMRegister src) {
if (sign) {
pmovsxbw(dst, src);
} else {
pmovzxbw(dst, src);
}
}
void MacroAssembler::vextendbw(bool sign, XMMRegister dst, XMMRegister src, int vector_len) {
if (sign) {
vpmovsxbw(dst, src, vector_len);
} else {
vpmovzxbw(dst, src, vector_len);
}
}
void MacroAssembler::vshiftd(int opcode, XMMRegister dst, XMMRegister src) {
if (opcode == Op_RShiftVI) {
psrad(dst, src);
} else if (opcode == Op_LShiftVI) {
pslld(dst, src);
} else {
assert((opcode == Op_URShiftVI),"opcode should be Op_URShiftVI");
psrld(dst, src);
}
}
void MacroAssembler::vshiftd(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
if (opcode == Op_RShiftVI) {
vpsrad(dst, nds, src, vector_len);
} else if (opcode == Op_LShiftVI) {
vpslld(dst, nds, src, vector_len);
} else {
assert((opcode == Op_URShiftVI),"opcode should be Op_URShiftVI");
vpsrld(dst, nds, src, vector_len);
}
}
void MacroAssembler::vshiftw(int opcode, XMMRegister dst, XMMRegister src) {
if ((opcode == Op_RShiftVS) || (opcode == Op_RShiftVB)) {
psraw(dst, src);
} else if ((opcode == Op_LShiftVS) || (opcode == Op_LShiftVB)) {
psllw(dst, src);
} else {
assert(((opcode == Op_URShiftVS) || (opcode == Op_URShiftVB)),"opcode should be one of Op_URShiftVS or Op_URShiftVB");
psrlw(dst, src);
}
}
void MacroAssembler::vshiftw(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
if ((opcode == Op_RShiftVS) || (opcode == Op_RShiftVB)) {
vpsraw(dst, nds, src, vector_len);
} else if ((opcode == Op_LShiftVS) || (opcode == Op_LShiftVB)) {
vpsllw(dst, nds, src, vector_len);
} else {
assert(((opcode == Op_URShiftVS) || (opcode == Op_URShiftVB)),"opcode should be one of Op_URShiftVS or Op_URShiftVB");
vpsrlw(dst, nds, src, vector_len);
}
}
void MacroAssembler::vshiftq(int opcode, XMMRegister dst, XMMRegister src) {
if (opcode == Op_RShiftVL) {
psrlq(dst, src); // using srl to implement sra on pre-avs512 systems
} else if (opcode == Op_LShiftVL) {
psllq(dst, src);
} else {
assert((opcode == Op_URShiftVL),"opcode should be Op_URShiftVL");
psrlq(dst, src);
}
}
void MacroAssembler::vshiftq(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
if (opcode == Op_RShiftVL) {
evpsraq(dst, nds, src, vector_len);
} else if (opcode == Op_LShiftVL) {
vpsllq(dst, nds, src, vector_len);
} else {
assert((opcode == Op_URShiftVL),"opcode should be Op_URShiftVL");
vpsrlq(dst, nds, src, vector_len);
}
}
#endif
//-------------------------------------------------------------------------------------------
void MacroAssembler::clear_jweak_tag(Register possibly_jweak) {
const int32_t inverted_jweak_mask = ~static_cast<int32_t>(JNIHandles::weak_tag_mask);
STATIC_ASSERT(inverted_jweak_mask == -2); // otherwise check this code
// The inverted mask is sign-extended
andptr(possibly_jweak, inverted_jweak_mask);
}
void MacroAssembler::resolve_jobject(Register value,
Register thread,
Register tmp) {
assert_different_registers(value, thread, tmp);
Label done, not_weak;
testptr(value, value);
jcc(Assembler::zero, done); // Use NULL as-is.
testptr(value, JNIHandles::weak_tag_mask); // Test for jweak tag.
jcc(Assembler::zero, not_weak);
// Resolve jweak.
access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF,
value, Address(value, -JNIHandles::weak_tag_value), tmp, thread);
verify_oop(value);
jmp(done);
bind(not_weak);
// Resolve (untagged) jobject.
access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, 0), tmp, thread);
verify_oop(value);
bind(done);
}
void MacroAssembler::subptr(Register dst, int32_t imm32) {
LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
}
// Force generation of a 4 byte immediate value even if it fits into 8bit
void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) {
LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32));
}
void MacroAssembler::subptr(Register dst, Register src) {
LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
}
// C++ bool manipulation
void MacroAssembler::testbool(Register dst) {
if(sizeof(bool) == 1)
testb(dst, 0xff);
else if(sizeof(bool) == 2) {
// testw implementation needed for two byte bools
ShouldNotReachHere();
} else if(sizeof(bool) == 4)
testl(dst, dst);
else
// unsupported
ShouldNotReachHere();
}
void MacroAssembler::testptr(Register dst, Register src) {
LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
}
// Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
void MacroAssembler::tlab_allocate(Register thread, Register obj,
Register var_size_in_bytes,
int con_size_in_bytes,
Register t1,
Register t2,
Label& slow_case) {
BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
bs->tlab_allocate(this, thread, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case);
}
// Defines obj, preserves var_size_in_bytes
void MacroAssembler::eden_allocate(Register thread, Register obj,
Register var_size_in_bytes,
int con_size_in_bytes,
Register t1,
Label& slow_case) {
BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
bs->eden_allocate(this, thread, obj, var_size_in_bytes, con_size_in_bytes, t1, slow_case);
}
// Preserves the contents of address, destroys the contents length_in_bytes and temp.
void MacroAssembler::zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp) {
assert(address != length_in_bytes && address != temp && temp != length_in_bytes, "registers must be different");
assert((offset_in_bytes & (BytesPerWord - 1)) == 0, "offset must be a multiple of BytesPerWord");
Label done;
testptr(length_in_bytes, length_in_bytes);
jcc(Assembler::zero, done);
// initialize topmost word, divide index by 2, check if odd and test if zero
// note: for the remaining code to work, index must be a multiple of BytesPerWord
#ifdef ASSERT
{
Label L;
testptr(length_in_bytes, BytesPerWord - 1);
jcc(Assembler::zero, L);
stop("length must be a multiple of BytesPerWord");
bind(L);
}
#endif
Register index = length_in_bytes;
xorptr(temp, temp); // use _zero reg to clear memory (shorter code)
if (UseIncDec) {
shrptr(index, 3); // divide by 8/16 and set carry flag if bit 2 was set
} else {
shrptr(index, 2); // use 2 instructions to avoid partial flag stall
shrptr(index, 1);
}
#ifndef _LP64
// index could have not been a multiple of 8 (i.e., bit 2 was set)
{
Label even;
// note: if index was a multiple of 8, then it cannot
// be 0 now otherwise it must have been 0 before
// => if it is even, we don't need to check for 0 again
jcc(Assembler::carryClear, even);
// clear topmost word (no jump would be needed if conditional assignment worked here)
movptr(Address(address, index, Address::times_8, offset_in_bytes - 0*BytesPerWord), temp);
// index could be 0 now, must check again
jcc(Assembler::zero, done);
bind(even);
}
#endif // !_LP64
// initialize remaining object fields: index is a multiple of 2 now
{
Label loop;
bind(loop);
movptr(Address(address, index, Address::times_8, offset_in_bytes - 1*BytesPerWord), temp);
NOT_LP64(movptr(Address(address, index, Address::times_8, offset_in_bytes - 2*BytesPerWord), temp);)
decrement(index);
jcc(Assembler::notZero, loop);
}
bind(done);
}
// Look up the method for a megamorphic invokeinterface call.
// The target method is determined by <intf_klass, itable_index>.
// The receiver klass is in recv_klass.
// On success, the result will be in method_result, and execution falls through.
// On failure, execution transfers to the given label.
void MacroAssembler::lookup_interface_method(Register recv_klass,
Register intf_klass,
RegisterOrConstant itable_index,
Register method_result,
Register scan_temp,
Label& L_no_such_interface,
bool return_method) {
assert_different_registers(recv_klass, intf_klass, scan_temp);
assert_different_registers(method_result, intf_klass, scan_temp);
assert(recv_klass != method_result || !return_method,
"recv_klass can be destroyed when method isn't needed");
assert(itable_index.is_constant() || itable_index.as_register() == method_result,
"caller must use same register for non-constant itable index as for method");
// Compute start of first itableOffsetEntry (which is at the end of the vtable)
int vtable_base = in_bytes(Klass::vtable_start_offset());
int itentry_off = itableMethodEntry::method_offset_in_bytes();
int scan_step = itableOffsetEntry::size() * wordSize;
int vte_size = vtableEntry::size_in_bytes();
Address::ScaleFactor times_vte_scale = Address::times_ptr;
assert(vte_size == wordSize, "else adjust times_vte_scale");
movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset()));
// %%% Could store the aligned, prescaled offset in the klassoop.
lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
if (return_method) {
// Adjust recv_klass by scaled itable_index, so we can free itable_index.
assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
}
// for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
// if (scan->interface() == intf) {
// result = (klass + scan->offset() + itable_index);
// }
// }
Label search, found_method;
for (int peel = 1; peel >= 0; peel--) {
movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
cmpptr(intf_klass, method_result);
if (peel) {
jccb(Assembler::equal, found_method);
} else {
jccb(Assembler::notEqual, search);
// (invert the test to fall through to found_method...)
}
if (!peel) break;
bind(search);
// Check that the previous entry is non-null. A null entry means that
// the receiver class doesn't implement the interface, and wasn't the
// same as when the caller was compiled.
testptr(method_result, method_result);
jcc(Assembler::zero, L_no_such_interface);
addptr(scan_temp, scan_step);
}
bind(found_method);
if (return_method) {
// Got a hit.
movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
}
}
// virtual method calling
void MacroAssembler::lookup_virtual_method(Register recv_klass,
RegisterOrConstant vtable_index,
Register method_result) {
const int base = in_bytes(Klass::vtable_start_offset());
assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below");
Address vtable_entry_addr(recv_klass,
vtable_index, Address::times_ptr,
base + vtableEntry::method_offset_in_bytes());
movptr(method_result, vtable_entry_addr);
}
void MacroAssembler::check_klass_subtype(Register sub_klass,
Register super_klass,
Register temp_reg,
Label& L_success) {
Label L_failure;
check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg, &L_success, &L_failure, NULL);
check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
bind(L_failure);
}
void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
Register super_klass,
Register temp_reg,
Label* L_success,
Label* L_failure,
Label* L_slow_path,
RegisterOrConstant super_check_offset) {
assert_different_registers(sub_klass, super_klass, temp_reg);
bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
if (super_check_offset.is_register()) {
assert_different_registers(sub_klass, super_klass,
super_check_offset.as_register());
} else if (must_load_sco) {
assert(temp_reg != noreg, "supply either a temp or a register offset");
}
Label L_fallthrough;
int label_nulls = 0;
if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; }
if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; }
if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
assert(label_nulls <= 1, "at most one NULL in the batch");
int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
int sco_offset = in_bytes(Klass::super_check_offset_offset());
Address super_check_offset_addr(super_klass, sco_offset);
// Hacked jcc, which "knows" that L_fallthrough, at least, is in
// range of a jccb. If this routine grows larger, reconsider at
// least some of these.
#define local_jcc(assembler_cond, label) \
if (&(label) == &L_fallthrough) jccb(assembler_cond, label); \
else jcc( assembler_cond, label) /*omit semi*/
// Hacked jmp, which may only be used just before L_fallthrough.
#define final_jmp(label) \
if (&(label) == &L_fallthrough) { /*do nothing*/ } \
else jmp(label) /*omit semi*/
// If the pointers are equal, we are done (e.g., String[] elements).
// This self-check enables sharing of secondary supertype arrays among
// non-primary types such as array-of-interface. Otherwise, each such
// type would need its own customized SSA.
// We move this check to the front of the fast path because many
// type checks are in fact trivially successful in this manner,
// so we get a nicely predicted branch right at the start of the check.
cmpptr(sub_klass, super_klass);
local_jcc(Assembler::equal, *L_success);
// Check the supertype display:
if (must_load_sco) {
// Positive movl does right thing on LP64.
movl(temp_reg, super_check_offset_addr);
super_check_offset = RegisterOrConstant(temp_reg);
}
Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
cmpptr(super_klass, super_check_addr); // load displayed supertype
// This check has worked decisively for primary supers.
// Secondary supers are sought in the super_cache ('super_cache_addr').
// (Secondary supers are interfaces and very deeply nested subtypes.)
// This works in the same check above because of a tricky aliasing
// between the super_cache and the primary super display elements.
// (The 'super_check_addr' can address either, as the case requires.)
// Note that the cache is updated below if it does not help us find
// what we need immediately.
// So if it was a primary super, we can just fail immediately.
// Otherwise, it's the slow path for us (no success at this point).
if (super_check_offset.is_register()) {
local_jcc(Assembler::equal, *L_success);
cmpl(super_check_offset.as_register(), sc_offset);
if (L_failure == &L_fallthrough) {
local_jcc(Assembler::equal, *L_slow_path);
} else {
local_jcc(Assembler::notEqual, *L_failure);
final_jmp(*L_slow_path);
}
} else if (super_check_offset.as_constant() == sc_offset) {
// Need a slow path; fast failure is impossible.
if (L_slow_path == &L_fallthrough) {
local_jcc(Assembler::equal, *L_success);
} else {
local_jcc(Assembler::notEqual, *L_slow_path);
final_jmp(*L_success);
}
} else {
// No slow path; it's a fast decision.
if (L_failure == &L_fallthrough) {
local_jcc(Assembler::equal, *L_success);
} else {
local_jcc(Assembler::notEqual, *L_failure);
final_jmp(*L_success);
}
}
bind(L_fallthrough);
#undef local_jcc
#undef final_jmp
}
void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
Register super_klass,
Register temp_reg,
Register temp2_reg,
Label* L_success,
Label* L_failure,
bool set_cond_codes) {
assert_different_registers(sub_klass, super_klass, temp_reg);
if (temp2_reg != noreg)
assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
#define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
Label L_fallthrough;
int label_nulls = 0;
if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; }
if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; }
assert(label_nulls <= 1, "at most one NULL in the batch");
// a couple of useful fields in sub_klass:
int ss_offset = in_bytes(Klass::secondary_supers_offset());
int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
Address secondary_supers_addr(sub_klass, ss_offset);
Address super_cache_addr( sub_klass, sc_offset);
// Do a linear scan of the secondary super-klass chain.
// This code is rarely used, so simplicity is a virtue here.
// The repne_scan instruction uses fixed registers, which we must spill.
// Don't worry too much about pre-existing connections with the input regs.
assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
// Get super_klass value into rax (even if it was in rdi or rcx).
bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
if (super_klass != rax || UseCompressedOops) {
if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
mov(rax, super_klass);
}
if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
#ifndef PRODUCT
int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
ExternalAddress pst_counter_addr((address) pst_counter);
NOT_LP64( incrementl(pst_counter_addr) );
LP64_ONLY( lea(rcx, pst_counter_addr) );
LP64_ONLY( incrementl(Address(rcx, 0)) );
#endif //PRODUCT
// We will consult the secondary-super array.
movptr(rdi, secondary_supers_addr);
// Load the array length. (Positive movl does right thing on LP64.)
movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes()));
// Skip to start of data.
addptr(rdi, Array<Klass*>::base_offset_in_bytes());
// Scan RCX words at [RDI] for an occurrence of RAX.
// Set NZ/Z based on last compare.
// Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
// not change flags (only scas instruction which is repeated sets flags).
// Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
testptr(rax,rax); // Set Z = 0
repne_scan();
// Unspill the temp. registers:
if (pushed_rdi) pop(rdi);
if (pushed_rcx) pop(rcx);
if (pushed_rax) pop(rax);
if (set_cond_codes) {
// Special hack for the AD files: rdi is guaranteed non-zero.
assert(!pushed_rdi, "rdi must be left non-NULL");
// Also, the condition codes are properly set Z/NZ on succeed/failure.
}
if (L_failure == &L_fallthrough)
jccb(Assembler::notEqual, *L_failure);
else jcc(Assembler::notEqual, *L_failure);
// Success. Cache the super we found and proceed in triumph.
movptr(super_cache_addr, super_klass);
if (L_success != &L_fallthrough) {
jmp(*L_success);
}
#undef IS_A_TEMP
bind(L_fallthrough);
}
void MacroAssembler::clinit_barrier(Register klass, Register thread, Label* L_fast_path, Label* L_slow_path) {
assert(L_fast_path != NULL || L_slow_path != NULL, "at least one is required");
Label L_fallthrough;
if (L_fast_path == NULL) {
L_fast_path = &L_fallthrough;
} else if (L_slow_path == NULL) {
L_slow_path = &L_fallthrough;
}
// Fast path check: class is fully initialized
cmpb(Address(klass, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized);
jcc(Assembler::equal, *L_fast_path);
// Fast path check: current thread is initializer thread
cmpptr(thread, Address(klass, InstanceKlass::init_thread_offset()));
if (L_slow_path == &L_fallthrough) {
jcc(Assembler::equal, *L_fast_path);
bind(*L_slow_path);
} else if (L_fast_path == &L_fallthrough) {
jcc(Assembler::notEqual, *L_slow_path);
bind(*L_fast_path);
} else {
Unimplemented();
}
}
void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
if (VM_Version::supports_cmov()) {
cmovl(cc, dst, src);
} else {
Label L;
jccb(negate_condition(cc), L);
movl(dst, src);
bind(L);
}
}
void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
if (VM_Version::supports_cmov()) {
cmovl(cc, dst, src);
} else {
Label L;
jccb(negate_condition(cc), L);
movl(dst, src);
bind(L);
}
}
void MacroAssembler::verify_oop(Register reg, const char* s) {
if (!VerifyOops) return;
// Pass register number to verify_oop_subroutine
const char* b = NULL;
{
ResourceMark rm;
stringStream ss;
ss.print("verify_oop: %s: %s", reg->name(), s);
b = code_string(ss.as_string());
}
BLOCK_COMMENT("verify_oop {");
#ifdef _LP64
push(rscratch1); // save r10, trashed by movptr()
#endif
push(rax); // save rax,
push(reg); // pass register argument
ExternalAddress buffer((address) b);
// avoid using pushptr, as it modifies scratch registers
// and our contract is not to modify anything
movptr(rax, buffer.addr());
push(rax);
// call indirectly to solve generation ordering problem
movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
call(rax);
// Caller pops the arguments (oop, message) and restores rax, r10
BLOCK_COMMENT("} verify_oop");
}
RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
Register tmp,
int offset) {
intptr_t value = *delayed_value_addr;
if (value != 0)
return RegisterOrConstant(value + offset);
// load indirectly to solve generation ordering problem
movptr(tmp, ExternalAddress((address) delayed_value_addr));
#ifdef ASSERT
{ Label L;
testptr(tmp, tmp);
if (WizardMode) {
const char* buf = NULL;
{
ResourceMark rm;
stringStream ss;
ss.print("DelayedValue=" INTPTR_FORMAT, delayed_value_addr[1]);
buf = code_string(ss.as_string());
}
jcc(Assembler::notZero, L);
STOP(buf);
} else {
jccb(Assembler::notZero, L);
hlt();
}
bind(L);
}
#endif
if (offset != 0)
addptr(tmp, offset);
return RegisterOrConstant(tmp);
}
Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
int extra_slot_offset) {
// cf. TemplateTable::prepare_invoke(), if (load_receiver).
int stackElementSize = Interpreter::stackElementSize;
int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
#ifdef ASSERT
int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
assert(offset1 - offset == stackElementSize, "correct arithmetic");
#endif
Register scale_reg = noreg;
Address::ScaleFactor scale_factor = Address::no_scale;
if (arg_slot.is_constant()) {
offset += arg_slot.as_constant() * stackElementSize;
} else {
scale_reg = arg_slot.as_register();
scale_factor = Address::times(stackElementSize);
}
offset += wordSize; // return PC is on stack
return Address(rsp, scale_reg, scale_factor, offset);
}
void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
if (!VerifyOops) return;
// Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
// Pass register number to verify_oop_subroutine
const char* b = NULL;
{
ResourceMark rm;
stringStream ss;
ss.print("verify_oop_addr: %s", s);
b = code_string(ss.as_string());
}
#ifdef _LP64
push(rscratch1); // save r10, trashed by movptr()
#endif
push(rax); // save rax,
// addr may contain rsp so we will have to adjust it based on the push
// we just did (and on 64 bit we do two pushes)
// NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
// stores rax into addr which is backwards of what was intended.
if (addr.uses(rsp)) {
lea(rax, addr);
pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
} else {
pushptr(addr);
}
ExternalAddress buffer((address) b);
// pass msg argument
// avoid using pushptr, as it modifies scratch registers
// and our contract is not to modify anything
movptr(rax, buffer.addr());
push(rax);
// call indirectly to solve generation ordering problem
movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
call(rax);
// Caller pops the arguments (addr, message) and restores rax, r10.
}
void MacroAssembler::verify_tlab() {
#ifdef ASSERT
if (UseTLAB && VerifyOops) {
Label next, ok;
Register t1 = rsi;
Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
push(t1);
NOT_LP64(push(thread_reg));
NOT_LP64(get_thread(thread_reg));
movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
jcc(Assembler::aboveEqual, next);
STOP("assert(top >= start)");
should_not_reach_here();
bind(next);
movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
jcc(Assembler::aboveEqual, ok);
STOP("assert(top <= end)");
should_not_reach_here();
bind(ok);
NOT_LP64(pop(thread_reg));
pop(t1);
}
#endif
}
class ControlWord {
public:
int32_t _value;
int rounding_control() const { return (_value >> 10) & 3 ; }
int precision_control() const { return (_value >> 8) & 3 ; }
bool precision() const { return ((_value >> 5) & 1) != 0; }
bool underflow() const { return ((_value >> 4) & 1) != 0; }
bool overflow() const { return ((_value >> 3) & 1) != 0; }
bool zero_divide() const { return ((_value >> 2) & 1) != 0; }
bool denormalized() const { return ((_value >> 1) & 1) != 0; }
bool invalid() const { return ((_value >> 0) & 1) != 0; }
void print() const {
// rounding control
const char* rc;
switch (rounding_control()) {
case 0: rc = "round near"; break;
case 1: rc = "round down"; break;
case 2: rc = "round up "; break;
case 3: rc = "chop "; break;
};
// precision control
const char* pc;
switch (precision_control()) {
case 0: pc = "24 bits "; break;
case 1: pc = "reserved"; break;
case 2: pc = "53 bits "; break;
case 3: pc = "64 bits "; break;
};
// flags
char f[9];
f[0] = ' ';
f[1] = ' ';
f[2] = (precision ()) ? 'P' : 'p';
f[3] = (underflow ()) ? 'U' : 'u';
f[4] = (overflow ()) ? 'O' : 'o';
f[5] = (zero_divide ()) ? 'Z' : 'z';
f[6] = (denormalized()) ? 'D' : 'd';
f[7] = (invalid ()) ? 'I' : 'i';
f[8] = '\x0';
// output
printf("%04x masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
}
};
class StatusWord {
public:
int32_t _value;
bool busy() const { return ((_value >> 15) & 1) != 0; }
bool C3() const { return ((_value >> 14) & 1) != 0; }
bool C2() const { return ((_value >> 10) & 1) != 0; }
bool C1() const { return ((_value >> 9) & 1) != 0; }
bool C0() const { return ((_value >> 8) & 1) != 0; }
int top() const { return (_value >> 11) & 7 ; }
bool error_status() const { return ((_value >> 7) & 1) != 0; }
bool stack_fault() const { return ((_value >> 6) & 1) != 0; }
bool precision() const { return ((_value >> 5) & 1) != 0; }
bool underflow() const { return ((_value >> 4) & 1) != 0; }
bool overflow() const { return ((_value >> 3) & 1) != 0; }
bool zero_divide() const { return ((_value >> 2) & 1) != 0; }
bool denormalized() const { return ((_value >> 1) & 1) != 0; }
bool invalid() const { return ((_value >> 0) & 1) != 0; }
void print() const {
// condition codes
char c[5];
c[0] = (C3()) ? '3' : '-';
c[1] = (C2()) ? '2' : '-';
c[2] = (C1()) ? '1' : '-';
c[3] = (C0()) ? '0' : '-';
c[4] = '\x0';
// flags
char f[9];
f[0] = (error_status()) ? 'E' : '-';
f[1] = (stack_fault ()) ? 'S' : '-';
f[2] = (precision ()) ? 'P' : '-';
f[3] = (underflow ()) ? 'U' : '-';
f[4] = (overflow ()) ? 'O' : '-';
f[5] = (zero_divide ()) ? 'Z' : '-';
f[6] = (denormalized()) ? 'D' : '-';
f[7] = (invalid ()) ? 'I' : '-';
f[8] = '\x0';
// output
printf("%04x flags = %s, cc = %s, top = %d", _value & 0xFFFF, f, c, top());
}
};
class TagWord {
public:
int32_t _value;
int tag_at(int i) const { return (_value >> (i*2)) & 3; }
void print() const {
printf("%04x", _value & 0xFFFF);
}
};
class FPU_Register {
public:
int32_t _m0;
int32_t _m1;
int16_t _ex;
bool is_indefinite() const {
return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
}
void print() const {
char sign = (_ex < 0) ? '-' : '+';
const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : " ";
printf("%c%04hx.%08x%08x %s", sign, _ex, _m1, _m0, kind);
};
};
class FPU_State {
public:
enum {
register_size = 10,
number_of_registers = 8,
register_mask = 7
};
ControlWord _control_word;
StatusWord _status_word;
TagWord _tag_word;
int32_t _error_offset;
int32_t _error_selector;
int32_t _data_offset;
int32_t _data_selector;
int8_t _register[register_size * number_of_registers];
int tag_for_st(int i) const { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
FPU_Register* st(int i) const { return (FPU_Register*)&_register[register_size * i]; }
const char* tag_as_string(int tag) const {
switch (tag) {
case 0: return "valid";
case 1: return "zero";
case 2: return "special";
case 3: return "empty";
}
ShouldNotReachHere();
return NULL;
}
void print() const {
// print computation registers
{ int t = _status_word.top();
for (int i = 0; i < number_of_registers; i++) {
int j = (i - t) & register_mask;
printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
st(j)->print();
printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
}
}
printf("\n");
// print control registers
printf("ctrl = "); _control_word.print(); printf("\n");
printf("stat = "); _status_word .print(); printf("\n");
printf("tags = "); _tag_word .print(); printf("\n");
}
};
class Flag_Register {
public:
int32_t _value;
bool overflow() const { return ((_value >> 11) & 1) != 0; }
bool direction() const { return ((_value >> 10) & 1) != 0; }
bool sign() const { return ((_value >> 7) & 1) != 0; }
bool zero() const { return ((_value >> 6) & 1) != 0; }
bool auxiliary_carry() const { return ((_value >> 4) & 1) != 0; }
bool parity() const { return ((_value >> 2) & 1) != 0; }
bool carry() const { return ((_value >> 0) & 1) != 0; }
void print() const {
// flags
char f[8];
f[0] = (overflow ()) ? 'O' : '-';
f[1] = (direction ()) ? 'D' : '-';
f[2] = (sign ()) ? 'S' : '-';
f[3] = (zero ()) ? 'Z' : '-';
f[4] = (auxiliary_carry()) ? 'A' : '-';
f[5] = (parity ()) ? 'P' : '-';
f[6] = (carry ()) ? 'C' : '-';
f[7] = '\x0';
// output
printf("%08x flags = %s", _value, f);
}
};
class IU_Register {
public:
int32_t _value;
void print() const {
printf("%08x %11d", _value, _value);
}
};
class IU_State {
public:
Flag_Register _eflags;
IU_Register _rdi;
IU_Register _rsi;
IU_Register _rbp;
IU_Register _rsp;
IU_Register _rbx;
IU_Register _rdx;
IU_Register _rcx;
IU_Register _rax;
void print() const {
// computation registers
printf("rax, = "); _rax.print(); printf("\n");
printf("rbx, = "); _rbx.print(); printf("\n");
printf("rcx = "); _rcx.print(); printf("\n");
printf("rdx = "); _rdx.print(); printf("\n");
printf("rdi = "); _rdi.print(); printf("\n");
printf("rsi = "); _rsi.print(); printf("\n");
printf("rbp, = "); _rbp.print(); printf("\n");
printf("rsp = "); _rsp.print(); printf("\n");
printf("\n");
// control registers
printf("flgs = "); _eflags.print(); printf("\n");
}
};
class CPU_State {
public:
FPU_State _fpu_state;
IU_State _iu_state;
void print() const {
printf("--------------------------------------------------\n");
_iu_state .print();
printf("\n");
_fpu_state.print();
printf("--------------------------------------------------\n");
}
};
static void _print_CPU_state(CPU_State* state) {
state->print();
};
void MacroAssembler::print_CPU_state() {
push_CPU_state();
push(rsp); // pass CPU state
call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
addptr(rsp, wordSize); // discard argument
pop_CPU_state();
}
static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
static int counter = 0;
FPU_State* fs = &state->_fpu_state;
counter++;
// For leaf calls, only verify that the top few elements remain empty.
// We only need 1 empty at the top for C2 code.
if( stack_depth < 0 ) {
if( fs->tag_for_st(7) != 3 ) {
printf("FPR7 not empty\n");
state->print();
assert(false, "error");
return false;
}
return true; // All other stack states do not matter
}
assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
"bad FPU control word");
// compute stack depth
int i = 0;
while (i < FPU_State::number_of_registers && fs->tag_for_st(i) < 3) i++;
int d = i;
while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
// verify findings
if (i != FPU_State::number_of_registers) {
// stack not contiguous
printf("%s: stack not contiguous at ST%d\n", s, i);
state->print();
assert(false, "error");
return false;
}
// check if computed stack depth corresponds to expected stack depth
if (stack_depth < 0) {
// expected stack depth is -stack_depth or less
if (d > -stack_depth) {
// too many elements on the stack
printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
state->print();
assert(false, "error");
return false;
}
} else {
// expected stack depth is stack_depth
if (d != stack_depth) {
// wrong stack depth
printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
state->print();
assert(false, "error");
return false;
}
}
// everything is cool
return true;
}
void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
if (!VerifyFPU) return;
push_CPU_state();
push(rsp); // pass CPU state
ExternalAddress msg((address) s);
// pass message string s
pushptr(msg.addr());
push(stack_depth); // pass stack depth
call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
addptr(rsp, 3 * wordSize); // discard arguments
// check for error
{ Label L;
testl(rax, rax);
jcc(Assembler::notZero, L);
int3(); // break if error condition
bind(L);
}
pop_CPU_state();
}
void MacroAssembler::restore_cpu_control_state_after_jni() {
// Either restore the MXCSR register after returning from the JNI Call
// or verify that it wasn't changed (with -Xcheck:jni flag).
if (VM_Version::supports_sse()) {
if (RestoreMXCSROnJNICalls) {
ldmxcsr(ExternalAddress(StubRoutines::addr_mxcsr_std()));
} else if (CheckJNICalls) {
call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
}
}
// Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty.
vzeroupper();
// Reset k1 to 0xffff.
#ifdef COMPILER2
if (PostLoopMultiversioning && VM_Version::supports_evex()) {
push(rcx);
movl(rcx, 0xffff);
kmovwl(k1, rcx);
pop(rcx);
}
#endif // COMPILER2
#ifndef _LP64
// Either restore the x87 floating pointer control word after returning
// from the JNI call or verify that it wasn't changed.
if (CheckJNICalls) {
call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
}
#endif // _LP64
}
// ((OopHandle)result).resolve();
void MacroAssembler::resolve_oop_handle(Register result, Register tmp) {
assert_different_registers(result, tmp);
// Only 64 bit platforms support GCs that require a tmp register
// Only IN_HEAP loads require a thread_tmp register
// OopHandle::resolve is an indirection like jobject.
access_load_at(T_OBJECT, IN_NATIVE,
result, Address(result, 0), tmp, /*tmp_thread*/noreg);
}
// ((WeakHandle)result).resolve();
void MacroAssembler::resolve_weak_handle(Register rresult, Register rtmp) {
assert_different_registers(rresult, rtmp);
Label resolved;
// A null weak handle resolves to null.
cmpptr(rresult, 0);
jcc(Assembler::equal, resolved);
// Only 64 bit platforms support GCs that require a tmp register
// Only IN_HEAP loads require a thread_tmp register
// WeakHandle::resolve is an indirection like jweak.
access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF,
rresult, Address(rresult, 0), rtmp, /*tmp_thread*/noreg);
bind(resolved);
}
void MacroAssembler::load_mirror(Register mirror, Register method, Register tmp) {
// get mirror
const int mirror_offset = in_bytes(Klass::java_mirror_offset());
load_method_holder(mirror, method);
movptr(mirror, Address(mirror, mirror_offset));
resolve_oop_handle(mirror, tmp);
}
void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) {
load_method_holder(rresult, rmethod);
movptr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset()));
}
void MacroAssembler::load_method_holder(Register holder, Register method) {
movptr(holder, Address(method, Method::const_offset())); // ConstMethod*
movptr(holder, Address(holder, ConstMethod::constants_offset())); // ConstantPool*
movptr(holder, Address(holder, ConstantPool::pool_holder_offset_in_bytes())); // InstanceKlass*
}
void MacroAssembler::load_klass(Register dst, Register src) {
#ifdef _LP64
if (UseCompressedClassPointers) {
movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
decode_klass_not_null(dst);
} else
#endif
movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
}
void MacroAssembler::load_prototype_header(Register dst, Register src) {
load_klass(dst, src);
movptr(dst, Address(dst, Klass::prototype_header_offset()));
}
void MacroAssembler::store_klass(Register dst, Register src) {
#ifdef _LP64
if (UseCompressedClassPointers) {
encode_klass_not_null(src);
movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
} else
#endif
movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
}
void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
Register tmp1, Register thread_tmp) {
BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
decorators = AccessInternal::decorator_fixup(decorators);
bool as_raw = (decorators & AS_RAW) != 0;
if (as_raw) {
bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, thread_tmp);
} else {
bs->load_at(this, decorators, type, dst, src, tmp1, thread_tmp);
}
}
void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register src,
Register tmp1, Register tmp2) {
BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
decorators = AccessInternal::decorator_fixup(decorators);
bool as_raw = (decorators & AS_RAW) != 0;
if (as_raw) {
bs->BarrierSetAssembler::store_at(this, decorators, type, dst, src, tmp1, tmp2);
} else {
bs->store_at(this, decorators, type, dst, src, tmp1, tmp2);
}
}
void MacroAssembler::resolve(DecoratorSet decorators, Register obj) {
// Use stronger ACCESS_WRITE|ACCESS_READ by default.
if ((decorators & (ACCESS_READ | ACCESS_WRITE)) == 0) {
decorators |= ACCESS_READ | ACCESS_WRITE;
}
BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
return bs->resolve(this, decorators, obj);
}
void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1,
Register thread_tmp, DecoratorSet decorators) {
access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, thread_tmp);
}
// Doesn't do verfication, generates fixed size code
void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1,
Register thread_tmp, DecoratorSet decorators) {
access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, thread_tmp);
}
void MacroAssembler::store_heap_oop(Address dst, Register src, Register tmp1,
Register tmp2, DecoratorSet decorators) {
access_store_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, tmp2);
}
// Used for storing NULLs.
void MacroAssembler::store_heap_oop_null(Address dst) {
access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg);
}
#ifdef _LP64
void MacroAssembler::store_klass_gap(Register dst, Register src) {
if (UseCompressedClassPointers) {
// Store to klass gap in destination
movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
}
}
#ifdef ASSERT
void MacroAssembler::verify_heapbase(const char* msg) {
assert (UseCompressedOops, "should be compressed");
assert (Universe::heap() != NULL, "java heap should be initialized");
if (CheckCompressedOops) {
Label ok;
push(rscratch1); // cmpptr trashes rscratch1
cmpptr(r12_heapbase, ExternalAddress((address)CompressedOops::ptrs_base_addr()));
jcc(Assembler::equal, ok);
STOP(msg);
bind(ok);
pop(rscratch1);
}
}
#endif
// Algorithm must match oop.inline.hpp encode_heap_oop.
void MacroAssembler::encode_heap_oop(Register r) {
#ifdef ASSERT
verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
#endif
verify_oop(r, "broken oop in encode_heap_oop");
if (CompressedOops::base() == NULL) {
if (CompressedOops::shift() != 0) {
assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
shrq(r, LogMinObjAlignmentInBytes);
}
return;
}
testq(r, r);
cmovq(Assembler::equal, r, r12_heapbase);
subq(r, r12_heapbase);
shrq(r, LogMinObjAlignmentInBytes);
}
void MacroAssembler::encode_heap_oop_not_null(Register r) {
#ifdef ASSERT
verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
if (CheckCompressedOops) {
Label ok;
testq(r, r);
jcc(Assembler::notEqual, ok);
STOP("null oop passed to encode_heap_oop_not_null");
bind(ok);
}
#endif
verify_oop(r, "broken oop in encode_heap_oop_not_null");
if (CompressedOops::base() != NULL) {
subq(r, r12_heapbase);
}
if (CompressedOops::shift() != 0) {
assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
shrq(r, LogMinObjAlignmentInBytes);
}
}
void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
#ifdef ASSERT
verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
if (CheckCompressedOops) {
Label ok;
testq(src, src);
jcc(Assembler::notEqual, ok);
STOP("null oop passed to encode_heap_oop_not_null2");
bind(ok);
}
#endif
verify_oop(src, "broken oop in encode_heap_oop_not_null2");
if (dst != src) {
movq(dst, src);
}
if (CompressedOops::base() != NULL) {
subq(dst, r12_heapbase);
}
if (CompressedOops::shift() != 0) {
assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
shrq(dst, LogMinObjAlignmentInBytes);
}
}
void MacroAssembler::decode_heap_oop(Register r) {
#ifdef ASSERT
verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
#endif
if (CompressedOops::base() == NULL) {
if (CompressedOops::shift() != 0) {
assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
shlq(r, LogMinObjAlignmentInBytes);
}
} else {
Label done;
shlq(r, LogMinObjAlignmentInBytes);
jccb(Assembler::equal, done);
addq(r, r12_heapbase);
bind(done);
}
verify_oop(r, "broken oop in decode_heap_oop");
}
void MacroAssembler::decode_heap_oop_not_null(Register r) {
// Note: it will change flags
assert (UseCompressedOops, "should only be used for compressed headers");
assert (Universe::heap() != NULL, "java heap should be initialized");
// Cannot assert, unverified entry point counts instructions (see .ad file)
// vtableStubs also counts instructions in pd_code_size_limit.
// Also do not verify_oop as this is called by verify_oop.
if (CompressedOops::shift() != 0) {
assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
shlq(r, LogMinObjAlignmentInBytes);
if (CompressedOops::base() != NULL) {
addq(r, r12_heapbase);
}
} else {
assert (CompressedOops::base() == NULL, "sanity");
}
}
void MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
// Note: it will change flags
assert (UseCompressedOops, "should only be used for compressed headers");
assert (Universe::heap() != NULL, "java heap should be initialized");
// Cannot assert, unverified entry point counts instructions (see .ad file)
// vtableStubs also counts instructions in pd_code_size_limit.
// Also do not verify_oop as this is called by verify_oop.
if (CompressedOops::shift() != 0) {
assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
if (LogMinObjAlignmentInBytes == Address::times_8) {
leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
} else {
if (dst != src) {
movq(dst, src);
}
shlq(dst, LogMinObjAlignmentInBytes);
if (CompressedOops::base() != NULL) {
addq(dst, r12_heapbase);
}
}
} else {
assert (CompressedOops::base() == NULL, "sanity");
if (dst != src) {
movq(dst, src);
}
}
}
void MacroAssembler::encode_klass_not_null(Register r) {
if (CompressedKlassPointers::base() != NULL) {
// Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
assert(r != r12_heapbase, "Encoding a klass in r12");
mov64(r12_heapbase, (int64_t)CompressedKlassPointers::base());
subq(r, r12_heapbase);
}
if (CompressedKlassPointers::shift() != 0) {
assert (LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong");
shrq(r, LogKlassAlignmentInBytes);
}
if (CompressedKlassPointers::base() != NULL) {
reinit_heapbase();
}
}
void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
if (dst == src) {
encode_klass_not_null(src);
} else {
if (CompressedKlassPointers::base() != NULL) {
mov64(dst, (int64_t)CompressedKlassPointers::base());
negq(dst);
addq(dst, src);
} else {
movptr(dst, src);
}
if (CompressedKlassPointers::shift() != 0) {
assert (LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong");
shrq(dst, LogKlassAlignmentInBytes);
}
}
}
// Function instr_size_for_decode_klass_not_null() counts the instructions
// generated by decode_klass_not_null(register r) and reinit_heapbase(),
// when (Universe::heap() != NULL). Hence, if the instructions they
// generate change, then this method needs to be updated.
int MacroAssembler::instr_size_for_decode_klass_not_null() {
assert (UseCompressedClassPointers, "only for compressed klass ptrs");
if (CompressedKlassPointers::base() != NULL) {
// mov64 + addq + shlq? + mov64 (for reinit_heapbase()).
return (CompressedKlassPointers::shift() == 0 ? 20 : 24);
} else {
// longest load decode klass function, mov64, leaq
return 16;
}
}
// !!! If the instructions that get generated here change then function
// instr_size_for_decode_klass_not_null() needs to get updated.
void MacroAssembler::decode_klass_not_null(Register r) {
// Note: it will change flags
assert (UseCompressedClassPointers, "should only be used for compressed headers");
assert(r != r12_heapbase, "Decoding a klass in r12");
// Cannot assert, unverified entry point counts instructions (see .ad file)
// vtableStubs also counts instructions in pd_code_size_limit.
// Also do not verify_oop as this is called by verify_oop.
if (CompressedKlassPointers::shift() != 0) {
assert(LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong");
shlq(r, LogKlassAlignmentInBytes);
}
// Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
if (CompressedKlassPointers::base() != NULL) {
mov64(r12_heapbase, (int64_t)CompressedKlassPointers::base());
addq(r, r12_heapbase);
reinit_heapbase();
}
}
void MacroAssembler::decode_klass_not_null(Register dst, Register src) {
// Note: it will change flags
assert (UseCompressedClassPointers, "should only be used for compressed headers");
if (dst == src) {
decode_klass_not_null(dst);
} else {
// Cannot assert, unverified entry point counts instructions (see .ad file)
// vtableStubs also counts instructions in pd_code_size_limit.
// Also do not verify_oop as this is called by verify_oop.
mov64(dst, (int64_t)CompressedKlassPointers::base());
if (CompressedKlassPointers::shift() != 0) {
assert(LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong");
assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?");
leaq(dst, Address(dst, src, Address::times_8, 0));
} else {
addq(dst, src);
}
}
}
void MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
assert (UseCompressedOops, "should only be used for compressed headers");
assert (Universe::heap() != NULL, "java heap should be initialized");
assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
int oop_index = oop_recorder()->find_index(obj);
RelocationHolder rspec = oop_Relocation::spec(oop_index);
mov_narrow_oop(dst, oop_index, rspec);
}
void MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
assert (UseCompressedOops, "should only be used for compressed headers");
assert (Universe::heap() != NULL, "java heap should be initialized");
assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
int oop_index = oop_recorder()->find_index(obj);
RelocationHolder rspec = oop_Relocation::spec(oop_index);
mov_narrow_oop(dst, oop_index, rspec);
}
void MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
assert (UseCompressedClassPointers, "should only be used for compressed headers");
assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
int klass_index = oop_recorder()->find_index(k);
RelocationHolder rspec = metadata_Relocation::spec(klass_index);
mov_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec);
}
void MacroAssembler::set_narrow_klass(Address dst, Klass* k) {
assert (UseCompressedClassPointers, "should only be used for compressed headers");
assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
int klass_index = oop_recorder()->find_index(k);
RelocationHolder rspec = metadata_Relocation::spec(klass_index);
mov_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec);
}
void MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
assert (UseCompressedOops, "should only be used for compressed headers");
assert (Universe::heap() != NULL, "java heap should be initialized");
assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
int oop_index = oop_recorder()->find_index(obj);
RelocationHolder rspec = oop_Relocation::spec(oop_index);
Assembler::cmp_narrow_oop(dst, oop_index, rspec);
}
void MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
assert (UseCompressedOops, "should only be used for compressed headers");
assert (Universe::heap() != NULL, "java heap should be initialized");
assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
int oop_index = oop_recorder()->find_index(obj);
RelocationHolder rspec = oop_Relocation::spec(oop_index);
Assembler::cmp_narrow_oop(dst, oop_index, rspec);
}
void MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) {
assert (UseCompressedClassPointers, "should only be used for compressed headers");
assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
int klass_index = oop_recorder()->find_index(k);
RelocationHolder rspec = metadata_Relocation::spec(klass_index);
Assembler::cmp_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec);
}
void MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) {
assert (UseCompressedClassPointers, "should only be used for compressed headers");
assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
int klass_index = oop_recorder()->find_index(k);
RelocationHolder rspec = metadata_Relocation::spec(klass_index);
Assembler::cmp_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec);
}
void MacroAssembler::reinit_heapbase() {
if (UseCompressedOops || UseCompressedClassPointers) {
if (Universe::heap() != NULL) {
if (CompressedOops::base() == NULL) {
MacroAssembler::xorptr(r12_heapbase, r12_heapbase);
} else {
mov64(r12_heapbase, (int64_t)CompressedOops::ptrs_base());
}
} else {
movptr(r12_heapbase, ExternalAddress((address)CompressedOops::ptrs_base_addr()));
}
}
}
#endif // _LP64
// C2 compiled method's prolog code.
void MacroAssembler::verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b, bool is_stub) {
// WARNING: Initial instruction MUST be 5 bytes or longer so that
// NativeJump::patch_verified_entry will be able to patch out the entry
// code safely. The push to verify stack depth is ok at 5 bytes,
// the frame allocation can be either 3 or 6 bytes. So if we don't do
// stack bang then we must use the 6 byte frame allocation even if
// we have no frame. :-(
assert(stack_bang_size >= framesize || stack_bang_size <= 0, "stack bang size incorrect");
assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
// Remove word for return addr
framesize -= wordSize;
stack_bang_size -= wordSize;
// Calls to C2R adapters often do not accept exceptional returns.
// We require that their callers must bang for them. But be careful, because
// some VM calls (such as call site linkage) can use several kilobytes of
// stack. But the stack safety zone should account for that.
// See bugs 4446381, 4468289, 4497237.
if (stack_bang_size > 0) {
generate_stack_overflow_check(stack_bang_size);
// We always push rbp, so that on return to interpreter rbp, will be
// restored correctly and we can correct the stack.
push(rbp);
// Save caller's stack pointer into RBP if the frame pointer is preserved.
if (PreserveFramePointer) {
mov(rbp, rsp);
}
// Remove word for ebp
framesize -= wordSize;
// Create frame
if (framesize) {
subptr(rsp, framesize);
}
} else {
// Create frame (force generation of a 4 byte immediate value)
subptr_imm32(rsp, framesize);
// Save RBP register now.
framesize -= wordSize;
movptr(Address(rsp, framesize), rbp);
// Save caller's stack pointer into RBP if the frame pointer is preserved.
if (PreserveFramePointer) {
movptr(rbp, rsp);
if (framesize > 0) {
addptr(rbp, framesize);
}
}
}
if (VerifyStackAtCalls) { // Majik cookie to verify stack depth
framesize -= wordSize;
movptr(Address(rsp, framesize), (int32_t)0xbadb100d);
}
#ifndef _LP64
// If method sets FPU control word do it now
if (fp_mode_24b) {
fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
}
if (UseSSE >= 2 && VerifyFPU) {
verify_FPU(0, "FPU stack must be clean on entry");
}
#endif
#ifdef ASSERT
if (VerifyStackAtCalls) {
Label L;
push(rax);
mov(rax, rsp);
andptr(rax, StackAlignmentInBytes-1);
cmpptr(rax, StackAlignmentInBytes-wordSize);
pop(rax);
jcc(Assembler::equal, L);
STOP("Stack is not properly aligned!");
bind(L);
}
#endif
if (!is_stub) {
BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
bs->nmethod_entry_barrier(this);
}
}
// clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM registers
void MacroAssembler::xmm_clear_mem(Register base, Register cnt, XMMRegister xtmp) {
// cnt - number of qwords (8-byte words).
// base - start address, qword aligned.
Label L_zero_64_bytes, L_loop, L_sloop, L_tail, L_end;
if (UseAVX >= 2) {
vpxor(xtmp, xtmp, xtmp, AVX_256bit);
} else {
pxor(xtmp, xtmp);
}
jmp(L_zero_64_bytes);
BIND(L_loop);
if (UseAVX >= 2) {
vmovdqu(Address(base, 0), xtmp);
vmovdqu(Address(base, 32), xtmp);
} else {
movdqu(Address(base, 0), xtmp);
movdqu(Address(base, 16), xtmp);
movdqu(Address(base, 32), xtmp);
movdqu(Address(base, 48), xtmp);
}
addptr(base, 64);
BIND(L_zero_64_bytes);
subptr(cnt, 8);
jccb(Assembler::greaterEqual, L_loop);
addptr(cnt, 4);
jccb(Assembler::less, L_tail);
// Copy trailing 32 bytes
if (UseAVX >= 2) {
vmovdqu(Address(base, 0), xtmp);
} else {
movdqu(Address(base, 0), xtmp);
movdqu(Address(base, 16), xtmp);
}
addptr(base, 32);
subptr(cnt, 4);
BIND(L_tail);
addptr(cnt, 4);
jccb(Assembler::lessEqual, L_end);
decrement(cnt);
BIND(L_sloop);
movq(Address(base, 0), xtmp);
addptr(base, 8);
decrement(cnt);
jccb(Assembler::greaterEqual, L_sloop);
BIND(L_end);
}
void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp, XMMRegister xtmp, bool is_large) {
// cnt - number of qwords (8-byte words).
// base - start address, qword aligned.
// is_large - if optimizers know cnt is larger than InitArrayShortSize
assert(base==rdi, "base register must be edi for rep stos");
assert(tmp==rax, "tmp register must be eax for rep stos");
assert(cnt==rcx, "cnt register must be ecx for rep stos");
assert(InitArrayShortSize % BytesPerLong == 0,
"InitArrayShortSize should be the multiple of BytesPerLong");
Label DONE;
if (!is_large || !UseXMMForObjInit) {
xorptr(tmp, tmp);
}
if (!is_large) {
Label LOOP, LONG;
cmpptr(cnt, InitArrayShortSize/BytesPerLong);
jccb(Assembler::greater, LONG);
NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM
decrement(cnt);
jccb(Assembler::negative, DONE); // Zero length
// Use individual pointer-sized stores for small counts:
BIND(LOOP);
movptr(Address(base, cnt, Address::times_ptr), tmp);
decrement(cnt);
jccb(Assembler::greaterEqual, LOOP);
jmpb(DONE);
BIND(LONG);
}
// Use longer rep-prefixed ops for non-small counts:
if (UseFastStosb) {
shlptr(cnt, 3); // convert to number of bytes
rep_stosb();
} else if (UseXMMForObjInit) {
movptr(tmp, base);
xmm_clear_mem(tmp, cnt, xtmp);
} else {
NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM
rep_stos();
}
BIND(DONE);
}
#ifdef COMPILER2
// IndexOf for constant substrings with size >= 8 chars
// which don't need to be loaded through stack.
void MacroAssembler::string_indexofC8(Register str1, Register str2,
Register cnt1, Register cnt2,
int int_cnt2, Register result,
XMMRegister vec, Register tmp,
int ae) {
ShortBranchVerifier sbv(this);
assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
// This method uses the pcmpestri instruction with bound registers
// inputs:
// xmm - substring
// rax - substring length (elements count)
// mem - scanned string
// rdx - string length (elements count)
// 0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
// 0xc - mode: 1100 (substring search) + 00 (unsigned bytes)
// outputs:
// rcx - matched index in string
assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
int mode = (ae == StrIntrinsicNode::LL) ? 0x0c : 0x0d; // bytes or shorts
int stride = (ae == StrIntrinsicNode::LL) ? 16 : 8; //UU, UL -> 8
Address::ScaleFactor scale1 = (ae == StrIntrinsicNode::LL) ? Address::times_1 : Address::times_2;
Address::ScaleFactor scale2 = (ae == StrIntrinsicNode::UL) ? Address::times_1 : scale1;
Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR,
RET_FOUND, RET_NOT_FOUND, EXIT, FOUND_SUBSTR,
MATCH_SUBSTR_HEAD, RELOAD_STR, FOUND_CANDIDATE;
// Note, inline_string_indexOf() generates checks:
// if (substr.count > string.count) return -1;
// if (substr.count == 0) return 0;
assert(int_cnt2 >= stride, "this code is used only for cnt2 >= 8 chars");
// Load substring.
if (ae == StrIntrinsicNode::UL) {
pmovzxbw(vec, Address(str2, 0));
} else {
movdqu(vec, Address(str2, 0));
}
movl(cnt2, int_cnt2);
movptr(result, str1); // string addr
if (int_cnt2 > stride) {
jmpb(SCAN_TO_SUBSTR);
// Reload substr for rescan, this code
// is executed only for large substrings (> 8 chars)
bind(RELOAD_SUBSTR);
if (ae == StrIntrinsicNode::UL) {
pmovzxbw(vec, Address(str2, 0));
} else {
movdqu(vec, Address(str2, 0));
}
negptr(cnt2); // Jumped here with negative cnt2, convert to positive
bind(RELOAD_STR);
// We came here after the beginning of the substring was
// matched but the rest of it was not so we need to search
// again. Start from the next element after the previous match.
// cnt2 is number of substring reminding elements and
// cnt1 is number of string reminding elements when cmp failed.
// Restored cnt1 = cnt1 - cnt2 + int_cnt2
subl(cnt1, cnt2);
addl(cnt1, int_cnt2);
movl(cnt2, int_cnt2); // Now restore cnt2
decrementl(cnt1); // Shift to next element
cmpl(cnt1, cnt2);
jcc(Assembler::negative, RET_NOT_FOUND); // Left less then substring
addptr(result, (1<<scale1));
} // (int_cnt2 > 8)
// Scan string for start of substr in 16-byte vectors
bind(SCAN_TO_SUBSTR);
pcmpestri(vec, Address(result, 0), mode);
jccb(Assembler::below, FOUND_CANDIDATE); // CF == 1
subl(cnt1, stride);
jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
cmpl(cnt1, cnt2);
jccb(Assembler::negative, RET_NOT_FOUND); // Left less then substring
addptr(result, 16);
jmpb(SCAN_TO_SUBSTR);
// Found a potential substr
bind(FOUND_CANDIDATE);
// Matched whole vector if first element matched (tmp(rcx) == 0).
if (int_cnt2 == stride) {
jccb(Assembler::overflow, RET_FOUND); // OF == 1
} else { // int_cnt2 > 8
jccb(Assembler::overflow, FOUND_SUBSTR);
}
// After pcmpestri tmp(rcx) contains matched element index
// Compute start addr of substr
lea(result, Address(result, tmp, scale1));
// Make sure string is still long enough
subl(cnt1, tmp);
cmpl(cnt1, cnt2);
if (int_cnt2 == stride) {
jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
} else { // int_cnt2 > 8
jccb(Assembler::greaterEqual, MATCH_SUBSTR_HEAD);
}
// Left less then substring.
bind(RET_NOT_FOUND);
movl(result, -1);
jmp(EXIT);
if (int_cnt2 > stride) {
// This code is optimized for the case when whole substring
// is matched if its head is matched.
bind(MATCH_SUBSTR_HEAD);
pcmpestri(vec, Address(result, 0), mode);
// Reload only string if does not match
jcc(Assembler::noOverflow, RELOAD_STR); // OF == 0
Label CONT_SCAN_SUBSTR;
// Compare the rest of substring (> 8 chars).
bind(FOUND_SUBSTR);
// First 8 chars are already matched.
negptr(cnt2);
addptr(cnt2, stride);
bind(SCAN_SUBSTR);
subl(cnt1, stride);
cmpl(cnt2, -stride); // Do not read beyond substring
jccb(Assembler::lessEqual, CONT_SCAN_SUBSTR);
// Back-up strings to avoid reading beyond substring:
// cnt1 = cnt1 - cnt2 + 8
addl(cnt1, cnt2); // cnt2 is negative
addl(cnt1, stride);
movl(cnt2, stride); negptr(cnt2);
bind(CONT_SCAN_SUBSTR);
if (int_cnt2 < (int)G) {
int tail_off1 = int_cnt2<<scale1;
int tail_off2 = int_cnt2<<scale2;
if (ae == StrIntrinsicNode::UL) {
pmovzxbw(vec, Address(str2, cnt2, scale2, tail_off2));
} else {
movdqu(vec, Address(str2, cnt2, scale2, tail_off2));
}
pcmpestri(vec, Address(result, cnt2, scale1, tail_off1), mode);
} else {
// calculate index in register to avoid integer overflow (int_cnt2*2)
movl(tmp, int_cnt2);
addptr(tmp, cnt2);
if (ae == StrIntrinsicNode::UL) {
pmovzxbw(vec, Address(str2, tmp, scale2, 0));
} else {
movdqu(vec, Address(str2, tmp, scale2, 0));
}
pcmpestri(vec, Address(result, tmp, scale1, 0), mode);
}
// Need to reload strings pointers if not matched whole vector
jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
addptr(cnt2, stride);
jcc(Assembler::negative, SCAN_SUBSTR);
// Fall through if found full substring
} // (int_cnt2 > 8)
bind(RET_FOUND);
// Found result if we matched full small substring.
// Compute substr offset
subptr(result, str1);
if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
shrl(result, 1); // index
}
bind(EXIT);
} // string_indexofC8
// Small strings are loaded through stack if they cross page boundary.
void MacroAssembler::string_indexof(Register str1, Register str2,
Register cnt1, Register cnt2,
int int_cnt2, Register result,
XMMRegister vec, Register tmp,
int ae) {
ShortBranchVerifier sbv(this);
assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
//
// int_cnt2 is length of small (< 8 chars) constant substring
// or (-1) for non constant substring in which case its length
// is in cnt2 register.
//
// Note, inline_string_indexOf() generates checks:
// if (substr.count > string.count) return -1;
// if (substr.count == 0) return 0;
//
int stride = (ae == StrIntrinsicNode::LL) ? 16 : 8; //UU, UL -> 8
assert(int_cnt2 == -1 || (0 < int_cnt2 && int_cnt2 < stride), "should be != 0");
// This method uses the pcmpestri instruction with bound registers
// inputs:
// xmm - substring
// rax - substring length (elements count)
// mem - scanned string
// rdx - string length (elements count)
// 0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
// 0xc - mode: 1100 (substring search) + 00 (unsigned bytes)
// outputs:
// rcx - matched index in string
assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
int mode = (ae == StrIntrinsicNode::LL) ? 0x0c : 0x0d; // bytes or shorts
Address::ScaleFactor scale1 = (ae == StrIntrinsicNode::LL) ? Address::times_1 : Address::times_2;
Address::ScaleFactor scale2 = (ae == StrIntrinsicNode::UL) ? Address::times_1 : scale1;
Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, ADJUST_STR,
RET_FOUND, RET_NOT_FOUND, CLEANUP, FOUND_SUBSTR,
FOUND_CANDIDATE;
{ //========================================================
// We don't know where these strings are located
// and we can't read beyond them. Load them through stack.
Label BIG_STRINGS, CHECK_STR, COPY_SUBSTR, COPY_STR;
movptr(tmp, rsp); // save old SP
if (int_cnt2 > 0) { // small (< 8 chars) constant substring
if (int_cnt2 == (1>>scale2)) { // One byte
assert((ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UL), "Only possible for latin1 encoding");
load_unsigned_byte(result, Address(str2, 0));
movdl(vec, result); // move 32 bits
} else if (ae == StrIntrinsicNode::LL && int_cnt2 == 3) { // Three bytes
// Not enough header space in 32-bit VM: 12+3 = 15.
movl(result, Address(str2, -1));
shrl(result, 8);
movdl(vec, result); // move 32 bits
} else if (ae != StrIntrinsicNode::UL && int_cnt2 == (2>>scale2)) { // One char
load_unsigned_short(result, Address(str2, 0));
movdl(vec, result); // move 32 bits
} else if (ae != StrIntrinsicNode::UL && int_cnt2 == (4>>scale2)) { // Two chars
movdl(vec, Address(str2, 0)); // move 32 bits
} else if (ae != StrIntrinsicNode::UL && int_cnt2 == (8>>scale2)) { // Four chars
movq(vec, Address(str2, 0)); // move 64 bits
} else { // cnt2 = { 3, 5, 6, 7 } || (ae == StrIntrinsicNode::UL && cnt2 ={2, ..., 7})
// Array header size is 12 bytes in 32-bit VM
// + 6 bytes for 3 chars == 18 bytes,
// enough space to load vec and shift.
assert(HeapWordSize*TypeArrayKlass::header_size() >= 12,"sanity");
if (ae == StrIntrinsicNode::UL) {
int tail_off = int_cnt2-8;
pmovzxbw(vec, Address(str2, tail_off));
psrldq(vec, -2*tail_off);
}
else {
int tail_off = int_cnt2*(1<<scale2);
movdqu(vec, Address(str2, tail_off-16));
psrldq(vec, 16-tail_off);
}
}
} else { // not constant substring
cmpl(cnt2, stride);
jccb(Assembler::aboveEqual, BIG_STRINGS); // Both strings are big enough
// We can read beyond string if srt+16 does not cross page boundary
// since heaps are aligned and mapped by pages.
assert(os::vm_page_size() < (int)G, "default page should be small");
movl(result, str2); // We need only low 32 bits
andl(result, (os::vm_page_size()-1));
cmpl(result, (os::vm_page_size()-16));
jccb(Assembler::belowEqual, CHECK_STR);
// Move small strings to stack to allow load 16 bytes into vec.
subptr(rsp, 16);
int stk_offset = wordSize-(1<<scale2);
push(cnt2);
bind(COPY_SUBSTR);
if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UL) {
load_unsigned_byte(result, Address(str2, cnt2, scale2, -1));
movb(Address(rsp, cnt2, scale2, stk_offset), result);
} else if (ae == StrIntrinsicNode::UU) {
load_unsigned_short(result, Address(str2, cnt2, scale2, -2));
movw(Address(rsp, cnt2, scale2, stk_offset), result);
}
decrement(cnt2);
jccb(Assembler::notZero, COPY_SUBSTR);
pop(cnt2);
movptr(str2, rsp); // New substring address
} // non constant
bind(CHECK_STR);
cmpl(cnt1, stride);
jccb(Assembler::aboveEqual, BIG_STRINGS);
// Check cross page boundary.
movl(result, str1); // We need only low 32 bits
andl(result, (os::vm_page_size()-1));
cmpl(result, (os::vm_page_size()-16));
jccb(Assembler::belowEqual, BIG_STRINGS);
subptr(rsp, 16);
int stk_offset = -(1<<scale1);
if (int_cnt2 < 0) { // not constant
push(cnt2);
stk_offset += wordSize;
}
movl(cnt2, cnt1);
bind(COPY_STR);
if (ae == StrIntrinsicNode::LL) {
load_unsigned_byte(result, Address(str1, cnt2, scale1, -1));
movb(Address(rsp, cnt2, scale1, stk_offset), result);
} else {
load_unsigned_short(result, Address(str1, cnt2, scale1, -2));
movw(Address(rsp, cnt2, scale1, stk_offset), result);
}
decrement(cnt2);
jccb(Assembler::notZero, COPY_STR);
if (int_cnt2 < 0) { // not constant
pop(cnt2);
}
movptr(str1, rsp); // New string address
bind(BIG_STRINGS);
// Load substring.
if (int_cnt2 < 0) { // -1
if (ae == StrIntrinsicNode::UL) {
pmovzxbw(vec, Address(str2, 0));
} else {
movdqu(vec, Address(str2, 0));
}
push(cnt2); // substr count
push(str2); // substr addr
push(str1); // string addr
} else {
// Small (< 8 chars) constant substrings are loaded already.
movl(cnt2, int_cnt2);
}
push(tmp); // original SP
} // Finished loading
//========================================================
// Start search
//
movptr(result, str1); // string addr
if (int_cnt2 < 0) { // Only for non constant substring
jmpb(SCAN_TO_SUBSTR);
// SP saved at sp+0
// String saved at sp+1*wordSize
// Substr saved at sp+2*wordSize
// Substr count saved at sp+3*wordSize
// Reload substr for rescan, this code
// is executed only for large substrings (> 8 chars)
bind(RELOAD_SUBSTR);
movptr(str2, Address(rsp, 2*wordSize));
movl(cnt2, Address(rsp, 3*wordSize));
if (ae == StrIntrinsicNode::UL) {
pmovzxbw(vec, Address(str2, 0));
} else {
movdqu(vec, Address(str2, 0));
}
// We came here after the beginning of the substring was
// matched but the rest of it was not so we need to search
// again. Start from the next element after the previous match.
subptr(str1, result); // Restore counter
if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
shrl(str1, 1);
}
addl(cnt1, str1);
decrementl(cnt1); // Shift to next element
cmpl(cnt1, cnt2);
jcc(Assembler::negative, RET_NOT_FOUND); // Left less then substring
addptr(result, (1<<scale1));
} // non constant
// Scan string for start of substr in 16-byte vectors
bind(SCAN_TO_SUBSTR);
assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
pcmpestri(vec, Address(result, 0), mode);
jccb(Assembler::below, FOUND_CANDIDATE); // CF == 1
subl(cnt1, stride);
jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
cmpl(cnt1, cnt2);
jccb(Assembler::negative, RET_NOT_FOUND); // Left less then substring
addptr(result, 16);
bind(ADJUST_STR);
cmpl(cnt1, stride); // Do not read beyond string
jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
// Back-up string to avoid reading beyond string.
lea(result, Address(result, cnt1, scale1, -16));
movl(cnt1, stride);
jmpb(SCAN_TO_SUBSTR);
// Found a potential substr
bind(FOUND_CANDIDATE);
// After pcmpestri tmp(rcx) contains matched element index
// Make sure string is still long enough
subl(cnt1, tmp);
cmpl(cnt1, cnt2);
jccb(Assembler::greaterEqual, FOUND_SUBSTR);
// Left less then substring.
bind(RET_NOT_FOUND);
movl(result, -1);
jmp(CLEANUP);
bind(FOUND_SUBSTR);
// Compute start addr of substr
lea(result, Address(result, tmp, scale1));
if (int_cnt2 > 0) { // Constant substring
// Repeat search for small substring (< 8 chars)
// from new point without reloading substring.
// Have to check that we don't read beyond string.
cmpl(tmp, stride-int_cnt2);
jccb(Assembler::greater, ADJUST_STR);
// Fall through if matched whole substring.
} else { // non constant
assert(int_cnt2 == -1, "should be != 0");
addl(tmp, cnt2);
// Found result if we matched whole substring.
cmpl(tmp, stride);
jcc(Assembler::lessEqual, RET_FOUND);
// Repeat search for small substring (<= 8 chars)
// from new point 'str1' without reloading substring.
cmpl(cnt2, stride);
// Have to check that we don't read beyond string.
jccb(Assembler::lessEqual, ADJUST_STR);
Label CHECK_NEXT, CONT_SCAN_SUBSTR, RET_FOUND_LONG;
// Compare the rest of substring (> 8 chars).
movptr(str1, result);
cmpl(tmp, cnt2);
// First 8 chars are already matched.
jccb(Assembler::equal, CHECK_NEXT);
bind(SCAN_SUBSTR);
pcmpestri(vec, Address(str1, 0), mode);
// Need to reload strings pointers if not matched whole vector
jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
bind(CHECK_NEXT);
subl(cnt2, stride);
jccb(Assembler::lessEqual, RET_FOUND_LONG); // Found full substring
addptr(str1, 16);
if (ae == StrIntrinsicNode::UL) {
addptr(str2, 8);
} else {
addptr(str2, 16);
}
subl(cnt1, stride);
cmpl(cnt2, stride); // Do not read beyond substring
jccb(Assembler::greaterEqual, CONT_SCAN_SUBSTR);
// Back-up strings to avoid reading beyond substring.
if (ae == StrIntrinsicNode::UL) {
lea(str2, Address(str2, cnt2, scale2, -8));
lea(str1, Address(str1, cnt2, scale1, -16));
} else {
lea(str2, Address(str2, cnt2, scale2, -16));
lea(str1, Address(str1, cnt2, scale1, -16));
}
subl(cnt1, cnt2);
movl(cnt2, stride);
addl(cnt1, stride);
bind(CONT_SCAN_SUBSTR);
if (ae == StrIntrinsicNode::UL) {
pmovzxbw(vec, Address(str2, 0));
} else {
movdqu(vec, Address(str2, 0));
}
jmp(SCAN_SUBSTR);
bind(RET_FOUND_LONG);
movptr(str1, Address(rsp, wordSize));
} // non constant
bind(RET_FOUND);
// Compute substr offset
subptr(result, str1);
if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
shrl(result, 1); // index
}
bind(CLEANUP);
pop(rsp); // restore SP
} // string_indexof
void MacroAssembler::string_indexof_char(Register str1, Register cnt1, Register ch, Register result,
XMMRegister vec1, XMMRegister vec2, XMMRegister vec3, Register tmp) {
ShortBranchVerifier sbv(this);
assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
int stride = 8;
Label FOUND_CHAR, SCAN_TO_CHAR, SCAN_TO_CHAR_LOOP,
SCAN_TO_8_CHAR, SCAN_TO_8_CHAR_LOOP, SCAN_TO_16_CHAR_LOOP,
RET_NOT_FOUND, SCAN_TO_8_CHAR_INIT,
FOUND_SEQ_CHAR, DONE_LABEL;
movptr(result, str1);
if (UseAVX >= 2) {
cmpl(cnt1, stride);
jcc(Assembler::less, SCAN_TO_CHAR);
cmpl(cnt1, 2*stride);
jcc(Assembler::less, SCAN_TO_8_CHAR_INIT);
movdl(vec1, ch);
vpbroadcastw(vec1, vec1, Assembler::AVX_256bit);
vpxor(vec2, vec2);
movl(tmp, cnt1);
andl(tmp, 0xFFFFFFF0); //vector count (in chars)
andl(cnt1,0x0000000F); //tail count (in chars)
bind(SCAN_TO_16_CHAR_LOOP);
vmovdqu(vec3, Address(result, 0));
vpcmpeqw(vec3, vec3, vec1, 1);
vptest(vec2, vec3);
jcc(Assembler::carryClear, FOUND_CHAR);
addptr(result, 32);
subl(tmp, 2*stride);
jcc(Assembler::notZero, SCAN_TO_16_CHAR_LOOP);
jmp(SCAN_TO_8_CHAR);
bind(SCAN_TO_8_CHAR_INIT);
movdl(vec1, ch);
pshuflw(vec1, vec1, 0x00);
pshufd(vec1, vec1, 0);
pxor(vec2, vec2);
}
bind(SCAN_TO_8_CHAR);
cmpl(cnt1, stride);
jcc(Assembler::less, SCAN_TO_CHAR);
if (UseAVX < 2) {
movdl(vec1, ch);
pshuflw(vec1, vec1, 0x00);
pshufd(vec1, vec1, 0);
pxor(vec2, vec2);
}
movl(tmp, cnt1);
andl(tmp, 0xFFFFFFF8); //vector count (in chars)
andl(cnt1,0x00000007); //tail count (in chars)
bind(SCAN_TO_8_CHAR_LOOP);
movdqu(vec3, Address(result, 0));
pcmpeqw(vec3, vec1);
ptest(vec2, vec3);
jcc(Assembler::carryClear, FOUND_CHAR);
addptr(result, 16);
subl(tmp, stride);
jcc(Assembler::notZero, SCAN_TO_8_CHAR_LOOP);
bind(SCAN_TO_CHAR);
testl(cnt1, cnt1);
jcc(Assembler::zero, RET_NOT_FOUND);
bind(SCAN_TO_CHAR_LOOP);
load_unsigned_short(tmp, Address(result, 0));
cmpl(ch, tmp);
jccb(Assembler::equal, FOUND_SEQ_CHAR);
addptr(result, 2);
subl(cnt1, 1);
jccb(Assembler::zero, RET_NOT_FOUND);
jmp(SCAN_TO_CHAR_LOOP);
bind(RET_NOT_FOUND);
movl(result, -1);
jmpb(DONE_LABEL);
bind(FOUND_CHAR);
if (UseAVX >= 2) {
vpmovmskb(tmp, vec3);
} else {
pmovmskb(tmp, vec3);
}
bsfl(ch, tmp);
addl(result, ch);
bind(FOUND_SEQ_CHAR);
subptr(result, str1);
shrl(result, 1);
bind(DONE_LABEL);
} // string_indexof_char
// helper function for string_compare
void MacroAssembler::load_next_elements(Register elem1, Register elem2, Register str1, Register str2,
Address::ScaleFactor scale, Address::ScaleFactor scale1,
Address::ScaleFactor scale2, Register index, int ae) {
if (ae == StrIntrinsicNode::LL) {
load_unsigned_byte(elem1, Address(str1, index, scale, 0));
load_unsigned_byte(elem2, Address(str2, index, scale, 0));
} else if (ae == StrIntrinsicNode::UU) {
load_unsigned_short(elem1, Address(str1, index, scale, 0));
load_unsigned_short(elem2, Address(str2, index, scale, 0));
} else {
load_unsigned_byte(elem1, Address(str1, index, scale1, 0));
load_unsigned_short(elem2, Address(str2, index, scale2, 0));
}
}
// Compare strings, used for char[] and byte[].
void MacroAssembler::string_compare(Register str1, Register str2,
Register cnt1, Register cnt2, Register result,
XMMRegister vec1, int ae) {
ShortBranchVerifier sbv(this);
Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;
Label COMPARE_WIDE_VECTORS_LOOP_FAILED; // used only _LP64 && AVX3
int stride, stride2, adr_stride, adr_stride1, adr_stride2;
int stride2x2 = 0x40;
Address::ScaleFactor scale = Address::no_scale;
Address::ScaleFactor scale1 = Address::no_scale;
Address::ScaleFactor scale2 = Address::no_scale;
if (ae != StrIntrinsicNode::LL) {
stride2x2 = 0x20;
}
if (ae == StrIntrinsicNode::LU || ae == StrIntrinsicNode::UL) {
shrl(cnt2, 1);
}
// Compute the minimum of the string lengths and the
// difference of the string lengths (stack).
// Do the conditional move stuff
movl(result, cnt1);
subl(cnt1, cnt2);
push(cnt1);
cmov32(Assembler::lessEqual, cnt2, result); // cnt2 = min(cnt1, cnt2)
// Is the minimum length zero?
testl(cnt2, cnt2);
jcc(Assembler::zero, LENGTH_DIFF_LABEL);
if (ae == StrIntrinsicNode::LL) {
// Load first bytes
load_unsigned_byte(result, Address(str1, 0)); // result = str1[0]
load_unsigned_byte(cnt1, Address(str2, 0)); // cnt1 = str2[0]
} else if (ae == StrIntrinsicNode::UU) {
// Load first characters
load_unsigned_short(result, Address(str1, 0));
load_unsigned_short(cnt1, Address(str2, 0));
} else {
load_unsigned_byte(result, Address(str1, 0));
load_unsigned_short(cnt1, Address(str2, 0));
}
subl(result, cnt1);
jcc(Assembler::notZero, POP_LABEL);
if (ae == StrIntrinsicNode::UU) {
// Divide length by 2 to get number of chars
shrl(cnt2, 1);
}
cmpl(cnt2, 1);
jcc(Assembler::equal, LENGTH_DIFF_LABEL);
// Check if the strings start at the same location and setup scale and stride
if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
cmpptr(str1, str2);
jcc(Assembler::equal, LENGTH_DIFF_LABEL);
if (ae == StrIntrinsicNode::LL) {
scale = Address::times_1;
stride = 16;
} else {
scale = Address::times_2;
stride = 8;
}
} else {
scale1 = Address::times_1;
scale2 = Address::times_2;
// scale not used
stride = 8;
}
if (UseAVX >= 2 && UseSSE42Intrinsics) {
Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_WIDE_TAIL, COMPARE_SMALL_STR;
Label COMPARE_WIDE_VECTORS_LOOP, COMPARE_16_CHARS, COMPARE_INDEX_CHAR;
Label COMPARE_WIDE_VECTORS_LOOP_AVX2;
Label COMPARE_TAIL_LONG;
Label COMPARE_WIDE_VECTORS_LOOP_AVX3; // used only _LP64 && AVX3
int pcmpmask = 0x19;
if (ae == StrIntrinsicNode::LL) {
pcmpmask &= ~0x01;
}
// Setup to compare 16-chars (32-bytes) vectors,
// start from first character again because it has aligned address.
if (ae == StrIntrinsicNode::LL) {
stride2 = 32;
} else {
stride2 = 16;
}
if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
adr_stride = stride << scale;
} else {
adr_stride1 = 8; //stride << scale1;
adr_stride2 = 16; //stride << scale2;
}
assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
// rax and rdx are used by pcmpestri as elements counters
movl(result, cnt2);
andl(cnt2, ~(stride2-1)); // cnt2 holds the vector count
jcc(Assembler::zero, COMPARE_TAIL_LONG);
// fast path : compare first 2 8-char vectors.
bind(COMPARE_16_CHARS);
if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
movdqu(vec1, Address(str1, 0));
} else {
pmovzxbw(vec1, Address(str1, 0));
}
pcmpestri(vec1, Address(str2, 0), pcmpmask);
jccb(Assembler::below, COMPARE_INDEX_CHAR);
if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
movdqu(vec1, Address(str1, adr_stride));
pcmpestri(vec1, Address(str2, adr_stride), pcmpmask);
} else {
pmovzxbw(vec1, Address(str1, adr_stride1));
pcmpestri(vec1, Address(str2, adr_stride2), pcmpmask);
}
jccb(Assembler::aboveEqual, COMPARE_WIDE_VECTORS);
addl(cnt1, stride);
// Compare the characters at index in cnt1
bind(COMPARE_INDEX_CHAR); // cnt1 has the offset of the mismatching character
load_next_elements(result, cnt2, str1, str2, scale, scale1, scale2, cnt1, ae);
subl(result, cnt2);
jmp(POP_LABEL);
// Setup the registers to start vector comparison loop
bind(COMPARE_WIDE_VECTORS);
if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
lea(str1, Address(str1, result, scale));
lea(str2, Address(str2, result, scale));
} else {
lea(str1, Address(str1, result, scale1));
lea(str2, Address(str2, result, scale2));
}
subl(result, stride2);
subl(cnt2, stride2);
jcc(Assembler::zero, COMPARE_WIDE_TAIL);
negptr(result);
// In a loop, compare 16-chars (32-bytes) at once using (vpxor+vptest)
bind(COMPARE_WIDE_VECTORS_LOOP);
#ifdef _LP64
if ((AVX3Threshold == 0) && VM_Version::supports_avx512vlbw()) { // trying 64 bytes fast loop
cmpl(cnt2, stride2x2);
jccb(Assembler::below, COMPARE_WIDE_VECTORS_LOOP_AVX2);
testl(cnt2, stride2x2-1); // cnt2 holds the vector count
jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP_AVX2); // means we cannot subtract by 0x40
bind(COMPARE_WIDE_VECTORS_LOOP_AVX3); // the hottest loop
if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
evmovdquq(vec1, Address(str1, result, scale), Assembler::AVX_512bit);
evpcmpeqb(k7, vec1, Address(str2, result, scale), Assembler::AVX_512bit); // k7 == 11..11, if operands equal, otherwise k7 has some 0
} else {
vpmovzxbw(vec1, Address(str1, result, scale1), Assembler::AVX_512bit);
evpcmpeqb(k7, vec1, Address(str2, result, scale2), Assembler::AVX_512bit); // k7 == 11..11, if operands equal, otherwise k7 has some 0
}
kortestql(k7, k7);
jcc(Assembler::aboveEqual, COMPARE_WIDE_VECTORS_LOOP_FAILED); // miscompare
addptr(result, stride2x2); // update since we already compared at this addr
subl(cnt2, stride2x2); // and sub the size too
jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP_AVX3);
vpxor(vec1, vec1);
jmpb(COMPARE_WIDE_TAIL);
}//if (VM_Version::supports_avx512vlbw())
#endif // _LP64
bind(COMPARE_WIDE_VECTORS_LOOP_AVX2);
if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
vmovdqu(vec1, Address(str1, result, scale));
vpxor(vec1, Address(str2, result, scale));
} else {
vpmovzxbw(vec1, Address(str1, result, scale1), Assembler::AVX_256bit);
vpxor(vec1, Address(str2, result, scale2));
}
vptest(vec1, vec1);
jcc(Assembler::notZero, VECTOR_NOT_EQUAL);
addptr(result, stride2);
subl(cnt2, stride2);
jcc(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP);
// clean upper bits of YMM registers
vpxor(vec1, vec1);
// compare wide vectors tail
bind(COMPARE_WIDE_TAIL);
testptr(result, result);
jcc(Assembler::zero, LENGTH_DIFF_LABEL);
movl(result, stride2);
movl(cnt2, result);
negptr(result);
jmp(COMPARE_WIDE_VECTORS_LOOP_AVX2);
// Identifies the mismatching (higher or lower)16-bytes in the 32-byte vectors.
bind(VECTOR_NOT_EQUAL);
// clean upper bits of YMM registers
vpxor(vec1, vec1);
if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
lea(str1, Address(str1, result, scale));
lea(str2, Address(str2, result, scale));
} else {
lea(str1, Address(str1, result, scale1));
lea(str2, Address(str2, result, scale2));
}
jmp(COMPARE_16_CHARS);
// Compare tail chars, length between 1 to 15 chars
bind(COMPARE_TAIL_LONG);
movl(cnt2, result);
cmpl(cnt2, stride);
jcc(Assembler::less, COMPARE_SMALL_STR);
if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
movdqu(vec1, Address(str1, 0));
} else {
pmovzxbw(vec1, Address(str1, 0));
}
pcmpestri(vec1, Address(str2, 0), pcmpmask);
jcc(Assembler::below, COMPARE_INDEX_CHAR);
subptr(cnt2, stride);
jcc(Assembler::zero, LENGTH_DIFF_LABEL);
if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
lea(str1, Address(str1, result, scale));
lea(str2, Address(str2, result, scale));
} else {
lea(str1, Address(str1, result, scale1));
lea(str2, Address(str2, result, scale2));
}
negptr(cnt2);
jmpb(WHILE_HEAD_LABEL);
bind(COMPARE_SMALL_STR);
} else if (UseSSE42Intrinsics) {
Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
int pcmpmask = 0x19;
// Setup to compare 8-char (16-byte) vectors,
// start from first character again because it has aligned address.
movl(result, cnt2);
andl(cnt2, ~(stride - 1)); // cnt2 holds the vector count
if (ae == StrIntrinsicNode::LL) {
pcmpmask &= ~0x01;
}
jcc(Assembler::zero, COMPARE_TAIL);
if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
lea(str1, Address(str1, result, scale));
lea(str2, Address(str2, result, scale));
} else {
lea(str1, Address(str1, result, scale1));
lea(str2, Address(str2, result, scale2));
}
negptr(result);
// pcmpestri
// inputs:
// vec1- substring
// rax - negative string length (elements count)
// mem - scanned string
// rdx - string length (elements count)
// pcmpmask - cmp mode: 11000 (string compare with negated result)
// + 00 (unsigned bytes) or + 01 (unsigned shorts)
// outputs:
// rcx - first mismatched element index
assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
bind(COMPARE_WIDE_VECTORS);
if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
movdqu(vec1, Address(str1, result, scale));
pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
} else {
pmovzxbw(vec1, Address(str1, result, scale1));
pcmpestri(vec1, Address(str2, result, scale2), pcmpmask);
}
// After pcmpestri cnt1(rcx) contains mismatched element index
jccb(Assembler::below, VECTOR_NOT_EQUAL); // CF==1
addptr(result, stride);
subptr(cnt2, stride);
jccb(Assembler::notZero, COMPARE_WIDE_VECTORS);
// compare wide vectors tail
testptr(result, result);
jcc(Assembler::zero, LENGTH_DIFF_LABEL);
movl(cnt2, stride);
movl(result, stride);
negptr(result);
if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
movdqu(vec1, Address(str1, result, scale));
pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
} else {
pmovzxbw(vec1, Address(str1, result, scale1));
pcmpestri(vec1, Address(str2, result, scale2), pcmpmask);
}
jccb(Assembler::aboveEqual, LENGTH_DIFF_LABEL);
// Mismatched characters in the vectors
bind(VECTOR_NOT_EQUAL);
addptr(cnt1, result);
load_next_elements(result, cnt2, str1, str2, scale, scale1, scale2, cnt1, ae);
subl(result, cnt2);
jmpb(POP_LABEL);
bind(COMPARE_TAIL); // limit is zero
movl(cnt2, result);
// Fallthru to tail compare
}
// Shift str2 and str1 to the end of the arrays, negate min
if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
lea(str1, Address(str1, cnt2, scale));
lea(str2, Address(str2, cnt2, scale));
} else {
lea(str1, Address(str1, cnt2, scale1));
lea(str2, Address(str2, cnt2, scale2));
}
decrementl(cnt2); // first character was compared already
negptr(cnt2);
// Compare the rest of the elements
bind(WHILE_HEAD_LABEL);
load_next_elements(result, cnt1, str1, str2, scale, scale1, scale2, cnt2, ae);
subl(result, cnt1);
jccb(Assembler::notZero, POP_LABEL);
increment(cnt2);
jccb(Assembler::notZero, WHILE_HEAD_LABEL);
// Strings are equal up to min length. Return the length difference.
bind(LENGTH_DIFF_LABEL);
pop(result);
if (ae == StrIntrinsicNode::UU) {
// Divide diff by 2 to get number of chars
sarl(result, 1);
}
jmpb(DONE_LABEL);
#ifdef _LP64
if (VM_Version::supports_avx512vlbw()) {
bind(COMPARE_WIDE_VECTORS_LOOP_FAILED);
kmovql(cnt1, k7);
notq(cnt1);
bsfq(cnt2, cnt1);
if (ae != StrIntrinsicNode::LL) {
// Divide diff by 2 to get number of chars
sarl(cnt2, 1);
}
addq(result, cnt2);
if (ae == StrIntrinsicNode::LL) {
load_unsigned_byte(cnt1, Address(str2, result));
load_unsigned_byte(result, Address(str1, result));
} else if (ae == StrIntrinsicNode::UU) {
load_unsigned_short(cnt1, Address(str2, result, scale));
load_unsigned_short(result, Address(str1, result, scale));
} else {
load_unsigned_short(cnt1, Address(str2, result, scale2));
load_unsigned_byte(result, Address(str1, result, scale1));
}
subl(result, cnt1);
jmpb(POP_LABEL);
}//if (VM_Version::supports_avx512vlbw())
#endif // _LP64
// Discard the stored length difference
bind(POP_LABEL);
pop(cnt1);
// That's it
bind(DONE_LABEL);
if(ae == StrIntrinsicNode::UL) {
negl(result);
}
}
// Search for Non-ASCII character (Negative byte value) in a byte array,
// return true if it has any and false otherwise.
// ..\jdk\src\java.base\share\classes\java\lang\StringCoding.java
// @HotSpotIntrinsicCandidate
// private static boolean hasNegatives(byte[] ba, int off, int len) {
// for (int i = off; i < off + len; i++) {
// if (ba[i] < 0) {
// return true;
// }
// }
// return false;
// }
void MacroAssembler::has_negatives(Register ary1, Register len,
Register result, Register tmp1,
XMMRegister vec1, XMMRegister vec2) {
// rsi: byte array
// rcx: len
// rax: result
ShortBranchVerifier sbv(this);
assert_different_registers(ary1, len, result, tmp1);
assert_different_registers(vec1, vec2);
Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_CHAR, COMPARE_VECTORS, COMPARE_BYTE;
// len == 0
testl(len, len);
jcc(Assembler::zero, FALSE_LABEL);
if ((AVX3Threshold == 0) && (UseAVX > 2) && // AVX512
VM_Version::supports_avx512vlbw() &&
VM_Version::supports_bmi2()) {
Label test_64_loop, test_tail;
Register tmp3_aliased = len;
movl(tmp1, len);
vpxor(vec2, vec2, vec2, Assembler::AVX_512bit);
andl(tmp1, 64 - 1); // tail count (in chars) 0x3F
andl(len, ~(64 - 1)); // vector count (in chars)
jccb(Assembler::zero, test_tail);
lea(ary1, Address(ary1, len, Address::times_1));
negptr(len);
bind(test_64_loop);
// Check whether our 64 elements of size byte contain negatives
evpcmpgtb(k2, vec2, Address(ary1, len, Address::times_1), Assembler::AVX_512bit);
kortestql(k2, k2);
jcc(Assembler::notZero, TRUE_LABEL);
addptr(len, 64);
jccb(Assembler::notZero, test_64_loop);
bind(test_tail);
// bail out when there is nothing to be done
testl(tmp1, -1);
jcc(Assembler::zero, FALSE_LABEL);
// ~(~0 << len) applied up to two times (for 32-bit scenario)
#ifdef _LP64
mov64(tmp3_aliased, 0xFFFFFFFFFFFFFFFF);
shlxq(tmp3_aliased, tmp3_aliased, tmp1);
notq(tmp3_aliased);
kmovql(k3, tmp3_aliased);
#else
Label k_init;
jmp(k_init);
// We could not read 64-bits from a general purpose register thus we move
// data required to compose 64 1's to the instruction stream
// We emit 64 byte wide series of elements from 0..63 which later on would
// be used as a compare targets with tail count contained in tmp1 register.
// Result would be a k register having tmp1 consecutive number or 1
// counting from least significant bit.
address tmp = pc();
emit_int64(0x0706050403020100);
emit_int64(0x0F0E0D0C0B0A0908);
emit_int64(0x1716151413121110);
emit_int64(0x1F1E1D1C1B1A1918);
emit_int64(0x2726252423222120);
emit_int64(0x2F2E2D2C2B2A2928);
emit_int64(0x3736353433323130);
emit_int64(0x3F3E3D3C3B3A3938);
bind(k_init);
lea(len, InternalAddress(tmp));
// create mask to test for negative byte inside a vector
evpbroadcastb(vec1, tmp1, Assembler::AVX_512bit);
evpcmpgtb(k3, vec1, Address(len, 0), Assembler::AVX_512bit);
#endif
evpcmpgtb(k2, k3, vec2, Address(ary1, 0), Assembler::AVX_512bit);
ktestq(k2, k3);
jcc(Assembler::notZero, TRUE_LABEL);
jmp(FALSE_LABEL);
} else {
movl(result, len); // copy
if (UseAVX >= 2 && UseSSE >= 2) {
// With AVX2, use 32-byte vector compare
Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
// Compare 32-byte vectors
andl(result, 0x0000001f); // tail count (in bytes)
andl(len, 0xffffffe0); // vector count (in bytes)
jccb(Assembler::zero, COMPARE_TAIL);
lea(ary1, Address(ary1, len, Address::times_1));
negptr(len);
movl(tmp1, 0x80808080); // create mask to test for Unicode chars in vector
movdl(vec2, tmp1);
vpbroadcastd(vec2, vec2, Assembler::AVX_256bit);
bind(COMPARE_WIDE_VECTORS);
vmovdqu(vec1, Address(ary1, len, Address::times_1));
vptest(vec1, vec2);
jccb(Assembler::notZero, TRUE_LABEL);
addptr(len, 32);
jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
testl(result, result);
jccb(Assembler::zero, FALSE_LABEL);
vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
vptest(vec1, vec2);
jccb(Assembler::notZero, TRUE_LABEL);
jmpb(FALSE_LABEL);
bind(COMPARE_TAIL); // len is zero
movl(len, result);
// Fallthru to tail compare
} else if (UseSSE42Intrinsics) {
// With SSE4.2, use double quad vector compare
Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
// Compare 16-byte vectors
andl(result, 0x0000000f); // tail count (in bytes)
andl(len, 0xfffffff0); // vector count (in bytes)
jcc(Assembler::zero, COMPARE_TAIL);
lea(ary1, Address(ary1, len, Address::times_1));
negptr(len);
movl(tmp1, 0x80808080);
movdl(vec2, tmp1);
pshufd(vec2, vec2, 0);
bind(COMPARE_WIDE_VECTORS);
movdqu(vec1, Address(ary1, len, Address::times_1));
ptest(vec1, vec2);
jcc(Assembler::notZero, TRUE_LABEL);
addptr(len, 16);
jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
testl(result, result);
jcc(Assembler::zero, FALSE_LABEL);
movdqu(vec1, Address(ary1, result, Address::times_1, -16));
ptest(vec1, vec2);
jccb(Assembler::notZero, TRUE_LABEL);
jmpb(FALSE_LABEL);
bind(COMPARE_TAIL); // len is zero
movl(len, result);
// Fallthru to tail compare
}
}
// Compare 4-byte vectors
andl(len, 0xfffffffc); // vector count (in bytes)
jccb(Assembler::zero, COMPARE_CHAR);
lea(ary1, Address(ary1, len, Address::times_1));
negptr(len);
bind(COMPARE_VECTORS);
movl(tmp1, Address(ary1, len, Address::times_1));
andl(tmp1, 0x80808080);
jccb(Assembler::notZero, TRUE_LABEL);
addptr(len, 4);
jcc(Assembler::notZero, COMPARE_VECTORS);
// Compare trailing char (final 2 bytes), if any
bind(COMPARE_CHAR);
testl(result, 0x2); // tail char
jccb(Assembler::zero, COMPARE_BYTE);
load_unsigned_short(tmp1, Address(ary1, 0));
andl(tmp1, 0x00008080);
jccb(Assembler::notZero, TRUE_LABEL);
subptr(result, 2);
lea(ary1, Address(ary1, 2));
bind(COMPARE_BYTE);
testl(result, 0x1); // tail byte
jccb(Assembler::zero, FALSE_LABEL);
load_unsigned_byte(tmp1, Address(ary1, 0));
andl(tmp1, 0x00000080);
jccb(Assembler::notEqual, TRUE_LABEL);
jmpb(FALSE_LABEL);
bind(TRUE_LABEL);
movl(result, 1); // return true
jmpb(DONE);
bind(FALSE_LABEL);
xorl(result, result); // return false
// That's it
bind(DONE);
if (UseAVX >= 2 && UseSSE >= 2) {
// clean upper bits of YMM registers
vpxor(vec1, vec1);
vpxor(vec2, vec2);
}
}
// Compare char[] or byte[] arrays aligned to 4 bytes or substrings.
void MacroAssembler::arrays_equals(bool is_array_equ, Register ary1, Register ary2,
Register limit, Register result, Register chr,
XMMRegister vec1, XMMRegister vec2, bool is_char) {
ShortBranchVerifier sbv(this);
Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR, COMPARE_BYTE;
int length_offset = arrayOopDesc::length_offset_in_bytes();
int base_offset = arrayOopDesc::base_offset_in_bytes(is_char ? T_CHAR : T_BYTE);
if (is_array_equ) {
// Check the input args
cmpoop(ary1, ary2);
jcc(Assembler::equal, TRUE_LABEL);
// Need additional checks for arrays_equals.
testptr(ary1, ary1);
jcc(Assembler::zero, FALSE_LABEL);
testptr(ary2, ary2);
jcc(Assembler::zero, FALSE_LABEL);
// Check the lengths
movl(limit, Address(ary1, length_offset));
cmpl(limit, Address(ary2, length_offset));
jcc(Assembler::notEqual, FALSE_LABEL);
}
// count == 0
testl(limit, limit);
jcc(Assembler::zero, TRUE_LABEL);
if (is_array_equ) {
// Load array address
lea(ary1, Address(ary1, base_offset));
lea(ary2, Address(ary2, base_offset));
}
if (is_array_equ && is_char) {
// arrays_equals when used for char[].
shll(limit, 1); // byte count != 0
}
movl(result, limit); // copy
if (UseAVX >= 2) {
// With AVX2, use 32-byte vector compare
Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
// Compare 32-byte vectors
andl(result, 0x0000001f); // tail count (in bytes)
andl(limit, 0xffffffe0); // vector count (in bytes)
jcc(Assembler::zero, COMPARE_TAIL);
lea(ary1, Address(ary1, limit, Address::times_1));
lea(ary2, Address(ary2, limit, Address::times_1));
negptr(limit);
#ifdef _LP64
if ((AVX3Threshold == 0) && VM_Version::supports_avx512vlbw()) { // trying 64 bytes fast loop
Label COMPARE_WIDE_VECTORS_LOOP_AVX2, COMPARE_WIDE_VECTORS_LOOP_AVX3;
cmpl(limit, -64);
jcc(Assembler::greater, COMPARE_WIDE_VECTORS_LOOP_AVX2);
bind(COMPARE_WIDE_VECTORS_LOOP_AVX3); // the hottest loop
evmovdquq(vec1, Address(ary1, limit, Address::times_1), Assembler::AVX_512bit);
evpcmpeqb(k7, vec1, Address(ary2, limit, Address::times_1), Assembler::AVX_512bit);
kortestql(k7, k7);
jcc(Assembler::aboveEqual, FALSE_LABEL); // miscompare
addptr(limit, 64); // update since we already compared at this addr
cmpl(limit, -64);
jccb(Assembler::lessEqual, COMPARE_WIDE_VECTORS_LOOP_AVX3);
// At this point we may still need to compare -limit+result bytes.
// We could execute the next two instruction and just continue via non-wide path:
// cmpl(limit, 0);
// jcc(Assembler::equal, COMPARE_TAIL); // true
// But since we stopped at the points ary{1,2}+limit which are
// not farther than 64 bytes from the ends of arrays ary{1,2}+result
// (|limit| <= 32 and result < 32),
// we may just compare the last 64 bytes.
//
addptr(result, -64); // it is safe, bc we just came from this area
evmovdquq(vec1, Address(ary1, result, Address::times_1), Assembler::AVX_512bit);
evpcmpeqb(k7, vec1, Address(ary2, result, Address::times_1), Assembler::AVX_512bit);
kortestql(k7, k7);
jcc(Assembler::aboveEqual, FALSE_LABEL); // miscompare
jmp(TRUE_LABEL);
bind(COMPARE_WIDE_VECTORS_LOOP_AVX2);
}//if (VM_Version::supports_avx512vlbw())
#endif //_LP64
bind(COMPARE_WIDE_VECTORS);
vmovdqu(vec1, Address(ary1, limit, Address::times_1));
vmovdqu(vec2, Address(ary2, limit, Address::times_1));
vpxor(vec1, vec2);
vptest(vec1, vec1);
jcc(Assembler::notZero, FALSE_LABEL);
addptr(limit, 32);
jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
testl(result, result);
jcc(Assembler::zero, TRUE_LABEL);
vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
vmovdqu(vec2, Address(ary2, result, Address::times_1, -32));
vpxor(vec1, vec2);
vptest(vec1, vec1);
jccb(Assembler::notZero, FALSE_LABEL);
jmpb(TRUE_LABEL);
bind(COMPARE_TAIL); // limit is zero
movl(limit, result);
// Fallthru to tail compare
} else if (UseSSE42Intrinsics) {
// With SSE4.2, use double quad vector compare
Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
// Compare 16-byte vectors
andl(result, 0x0000000f); // tail count (in bytes)
andl(limit, 0xfffffff0); // vector count (in bytes)
jcc(Assembler::zero, COMPARE_TAIL);
lea(ary1, Address(ary1, limit, Address::times_1));
lea(ary2, Address(ary2, limit, Address::times_1));
negptr(limit);
bind(COMPARE_WIDE_VECTORS);
movdqu(vec1, Address(ary1, limit, Address::times_1));
movdqu(vec2, Address(ary2, limit, Address::times_1));
pxor(vec1, vec2);
ptest(vec1, vec1);
jcc(Assembler::notZero, FALSE_LABEL);
addptr(limit, 16);
jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
testl(result, result);
jcc(Assembler::zero, TRUE_LABEL);
movdqu(vec1, Address(ary1, result, Address::times_1, -16));
movdqu(vec2, Address(ary2, result, Address::times_1, -16));
pxor(vec1, vec2);
ptest(vec1, vec1);
jccb(Assembler::notZero, FALSE_LABEL);
jmpb(TRUE_LABEL);
bind(COMPARE_TAIL); // limit is zero
movl(limit, result);
// Fallthru to tail compare
}
// Compare 4-byte vectors
andl(limit, 0xfffffffc); // vector count (in bytes)
jccb(Assembler::zero, COMPARE_CHAR);
lea(ary1, Address(ary1, limit, Address::times_1));
lea(ary2, Address(ary2, limit, Address::times_1));
negptr(limit);
bind(COMPARE_VECTORS);
movl(chr, Address(ary1, limit, Address::times_1));
cmpl(chr, Address(ary2, limit, Address::times_1));
jccb(Assembler::notEqual, FALSE_LABEL);
addptr(limit, 4);
jcc(Assembler::notZero, COMPARE_VECTORS);
// Compare trailing char (final 2 bytes), if any
bind(COMPARE_CHAR);
testl(result, 0x2); // tail char
jccb(Assembler::zero, COMPARE_BYTE);
load_unsigned_short(chr, Address(ary1, 0));
load_unsigned_short(limit, Address(ary2, 0));
cmpl(chr, limit);
jccb(Assembler::notEqual, FALSE_LABEL);
if (is_array_equ && is_char) {
bind(COMPARE_BYTE);
} else {
lea(ary1, Address(ary1, 2));
lea(ary2, Address(ary2, 2));
bind(COMPARE_BYTE);
testl(result, 0x1); // tail byte
jccb(Assembler::zero, TRUE_LABEL);
load_unsigned_byte(chr, Address(ary1, 0));
load_unsigned_byte(limit, Address(ary2, 0));
cmpl(chr, limit);
jccb(Assembler::notEqual, FALSE_LABEL);
}
bind(TRUE_LABEL);
movl(result, 1); // return true
jmpb(DONE);
bind(FALSE_LABEL);
xorl(result, result); // return false
// That's it
bind(DONE);
if (UseAVX >= 2) {
// clean upper bits of YMM registers
vpxor(vec1, vec1);
vpxor(vec2, vec2);
}
}
#endif
void MacroAssembler::generate_fill(BasicType t, bool aligned,
Register to, Register value, Register count,
Register rtmp, XMMRegister xtmp) {
ShortBranchVerifier sbv(this);
assert_different_registers(to, value, count, rtmp);
Label L_exit;
Label L_fill_2_bytes, L_fill_4_bytes;
int shift = -1;
switch (t) {
case T_BYTE:
shift = 2;
break;
case T_SHORT:
shift = 1;
break;
case T_INT:
shift = 0;
break;
default: ShouldNotReachHere();
}
if (t == T_BYTE) {
andl(value, 0xff);
movl(rtmp, value);
shll(rtmp, 8);
orl(value, rtmp);
}
if (t == T_SHORT) {
andl(value, 0xffff);
}
if (t == T_BYTE || t == T_SHORT) {
movl(rtmp, value);
shll(rtmp, 16);
orl(value, rtmp);
}
cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
Label L_skip_align2;
// align source address at 4 bytes address boundary
if (t == T_BYTE) {
Label L_skip_align1;
// One byte misalignment happens only for byte arrays
testptr(to, 1);
jccb(Assembler::zero, L_skip_align1);
movb(Address(to, 0), value);
increment(to);
decrement(count);
BIND(L_skip_align1);
}
// Two bytes misalignment happens only for byte and short (char) arrays
testptr(to, 2);
jccb(Assembler::zero, L_skip_align2);
movw(Address(to, 0), value);
addptr(to, 2);
subl(count, 1<<(shift-1));
BIND(L_skip_align2);
}
if (UseSSE < 2) {
Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
// Fill 32-byte chunks
subl(count, 8 << shift);
jcc(Assembler::less, L_check_fill_8_bytes);
align(16);
BIND(L_fill_32_bytes_loop);
for (int i = 0; i < 32; i += 4) {
movl(Address(to, i), value);
}
addptr(to, 32);
subl(count, 8 << shift);
jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
BIND(L_check_fill_8_bytes);
addl(count, 8 << shift);
jccb(Assembler::zero, L_exit);
jmpb(L_fill_8_bytes);
//
// length is too short, just fill qwords
//
BIND(L_fill_8_bytes_loop);
movl(Address(to, 0), value);
movl(Address(to, 4), value);
addptr(to, 8);
BIND(L_fill_8_bytes);
subl(count, 1 << (shift + 1));
jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
// fall through to fill 4 bytes
} else {
Label L_fill_32_bytes;
if (!UseUnalignedLoadStores) {
// align to 8 bytes, we know we are 4 byte aligned to start
testptr(to, 4);
jccb(Assembler::zero, L_fill_32_bytes);
movl(Address(to, 0), value);
addptr(to, 4);
subl(count, 1<<shift);
}
BIND(L_fill_32_bytes);
{
assert( UseSSE >= 2, "supported cpu only" );
Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
movdl(xtmp, value);
if (UseAVX >= 2 && UseUnalignedLoadStores) {
Label L_check_fill_32_bytes;
if (UseAVX > 2) {
// Fill 64-byte chunks
Label L_fill_64_bytes_loop_avx3, L_check_fill_64_bytes_avx2;
// If number of bytes to fill < AVX3Threshold, perform fill using AVX2
cmpl(count, AVX3Threshold);
jccb(Assembler::below, L_check_fill_64_bytes_avx2);
vpbroadcastd(xtmp, xtmp, Assembler::AVX_512bit);
subl(count, 16 << shift);
jccb(Assembler::less, L_check_fill_32_bytes);
align(16);
BIND(L_fill_64_bytes_loop_avx3);
evmovdqul(Address(to, 0), xtmp, Assembler::AVX_512bit);
addptr(to, 64);
subl(count, 16 << shift);
jcc(Assembler::greaterEqual, L_fill_64_bytes_loop_avx3);
jmpb(L_check_fill_32_bytes);
BIND(L_check_fill_64_bytes_avx2);
}
// Fill 64-byte chunks
Label L_fill_64_bytes_loop;
vpbroadcastd(xtmp, xtmp, Assembler::AVX_256bit);
subl(count, 16 << shift);
jcc(Assembler::less, L_check_fill_32_bytes);
align(16);
BIND(L_fill_64_bytes_loop);
vmovdqu(Address(to, 0), xtmp);
vmovdqu(Address(to, 32), xtmp);
addptr(to, 64);
subl(count, 16 << shift);
jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
BIND(L_check_fill_32_bytes);
addl(count, 8 << shift);
jccb(Assembler::less, L_check_fill_8_bytes);
vmovdqu(Address(to, 0), xtmp);
addptr(to, 32);
subl(count, 8 << shift);
BIND(L_check_fill_8_bytes);
// clean upper bits of YMM registers
movdl(xtmp, value);
pshufd(xtmp, xtmp, 0);
} else {
// Fill 32-byte chunks
pshufd(xtmp, xtmp, 0);
subl(count, 8 << shift);
jcc(Assembler::less, L_check_fill_8_bytes);
align(16);
BIND(L_fill_32_bytes_loop);
if (UseUnalignedLoadStores) {
movdqu(Address(to, 0), xtmp);
movdqu(Address(to, 16), xtmp);
} else {
movq(Address(to, 0), xtmp);
movq(Address(to, 8), xtmp);
movq(Address(to, 16), xtmp);
movq(Address(to, 24), xtmp);
}
addptr(to, 32);
subl(count, 8 << shift);
jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
BIND(L_check_fill_8_bytes);
}
addl(count, 8 << shift);
jccb(Assembler::zero, L_exit);
jmpb(L_fill_8_bytes);
//
// length is too short, just fill qwords
//
BIND(L_fill_8_bytes_loop);
movq(Address(to, 0), xtmp);
addptr(to, 8);
BIND(L_fill_8_bytes);
subl(count, 1 << (shift + 1));
jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
}
}
// fill trailing 4 bytes
BIND(L_fill_4_bytes);
testl(count, 1<<shift);
jccb(Assembler::zero, L_fill_2_bytes);
movl(Address(to, 0), value);
if (t == T_BYTE || t == T_SHORT) {
Label L_fill_byte;
addptr(to, 4);
BIND(L_fill_2_bytes);
// fill trailing 2 bytes
testl(count, 1<<(shift-1));
jccb(Assembler::zero, L_fill_byte);
movw(Address(to, 0), value);
if (t == T_BYTE) {
addptr(to, 2);
BIND(L_fill_byte);
// fill trailing byte
testl(count, 1);
jccb(Assembler::zero, L_exit);
movb(Address(to, 0), value);
} else {
BIND(L_fill_byte);
}
} else {
BIND(L_fill_2_bytes);
}
BIND(L_exit);
}
// encode char[] to byte[] in ISO_8859_1
//@HotSpotIntrinsicCandidate
//private static int implEncodeISOArray(byte[] sa, int sp,
//byte[] da, int dp, int len) {
// int i = 0;
// for (; i < len; i++) {
// char c = StringUTF16.getChar(sa, sp++);
// if (c > '\u00FF')
// break;
// da[dp++] = (byte)c;
// }
// return i;
//}
void MacroAssembler::encode_iso_array(Register src, Register dst, Register len,
XMMRegister tmp1Reg, XMMRegister tmp2Reg,
XMMRegister tmp3Reg, XMMRegister tmp4Reg,
Register tmp5, Register result) {
// rsi: src
// rdi: dst
// rdx: len
// rcx: tmp5
// rax: result
ShortBranchVerifier sbv(this);
assert_different_registers(src, dst, len, tmp5, result);
Label L_done, L_copy_1_char, L_copy_1_char_exit;
// set result
xorl(result, result);
// check for zero length
testl(len, len);
jcc(Assembler::zero, L_done);
movl(result, len);
// Setup pointers
lea(src, Address(src, len, Address::times_2)); // char[]
lea(dst, Address(dst, len, Address::times_1)); // byte[]
negptr(len);
if (UseSSE42Intrinsics || UseAVX >= 2) {
Label L_copy_8_chars, L_copy_8_chars_exit;
Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit;
if (UseAVX >= 2) {
Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit;
movl(tmp5, 0xff00ff00); // create mask to test for Unicode chars in vector
movdl(tmp1Reg, tmp5);
vpbroadcastd(tmp1Reg, tmp1Reg, Assembler::AVX_256bit);
jmp(L_chars_32_check);
bind(L_copy_32_chars);
vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64));
vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32));
vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
vptest(tmp2Reg, tmp1Reg); // check for Unicode chars in vector
jccb(Assembler::notZero, L_copy_32_chars_exit);
vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector_len */ 1);
vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg);
bind(L_chars_32_check);
addptr(len, 32);
jcc(Assembler::lessEqual, L_copy_32_chars);
bind(L_copy_32_chars_exit);
subptr(len, 16);
jccb(Assembler::greater, L_copy_16_chars_exit);
} else if (UseSSE42Intrinsics) {
movl(tmp5, 0xff00ff00); // create mask to test for Unicode chars in vector
movdl(tmp1Reg, tmp5);
pshufd(tmp1Reg, tmp1Reg, 0);
jmpb(L_chars_16_check);
}
bind(L_copy_16_chars);
if (UseAVX >= 2) {
vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32));
vptest(tmp2Reg, tmp1Reg);
jcc(Assembler::notZero, L_copy_16_chars_exit);
vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector_len */ 1);
vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector_len */ 1);
} else {
if (UseAVX > 0) {
movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 0);
} else {
movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
por(tmp2Reg, tmp3Reg);
movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
por(tmp2Reg, tmp4Reg);
}
ptest(tmp2Reg, tmp1Reg); // check for Unicode chars in vector
jccb(Assembler::notZero, L_copy_16_chars_exit);
packuswb(tmp3Reg, tmp4Reg);
}
movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg);
bind(L_chars_16_check);
addptr(len, 16);
jcc(Assembler::lessEqual, L_copy_16_chars);
bind(L_copy_16_chars_exit);
if (UseAVX >= 2) {
// clean upper bits of YMM registers
vpxor(tmp2Reg, tmp2Reg);
vpxor(tmp3Reg, tmp3Reg);
vpxor(tmp4Reg, tmp4Reg);
movdl(tmp1Reg, tmp5);
pshufd(tmp1Reg, tmp1Reg, 0);
}
subptr(len, 8);
jccb(Assembler::greater, L_copy_8_chars_exit);
bind(L_copy_8_chars);
movdqu(tmp3Reg, Address(src, len, Address::times_2, -16));
ptest(tmp3Reg, tmp1Reg);
jccb(Assembler::notZero, L_copy_8_chars_exit);
packuswb(tmp3Reg, tmp1Reg);
movq(Address(dst, len, Address::times_1, -8), tmp3Reg);
addptr(len, 8);
jccb(Assembler::lessEqual, L_copy_8_chars);
bind(L_copy_8_chars_exit);
subptr(len, 8);
jccb(Assembler::zero, L_done);
}
bind(L_copy_1_char);
load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0));
testl(tmp5, 0xff00); // check if Unicode char
jccb(Assembler::notZero, L_copy_1_char_exit);
movb(Address(dst, len, Address::times_1, 0), tmp5);
addptr(len, 1);
jccb(Assembler::less, L_copy_1_char);
bind(L_copy_1_char_exit);
addptr(result, len); // len is negative count of not processed elements
bind(L_done);
}
#ifdef _LP64
/**
* Helper for multiply_to_len().
*/
void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
addq(dest_lo, src1);
adcq(dest_hi, 0);
addq(dest_lo, src2);
adcq(dest_hi, 0);
}
/**
* Multiply 64 bit by 64 bit first loop.
*/
void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
Register y, Register y_idx, Register z,
Register carry, Register product,
Register idx, Register kdx) {
//
// jlong carry, x[], y[], z[];
// for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
// huge_128 product = y[idx] * x[xstart] + carry;
// z[kdx] = (jlong)product;
// carry = (jlong)(product >>> 64);
// }
// z[xstart] = carry;
//
Label L_first_loop, L_first_loop_exit;
Label L_one_x, L_one_y, L_multiply;
decrementl(xstart);
jcc(Assembler::negative, L_one_x);
movq(x_xstart, Address(x, xstart, Address::times_4, 0));
rorq(x_xstart, 32); // convert big-endian to little-endian
bind(L_first_loop);
decrementl(idx);
jcc(Assembler::negative, L_first_loop_exit);
decrementl(idx);
jcc(Assembler::negative, L_one_y);
movq(y_idx, Address(y, idx, Address::times_4, 0));
rorq(y_idx, 32); // convert big-endian to little-endian
bind(L_multiply);
movq(product, x_xstart);
mulq(y_idx); // product(rax) * y_idx -> rdx:rax
addq(product, carry);
adcq(rdx, 0);
subl(kdx, 2);
movl(Address(z, kdx, Address::times_4, 4), product);
shrq(product, 32);
movl(Address(z, kdx, Address::times_4, 0), product);
movq(carry, rdx);
jmp(L_first_loop);
bind(L_one_y);
movl(y_idx, Address(y, 0));
jmp(L_multiply);
bind(L_one_x);
movl(x_xstart, Address(x, 0));
jmp(L_first_loop);
bind(L_first_loop_exit);
}
/**
* Multiply 64 bit by 64 bit and add 128 bit.
*/
void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y, Register z,
Register yz_idx, Register idx,
Register carry, Register product, int offset) {
// huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry;
// z[kdx] = (jlong)product;
movq(yz_idx, Address(y, idx, Address::times_4, offset));
rorq(yz_idx, 32); // convert big-endian to little-endian
movq(product, x_xstart);
mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax)
movq(yz_idx, Address(z, idx, Address::times_4, offset));
rorq(yz_idx, 32); // convert big-endian to little-endian
add2_with_carry(rdx, product, carry, yz_idx);
movl(Address(z, idx, Address::times_4, offset+4), product);
shrq(product, 32);
movl(Address(z, idx, Address::times_4, offset), product);
}
/**
* Multiply 128 bit by 128 bit. Unrolled inner loop.
*/
void MacroAssembler::multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
Register yz_idx, Register idx, Register jdx,
Register carry, Register product,
Register carry2) {
// jlong carry, x[], y[], z[];
// int kdx = ystart+1;
// for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
// huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry;
// z[kdx+idx+1] = (jlong)product;
// jlong carry2 = (jlong)(product >>> 64);
// product = (y[idx] * x_xstart) + z[kdx+idx] + carry2;
// z[kdx+idx] = (jlong)product;
// carry = (jlong)(product >>> 64);
// }
// idx += 2;
// if (idx > 0) {
// product = (y[idx] * x_xstart) + z[kdx+idx] + carry;
// z[kdx+idx] = (jlong)product;
// carry = (jlong)(product >>> 64);
// }
//
Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
movl(jdx, idx);
andl(jdx, 0xFFFFFFFC);
shrl(jdx, 2);
bind(L_third_loop);
subl(jdx, 1);
jcc(Assembler::negative, L_third_loop_exit);
subl(idx, 4);
multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8);
movq(carry2, rdx);
multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0);
movq(carry, rdx);
jmp(L_third_loop);
bind (L_third_loop_exit);
andl (idx, 0x3);
jcc(Assembler::zero, L_post_third_loop_done);
Label L_check_1;
subl(idx, 2);
jcc(Assembler::negative, L_check_1);
multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0);
movq(carry, rdx);
bind (L_check_1);
addl (idx, 0x2);
andl (idx, 0x1);
subl(idx, 1);
jcc(Assembler::negative, L_post_third_loop_done);
movl(yz_idx, Address(y, idx, Address::times_4, 0));
movq(product, x_xstart);
mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax)
movl(yz_idx, Address(z, idx, Address::times_4, 0));
add2_with_carry(rdx, product, yz_idx, carry);
movl(Address(z, idx, Address::times_4, 0), product);
shrq(product, 32);
shlq(rdx, 32);
orq(product, rdx);
movq(carry, product);
bind(L_post_third_loop_done);
}
/**
* Multiply 128 bit by 128 bit using BMI2. Unrolled inner loop.
*
*/
void MacroAssembler::multiply_128_x_128_bmi2_loop(Register y, Register z,
Register carry, Register carry2,
Register idx, Register jdx,
Register yz_idx1, Register yz_idx2,
Register tmp, Register tmp3, Register tmp4) {
assert(UseBMI2Instructions, "should be used only when BMI2 is available");
// jlong carry, x[], y[], z[];
// int kdx = ystart+1;
// for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
// huge_128 tmp3 = (y[idx+1] * rdx) + z[kdx+idx+1] + carry;
// jlong carry2 = (jlong)(tmp3 >>> 64);
// huge_128 tmp4 = (y[idx] * rdx) + z[kdx+idx] + carry2;
// carry = (jlong)(tmp4 >>> 64);
// z[kdx+idx+1] = (jlong)tmp3;
// z[kdx+idx] = (jlong)tmp4;
// }
// idx += 2;
// if (idx > 0) {
// yz_idx1 = (y[idx] * rdx) + z[kdx+idx] + carry;
// z[kdx+idx] = (jlong)yz_idx1;
// carry = (jlong)(yz_idx1 >>> 64);
// }
//
Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
movl(jdx, idx);
andl(jdx, 0xFFFFFFFC);
shrl(jdx, 2);
bind(L_third_loop);
subl(jdx, 1);
jcc(Assembler::negative, L_third_loop_exit);
subl(idx, 4);
movq(yz_idx1, Address(y, idx, Address::times_4, 8));
rorxq(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian
movq(yz_idx2, Address(y, idx, Address::times_4, 0));
rorxq(yz_idx2, yz_idx2, 32);
mulxq(tmp4, tmp3, yz_idx1); // yz_idx1 * rdx -> tmp4:tmp3
mulxq(carry2, tmp, yz_idx2); // yz_idx2 * rdx -> carry2:tmp
movq(yz_idx1, Address(z, idx, Address::times_4, 8));
rorxq(yz_idx1, yz_idx1, 32);
movq(yz_idx2, Address(z, idx, Address::times_4, 0));
rorxq(yz_idx2, yz_idx2, 32);
if (VM_Version::supports_adx()) {
adcxq(tmp3, carry);
adoxq(tmp3, yz_idx1);
adcxq(tmp4, tmp);
adoxq(tmp4, yz_idx2);
movl(carry, 0); // does not affect flags
adcxq(carry2, carry);
adoxq(carry2, carry);
} else {
add2_with_carry(tmp4, tmp3, carry, yz_idx1);
add2_with_carry(carry2, tmp4, tmp, yz_idx2);
}
movq(carry, carry2);
movl(Address(z, idx, Address::times_4, 12), tmp3);
shrq(tmp3, 32);
movl(Address(z, idx, Address::times_4, 8), tmp3);
movl(Address(z, idx, Address::times_4, 4), tmp4);
shrq(tmp4, 32);
movl(Address(z, idx, Address::times_4, 0), tmp4);
jmp(L_third_loop);
bind (L_third_loop_exit);
andl (idx, 0x3);
jcc(Assembler::zero, L_post_third_loop_done);
Label L_check_1;
subl(idx, 2);
jcc(Assembler::negative, L_check_1);
movq(yz_idx1, Address(y, idx, Address::times_4, 0));
rorxq(yz_idx1, yz_idx1, 32);
mulxq(tmp4, tmp3, yz_idx1); // yz_idx1 * rdx -> tmp4:tmp3
movq(yz_idx2, Address(z, idx, Address::times_4, 0));
rorxq(yz_idx2, yz_idx2, 32);
add2_with_carry(tmp4, tmp3, carry, yz_idx2);
movl(Address(z, idx, Address::times_4, 4), tmp3);
shrq(tmp3, 32);
movl(Address(z, idx, Address::times_4, 0), tmp3);
movq(carry, tmp4);
bind (L_check_1);
addl (idx, 0x2);
andl (idx, 0x1);
subl(idx, 1);
jcc(Assembler::negative, L_post_third_loop_done);
movl(tmp4, Address(y, idx, Address::times_4, 0));
mulxq(carry2, tmp3, tmp4); // tmp4 * rdx -> carry2:tmp3
movl(tmp4, Address(z, idx, Address::times_4, 0));
add2_with_carry(carry2, tmp3, tmp4, carry);
movl(Address(z, idx, Address::times_4, 0), tmp3);
shrq(tmp3, 32);
shlq(carry2, 32);
orq(tmp3, carry2);
movq(carry, tmp3);
bind(L_post_third_loop_done);
}
/**
* Code for BigInteger::multiplyToLen() instrinsic.
*
* rdi: x
* rax: xlen
* rsi: y
* rcx: ylen
* r8: z
* r11: zlen
* r12: tmp1
* r13: tmp2
* r14: tmp3
* r15: tmp4
* rbx: tmp5
*
*/
void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) {
ShortBranchVerifier sbv(this);
assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx);
push(tmp1);
push(tmp2);
push(tmp3);
push(tmp4);
push(tmp5);
push(xlen);
push(zlen);
const Register idx = tmp1;
const Register kdx = tmp2;
const Register xstart = tmp3;
const Register y_idx = tmp4;
const Register carry = tmp5;
const Register product = xlen;
const Register x_xstart = zlen; // reuse register
// First Loop.
//
// final static long LONG_MASK = 0xffffffffL;
// int xstart = xlen - 1;
// int ystart = ylen - 1;
// long carry = 0;
// for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
// long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
// z[kdx] = (int)product;
// carry = product >>> 32;
// }
// z[xstart] = (int)carry;
//
movl(idx, ylen); // idx = ylen;
movl(kdx, zlen); // kdx = xlen+ylen;
xorq(carry, carry); // carry = 0;
Label L_done;
movl(xstart, xlen);
decrementl(xstart);
jcc(Assembler::negative, L_done);
multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
Label L_second_loop;
testl(kdx, kdx);
jcc(Assembler::zero, L_second_loop);
Label L_carry;
subl(kdx, 1);
jcc(Assembler::zero, L_carry);
movl(Address(z, kdx, Address::times_4, 0), carry);
shrq(carry, 32);
subl(kdx, 1);
bind(L_carry);
movl(Address(z, kdx, Address::times_4, 0), carry);
// Second and third (nested) loops.
//
// for (int i = xstart-1; i >= 0; i--) { // Second loop
// carry = 0;
// for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
// long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
// (z[k] & LONG_MASK) + carry;
// z[k] = (int)product;
// carry = product >>> 32;
// }
// z[i] = (int)carry;
// }
//
// i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx
const Register jdx = tmp1;
bind(L_second_loop);
xorl(carry, carry); // carry = 0;
movl(jdx, ylen); // j = ystart+1
subl(xstart, 1); // i = xstart-1;
jcc(Assembler::negative, L_done);
push (z);
Label L_last_x;
lea(z, Address(z, xstart, Address::times_4, 4)); // z = z + k - j
subl(xstart, 1); // i = xstart-1;
jcc(Assembler::negative, L_last_x);
if (UseBMI2Instructions) {
movq(rdx, Address(x, xstart, Address::times_4, 0));
rorxq(rdx, rdx, 32); // convert big-endian to little-endian
} else {
movq(x_xstart, Address(x, xstart, Address::times_4, 0));
rorq(x_xstart, 32); // convert big-endian to little-endian
}
Label L_third_loop_prologue;
bind(L_third_loop_prologue);
push (x);
push (xstart);
push (ylen);
if (UseBMI2Instructions) {
multiply_128_x_128_bmi2_loop(y, z, carry, x, jdx, ylen, product, tmp2, x_xstart, tmp3, tmp4);
} else { // !UseBMI2Instructions
multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x);
}
pop(ylen);
pop(xlen);
pop(x);
pop(z);
movl(tmp3, xlen);
addl(tmp3, 1);
movl(Address(z, tmp3, Address::times_4, 0), carry);
subl(tmp3, 1);
jccb(Assembler::negative, L_done);
shrq(carry, 32);
movl(Address(z, tmp3, Address::times_4, 0), carry);
jmp(L_second_loop);
// Next infrequent code is moved outside loops.
bind(L_last_x);
if (UseBMI2Instructions) {
movl(rdx, Address(x, 0));
} else {
movl(x_xstart, Address(x, 0));
}
jmp(L_third_loop_prologue);
bind(L_done);
pop(zlen);
pop(xlen);
pop(tmp5);
pop(tmp4);
pop(tmp3);
pop(tmp2);
pop(tmp1);
}
void MacroAssembler::vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
Register result, Register tmp1, Register tmp2, XMMRegister rymm0, XMMRegister rymm1, XMMRegister rymm2){
assert(UseSSE42Intrinsics, "SSE4.2 must be enabled.");
Label VECTOR16_LOOP, VECTOR8_LOOP, VECTOR4_LOOP;
Label VECTOR8_TAIL, VECTOR4_TAIL;
Label VECTOR32_NOT_EQUAL, VECTOR16_NOT_EQUAL, VECTOR8_NOT_EQUAL, VECTOR4_NOT_EQUAL;
Label SAME_TILL_END, DONE;
Label BYTES_LOOP, BYTES_TAIL, BYTES_NOT_EQUAL;
//scale is in rcx in both Win64 and Unix
ShortBranchVerifier sbv(this);
shlq(length);
xorq(result, result);
if ((AVX3Threshold == 0) && (UseAVX > 2) &&
VM_Version::supports_avx512vlbw()) {
Label VECTOR64_LOOP, VECTOR64_NOT_EQUAL, VECTOR32_TAIL;
cmpq(length, 64);
jcc(Assembler::less, VECTOR32_TAIL);
movq(tmp1, length);
andq(tmp1, 0x3F); // tail count
andq(length, ~(0x3F)); //vector count
bind(VECTOR64_LOOP);
// AVX512 code to compare 64 byte vectors.
evmovdqub(rymm0, Address(obja, result), Assembler::AVX_512bit);
evpcmpeqb(k7, rymm0, Address(objb, result), Assembler::AVX_512bit);
kortestql(k7, k7);
jcc(Assembler::aboveEqual, VECTOR64_NOT_EQUAL); // mismatch
addq(result, 64);
subq(length, 64);
jccb(Assembler::notZero, VECTOR64_LOOP);
//bind(VECTOR64_TAIL);
testq(tmp1, tmp1);
jcc(Assembler::zero, SAME_TILL_END);
//bind(VECTOR64_TAIL);
// AVX512 code to compare upto 63 byte vectors.
mov64(tmp2, 0xFFFFFFFFFFFFFFFF);
shlxq(tmp2, tmp2, tmp1);
notq(tmp2);
kmovql(k3, tmp2);
evmovdqub(rymm0, k3, Address(obja, result), Assembler::AVX_512bit);
evpcmpeqb(k7, k3, rymm0, Address(objb, result), Assembler::AVX_512bit);
ktestql(k7, k3);
jcc(Assembler::below, SAME_TILL_END); // not mismatch
bind(VECTOR64_NOT_EQUAL);
kmovql(tmp1, k7);
notq(tmp1);
tzcntq(tmp1, tmp1);
addq(result, tmp1);
shrq(result);
jmp(DONE);
bind(VECTOR32_TAIL);
}
cmpq(length, 8);
jcc(Assembler::equal, VECTOR8_LOOP);
jcc(Assembler::less, VECTOR4_TAIL);
if (UseAVX >= 2) {
Label VECTOR16_TAIL, VECTOR32_LOOP;
cmpq(length, 16);
jcc(Assembler::equal, VECTOR16_LOOP);
jcc(Assembler::less, VECTOR8_LOOP);
cmpq(length, 32);
jccb(Assembler::less, VECTOR16_TAIL);
subq(length, 32);
bind(VECTOR32_LOOP);
vmovdqu(rymm0, Address(obja, result));
vmovdqu(rymm1, Address(objb, result));
vpxor(rymm2, rymm0, rymm1, Assembler::AVX_256bit);
vptest(rymm2, rymm2);
jcc(Assembler::notZero, VECTOR32_NOT_EQUAL);//mismatch found
addq(result, 32);
subq(length, 32);
jcc(Assembler::greaterEqual, VECTOR32_LOOP);
addq(length, 32);
jcc(Assembler::equal, SAME_TILL_END);
//falling through if less than 32 bytes left //close the branch here.
bind(VECTOR16_TAIL);
cmpq(length, 16);
jccb(Assembler::less, VECTOR8_TAIL);
bind(VECTOR16_LOOP);
movdqu(rymm0, Address(obja, result));
movdqu(rymm1, Address(objb, result));
vpxor(rymm2, rymm0, rymm1, Assembler::AVX_128bit);
ptest(rymm2, rymm2);
jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
addq(result, 16);
subq(length, 16);
jcc(Assembler::equal, SAME_TILL_END);
//falling through if less than 16 bytes left
} else {//regular intrinsics
cmpq(length, 16);
jccb(Assembler::less, VECTOR8_TAIL);
subq(length, 16);
bind(VECTOR16_LOOP);
movdqu(rymm0, Address(obja, result));
movdqu(rymm1, Address(objb, result));
pxor(rymm0, rymm1);
ptest(rymm0, rymm0);
jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
addq(result, 16);
subq(length, 16);
jccb(Assembler::greaterEqual, VECTOR16_LOOP);
addq(length, 16);
jcc(Assembler::equal, SAME_TILL_END);
//falling through if less than 16 bytes left
}
bind(VECTOR8_TAIL);
cmpq(length, 8);
jccb(Assembler::less, VECTOR4_TAIL);
bind(VECTOR8_LOOP);
movq(tmp1, Address(obja, result));
movq(tmp2, Address(objb, result));
xorq(tmp1, tmp2);
testq(tmp1, tmp1);
jcc(Assembler::notZero, VECTOR8_NOT_EQUAL);//mismatch found
addq(result, 8);
subq(length, 8);
jcc(Assembler::equal, SAME_TILL_END);
//falling through if less than 8 bytes left
bind(VECTOR4_TAIL);
cmpq(length, 4);
jccb(Assembler::less, BYTES_TAIL);
bind(VECTOR4_LOOP);
movl(tmp1, Address(obja, result));
xorl(tmp1, Address(objb, result));
testl(tmp1, tmp1);
jcc(Assembler::notZero, VECTOR4_NOT_EQUAL);//mismatch found
addq(result, 4);
subq(length, 4);
jcc(Assembler::equal, SAME_TILL_END);
//falling through if less than 4 bytes left
bind(BYTES_TAIL);
bind(BYTES_LOOP);
load_unsigned_byte(tmp1, Address(obja, result));
load_unsigned_byte(tmp2, Address(objb, result));
xorl(tmp1, tmp2);
testl(tmp1, tmp1);
jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
decq(length);
jcc(Assembler::zero, SAME_TILL_END);
incq(result);
load_unsigned_byte(tmp1, Address(obja, result));
load_unsigned_byte(tmp2, Address(objb, result));
xorl(tmp1, tmp2);
testl(tmp1, tmp1);
jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
decq(length);
jcc(Assembler::zero, SAME_TILL_END);
incq(result);
load_unsigned_byte(tmp1, Address(obja, result));
load_unsigned_byte(tmp2, Address(objb, result));
xorl(tmp1, tmp2);
testl(tmp1, tmp1);
jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
jmp(SAME_TILL_END);
if (UseAVX >= 2) {
bind(VECTOR32_NOT_EQUAL);
vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_256bit);
vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_256bit);
vpxor(rymm0, rymm0, rymm2, Assembler::AVX_256bit);
vpmovmskb(tmp1, rymm0);
bsfq(tmp1, tmp1);
addq(result, tmp1);
shrq(result);
jmp(DONE);
}
bind(VECTOR16_NOT_EQUAL);
if (UseAVX >= 2) {
vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_128bit);
vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_128bit);
pxor(rymm0, rymm2);
} else {
pcmpeqb(rymm2, rymm2);
pxor(rymm0, rymm1);
pcmpeqb(rymm0, rymm1);
pxor(rymm0, rymm2);
}
pmovmskb(tmp1, rymm0);
bsfq(tmp1, tmp1);
addq(result, tmp1);
shrq(result);
jmpb(DONE);
bind(VECTOR8_NOT_EQUAL);
bind(VECTOR4_NOT_EQUAL);
bsfq(tmp1, tmp1);
shrq(tmp1, 3);
addq(result, tmp1);
bind(BYTES_NOT_EQUAL);
shrq(result);
jmpb(DONE);
bind(SAME_TILL_END);
mov64(result, -1);
bind(DONE);
}
//Helper functions for square_to_len()
/**
* Store the squares of x[], right shifted one bit (divided by 2) into z[]
* Preserves x and z and modifies rest of the registers.
*/
void MacroAssembler::square_rshift(Register x, Register xlen, Register z, Register tmp1, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
// Perform square and right shift by 1
// Handle odd xlen case first, then for even xlen do the following
// jlong carry = 0;
// for (int j=0, i=0; j < xlen; j+=2, i+=4) {
// huge_128 product = x[j:j+1] * x[j:j+1];
// z[i:i+1] = (carry << 63) | (jlong)(product >>> 65);
// z[i+2:i+3] = (jlong)(product >>> 1);
// carry = (jlong)product;
// }
xorq(tmp5, tmp5); // carry
xorq(rdxReg, rdxReg);
xorl(tmp1, tmp1); // index for x
xorl(tmp4, tmp4); // index for z
Label L_first_loop, L_first_loop_exit;
testl(xlen, 1);
jccb(Assembler::zero, L_first_loop); //jump if xlen is even
// Square and right shift by 1 the odd element using 32 bit multiply
movl(raxReg, Address(x, tmp1, Address::times_4, 0));
imulq(raxReg, raxReg);
shrq(raxReg, 1);
adcq(tmp5, 0);
movq(Address(z, tmp4, Address::times_4, 0), raxReg);
incrementl(tmp1);
addl(tmp4, 2);
// Square and right shift by 1 the rest using 64 bit multiply
bind(L_first_loop);
cmpptr(tmp1, xlen);
jccb(Assembler::equal, L_first_loop_exit);
// Square
movq(raxReg, Address(x, tmp1, Address::times_4, 0));
rorq(raxReg, 32); // convert big-endian to little-endian
mulq(raxReg); // 64-bit multiply rax * rax -> rdx:rax
// Right shift by 1 and save carry
shrq(tmp5, 1); // rdx:rax:tmp5 = (tmp5:rdx:rax) >>> 1
rcrq(rdxReg, 1);
rcrq(raxReg, 1);
adcq(tmp5, 0);
// Store result in z
movq(Address(z, tmp4, Address::times_4, 0), rdxReg);
movq(Address(z, tmp4, Address::times_4, 8), raxReg);
// Update indices for x and z
addl(tmp1, 2);
addl(tmp4, 4);
jmp(L_first_loop);
bind(L_first_loop_exit);
}
/**
* Perform the following multiply add operation using BMI2 instructions
* carry:sum = sum + op1*op2 + carry
* op2 should be in rdx
* op2 is preserved, all other registers are modified
*/
void MacroAssembler::multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry, Register tmp2) {
// assert op2 is rdx
mulxq(tmp2, op1, op1); // op1 * op2 -> tmp2:op1
addq(sum, carry);
adcq(tmp2, 0);
addq(sum, op1);
adcq(tmp2, 0);
movq(carry, tmp2);
}
/**
* Perform the following multiply add operation:
* carry:sum = sum + op1*op2 + carry
* Preserves op1, op2 and modifies rest of registers
*/
void MacroAssembler::multiply_add_64(Register sum, Register op1, Register op2, Register carry, Register rdxReg, Register raxReg) {
// rdx:rax = op1 * op2
movq(raxReg, op2);
mulq(op1);
// rdx:rax = sum + carry + rdx:rax
addq(sum, carry);
adcq(rdxReg, 0);
addq(sum, raxReg);
adcq(rdxReg, 0);
// carry:sum = rdx:sum
movq(carry, rdxReg);
}
/**
* Add 64 bit long carry into z[] with carry propogation.
* Preserves z and carry register values and modifies rest of registers.
*
*/
void MacroAssembler::add_one_64(Register z, Register zlen, Register carry, Register tmp1) {
Label L_fourth_loop, L_fourth_loop_exit;
movl(tmp1, 1);
subl(zlen, 2);
addq(Address(z, zlen, Address::times_4, 0), carry);
bind(L_fourth_loop);
jccb(Assembler::carryClear, L_fourth_loop_exit);
subl(zlen, 2);
jccb(Assembler::negative, L_fourth_loop_exit);
addq(Address(z, zlen, Address::times_4, 0), tmp1);
jmp(L_fourth_loop);
bind(L_fourth_loop_exit);
}
/**
* Shift z[] left by 1 bit.
* Preserves x, len, z and zlen registers and modifies rest of the registers.
*
*/
void MacroAssembler::lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4) {
Label L_fifth_loop, L_fifth_loop_exit;
// Fifth loop
// Perform primitiveLeftShift(z, zlen, 1)
const Register prev_carry = tmp1;
const Register new_carry = tmp4;
const Register value = tmp2;
const Register zidx = tmp3;
// int zidx, carry;
// long value;
// carry = 0;
// for (zidx = zlen-2; zidx >=0; zidx -= 2) {
// (carry:value) = (z[i] << 1) | carry ;
// z[i] = value;
// }
movl(zidx, zlen);
xorl(prev_carry, prev_carry); // clear carry flag and prev_carry register
bind(L_fifth_loop);
decl(zidx); // Use decl to preserve carry flag
decl(zidx);
jccb(Assembler::negative, L_fifth_loop_exit);
if (UseBMI2Instructions) {
movq(value, Address(z, zidx, Address::times_4, 0));
rclq(value, 1);
rorxq(value, value, 32);
movq(Address(z, zidx, Address::times_4, 0), value); // Store back in big endian form
}
else {
// clear new_carry
xorl(new_carry, new_carry);
// Shift z[i] by 1, or in previous carry and save new carry
movq(value, Address(z, zidx, Address::times_4, 0));
shlq(value, 1);
adcl(new_carry, 0);
orq(value, prev_carry);
rorq(value, 0x20);
movq(Address(z, zidx, Address::times_4, 0), value); // Store back in big endian form
// Set previous carry = new carry
movl(prev_carry, new_carry);
}
jmp(L_fifth_loop);
bind(L_fifth_loop_exit);
}
/**
* Code for BigInteger::squareToLen() intrinsic
*
* rdi: x
* rsi: len
* r8: z
* rcx: zlen
* r12: tmp1
* r13: tmp2
* r14: tmp3
* r15: tmp4
* rbx: tmp5
*
*/
void MacroAssembler::square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
Label L_second_loop, L_second_loop_exit, L_third_loop, L_third_loop_exit, L_last_x, L_multiply;
push(tmp1);
push(tmp2);
push(tmp3);
push(tmp4);
push(tmp5);
// First loop
// Store the squares, right shifted one bit (i.e., divided by 2).
square_rshift(x, len, z, tmp1, tmp3, tmp4, tmp5, rdxReg, raxReg);
// Add in off-diagonal sums.
//
// Second, third (nested) and fourth loops.
// zlen +=2;
// for (int xidx=len-2,zidx=zlen-4; xidx > 0; xidx-=2,zidx-=4) {
// carry = 0;
// long op2 = x[xidx:xidx+1];
// for (int j=xidx-2,k=zidx; j >= 0; j-=2) {
// k -= 2;
// long op1 = x[j:j+1];
// long sum = z[k:k+1];
// carry:sum = multiply_add_64(sum, op1, op2, carry, tmp_regs);
// z[k:k+1] = sum;
// }
// add_one_64(z, k, carry, tmp_regs);
// }
const Register carry = tmp5;
const Register sum = tmp3;
const Register op1 = tmp4;
Register op2 = tmp2;
push(zlen);
push(len);
addl(zlen,2);
bind(L_second_loop);
xorq(carry, carry);
subl(zlen, 4);
subl(len, 2);
push(zlen);
push(len);
cmpl(len, 0);
jccb(Assembler::lessEqual, L_second_loop_exit);
// Multiply an array by one 64 bit long.
if (UseBMI2Instructions) {
op2 = rdxReg;
movq(op2, Address(x, len, Address::times_4, 0));
rorxq(op2, op2, 32);
}
else {
movq(op2, Address(x, len, Address::times_4, 0));
rorq(op2, 32);
}
bind(L_third_loop);
decrementl(len);
jccb(Assembler::negative, L_third_loop_exit);
decrementl(len);
jccb(Assembler::negative, L_last_x);
movq(op1, Address(x, len, Address::times_4, 0));
rorq(op1, 32);
bind(L_multiply);
subl(zlen, 2);
movq(sum, Address(z, zlen, Address::times_4, 0));
// Multiply 64 bit by 64 bit and add 64 bits lower half and upper 64 bits as carry.
if (UseBMI2Instructions) {
multiply_add_64_bmi2(sum, op1, op2, carry, tmp2);
}
else {
multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
}
movq(Address(z, zlen, Address::times_4, 0), sum);
jmp(L_third_loop);
bind(L_third_loop_exit);
// Fourth loop
// Add 64 bit long carry into z with carry propogation.
// Uses offsetted zlen.
add_one_64(z, zlen, carry, tmp1);
pop(len);
pop(zlen);
jmp(L_second_loop);
// Next infrequent code is moved outside loops.
bind(L_last_x);
movl(op1, Address(x, 0));
jmp(L_multiply);
bind(L_second_loop_exit);
pop(len);
pop(zlen);
pop(len);
pop(zlen);
// Fifth loop
// Shift z left 1 bit.
lshift_by_1(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4);
// z[zlen-1] |= x[len-1] & 1;
movl(tmp3, Address(x, len, Address::times_4, -4));
andl(tmp3, 1);
orl(Address(z, zlen, Address::times_4, -4), tmp3);
pop(tmp5);
pop(tmp4);
pop(tmp3);
pop(tmp2);
pop(tmp1);
}
/**
* Helper function for mul_add()
* Multiply the in[] by int k and add to out[] starting at offset offs using
* 128 bit by 32 bit multiply and return the carry in tmp5.
* Only quad int aligned length of in[] is operated on in this function.
* k is in rdxReg for BMI2Instructions, for others it is in tmp2.
* This function preserves out, in and k registers.
* len and offset point to the appropriate index in "in" & "out" correspondingly
* tmp5 has the carry.
* other registers are temporary and are modified.
*
*/
void MacroAssembler::mul_add_128_x_32_loop(Register out, Register in,
Register offset, Register len, Register tmp1, Register tmp2, Register tmp3,
Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
Label L_first_loop, L_first_loop_exit;
movl(tmp1, len);
shrl(tmp1, 2);
bind(L_first_loop);
subl(tmp1, 1);
jccb(Assembler::negative, L_first_loop_exit);
subl(len, 4);
subl(offset, 4);
Register op2 = tmp2;
const Register sum = tmp3;
const Register op1 = tmp4;
const Register carry = tmp5;
if (UseBMI2Instructions) {
op2 = rdxReg;
}
movq(op1, Address(in, len, Address::times_4, 8));
rorq(op1, 32);
movq(sum, Address(out, offset, Address::times_4, 8));
rorq(sum, 32);
if (UseBMI2Instructions) {
multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
}
else {
multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
}
// Store back in big endian from little endian
rorq(sum, 0x20);
movq(Address(out, offset, Address::times_4, 8), sum);
movq(op1, Address(in, len, Address::times_4, 0));
rorq(op1, 32);
movq(sum, Address(out, offset, Address::times_4, 0));
rorq(sum, 32);
if (UseBMI2Instructions) {
multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
}
else {
multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
}
// Store back in big endian from little endian
rorq(sum, 0x20);
movq(Address(out, offset, Address::times_4, 0), sum);
jmp(L_first_loop);
bind(L_first_loop_exit);
}
/**
* Code for BigInteger::mulAdd() intrinsic
*
* rdi: out
* rsi: in
* r11: offs (out.length - offset)
* rcx: len
* r8: k
* r12: tmp1
* r13: tmp2
* r14: tmp3
* r15: tmp4
* rbx: tmp5
* Multiply the in[] by word k and add to out[], return the carry in rax
*/
void MacroAssembler::mul_add(Register out, Register in, Register offs,
Register len, Register k, Register tmp1, Register tmp2, Register tmp3,
Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
Label L_carry, L_last_in, L_done;
// carry = 0;
// for (int j=len-1; j >= 0; j--) {
// long product = (in[j] & LONG_MASK) * kLong +
// (out[offs] & LONG_MASK) + carry;
// out[offs--] = (int)product;
// carry = product >>> 32;
// }
//
push(tmp1);
push(tmp2);
push(tmp3);
push(tmp4);
push(tmp5);
Register op2 = tmp2;
const Register sum = tmp3;
const Register op1 = tmp4;
const Register carry = tmp5;
if (UseBMI2Instructions) {
op2 = rdxReg;
movl(op2, k);
}
else {
movl(op2, k);
}
xorq(carry, carry);
//First loop
//Multiply in[] by k in a 4 way unrolled loop using 128 bit by 32 bit multiply
//The carry is in tmp5
mul_add_128_x_32_loop(out, in, offs, len, tmp1, tmp2, tmp3, tmp4, tmp5, rdxReg, raxReg);
//Multiply the trailing in[] entry using 64 bit by 32 bit, if any
decrementl(len);
jccb(Assembler::negative, L_carry);
decrementl(len);
jccb(Assembler::negative, L_last_in);
movq(op1, Address(in, len, Address::times_4, 0));
rorq(op1, 32);
subl(offs, 2);
movq(sum, Address(out, offs, Address::times_4, 0));
rorq(sum, 32);
if (UseBMI2Instructions) {
multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
}
else {
multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
}
// Store back in big endian from little endian
rorq(sum, 0x20);
movq(Address(out, offs, Address::times_4, 0), sum);
testl(len, len);
jccb(Assembler::zero, L_carry);
//Multiply the last in[] entry, if any
bind(L_last_in);
movl(op1, Address(in, 0));
movl(sum, Address(out, offs, Address::times_4, -4));
movl(raxReg, k);
mull(op1); //tmp4 * eax -> edx:eax
addl(sum, carry);
adcl(rdxReg, 0);
addl(sum, raxReg);
adcl(rdxReg, 0);
movl(carry, rdxReg);
movl(Address(out, offs, Address::times_4, -4), sum);
bind(L_carry);
//return tmp5/carry as carry in rax
movl(rax, carry);
bind(L_done);
pop(tmp5);
pop(tmp4);
pop(tmp3);
pop(tmp2);
pop(tmp1);
}
#endif
/**
* Emits code to update CRC-32 with a byte value according to constants in table
*
* @param [in,out]crc Register containing the crc.
* @param [in]val Register containing the byte to fold into the CRC.
* @param [in]table Register containing the table of crc constants.
*
* uint32_t crc;
* val = crc_table[(val ^ crc) & 0xFF];
* crc = val ^ (crc >> 8);
*
*/
void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
xorl(val, crc);
andl(val, 0xFF);
shrl(crc, 8); // unsigned shift
xorl(crc, Address(table, val, Address::times_4, 0));
}
/**
* Fold four 128-bit data chunks
*/
void MacroAssembler::fold_128bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
evpclmulhdq(xtmp, xK, xcrc, Assembler::AVX_512bit); // [123:64]
evpclmulldq(xcrc, xK, xcrc, Assembler::AVX_512bit); // [63:0]
evpxorq(xcrc, xcrc, Address(buf, offset), Assembler::AVX_512bit /* vector_len */);
evpxorq(xcrc, xcrc, xtmp, Assembler::AVX_512bit /* vector_len */);
}
/**
* Fold 128-bit data chunk
*/
void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
if (UseAVX > 0) {
vpclmulhdq(xtmp, xK, xcrc); // [123:64]
vpclmulldq(xcrc, xK, xcrc); // [63:0]
vpxor(xcrc, xcrc, Address(buf, offset), 0 /* vector_len */);
pxor(xcrc, xtmp);
} else {
movdqa(xtmp, xcrc);
pclmulhdq(xtmp, xK); // [123:64]
pclmulldq(xcrc, xK); // [63:0]
pxor(xcrc, xtmp);
movdqu(xtmp, Address(buf, offset));
pxor(xcrc, xtmp);
}
}
void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) {
if (UseAVX > 0) {
vpclmulhdq(xtmp, xK, xcrc);
vpclmulldq(xcrc, xK, xcrc);
pxor(xcrc, xbuf);
pxor(xcrc, xtmp);
} else {
movdqa(xtmp, xcrc);
pclmulhdq(xtmp, xK);
pclmulldq(xcrc, xK);
pxor(xcrc, xbuf);
pxor(xcrc, xtmp);
}
}
/**
* 8-bit folds to compute 32-bit CRC
*
* uint64_t xcrc;
* timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8);
*/
void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) {
movdl(tmp, xcrc);
andl(tmp, 0xFF);
movdl(xtmp, Address(table, tmp, Address::times_4, 0));
psrldq(xcrc, 1); // unsigned shift one byte
pxor(xcrc, xtmp);
}
/**
* uint32_t crc;
* timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
*/
void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
movl(tmp, crc);
andl(tmp, 0xFF);
shrl(crc, 8);
xorl(crc, Address(table, tmp, Address::times_4, 0));
}
/**
* @param crc register containing existing CRC (32-bit)
* @param buf register pointing to input byte buffer (byte*)
* @param len register containing number of bytes
* @param table register that will contain address of CRC table
* @param tmp scratch register
*/
void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) {
assert_different_registers(crc, buf, len, table, tmp, rax);
Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned;
Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop;
// For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
// context for the registers used, where all instructions below are using 128-bit mode
// On EVEX without VL and BW, these instructions will all be AVX.
lea(table, ExternalAddress(StubRoutines::crc_table_addr()));
notl(crc); // ~crc
cmpl(len, 16);
jcc(Assembler::less, L_tail);
// Align buffer to 16 bytes
movl(tmp, buf);
andl(tmp, 0xF);
jccb(Assembler::zero, L_aligned);
subl(tmp, 16);
addl(len, tmp);
align(4);
BIND(L_align_loop);
movsbl(rax, Address(buf, 0)); // load byte with sign extension
update_byte_crc32(crc, rax, table);
increment(buf);
incrementl(tmp);
jccb(Assembler::less, L_align_loop);
BIND(L_aligned);
movl(tmp, len); // save
shrl(len, 4);
jcc(Assembler::zero, L_tail_restore);
// Fold total 512 bits of polynomial on each iteration
if (VM_Version::supports_vpclmulqdq()) {
Label Parallel_loop, L_No_Parallel;
cmpl(len, 8);
jccb(Assembler::less, L_No_Parallel);
movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32));
evmovdquq(xmm1, Address(buf, 0), Assembler::AVX_512bit);
movdl(xmm5, crc);
evpxorq(xmm1, xmm1, xmm5, Assembler::AVX_512bit);
addptr(buf, 64);
subl(len, 7);
evshufi64x2(xmm0, xmm0, xmm0, 0x00, Assembler::AVX_512bit); //propagate the mask from 128 bits to 512 bits
BIND(Parallel_loop);
fold_128bit_crc32_avx512(xmm1, xmm0, xmm5, buf, 0);
addptr(buf, 64);
subl(len, 4);
jcc(Assembler::greater, Parallel_loop);
vextracti64x2(xmm2, xmm1, 0x01);
vextracti64x2(xmm3, xmm1, 0x02);
vextracti64x2(xmm4, xmm1, 0x03);
jmp(L_fold_512b);
BIND(L_No_Parallel);
}
// Fold crc into first bytes of vector
movdqa(xmm1, Address(buf, 0));
movdl(rax, xmm1);
xorl(crc, rax);
if (VM_Version::supports_sse4_1()) {
pinsrd(xmm1, crc, 0);
} else {
pinsrw(xmm1, crc, 0);
shrl(crc, 16);
pinsrw(xmm1, crc, 1);
}
addptr(buf, 16);
subl(len, 4); // len > 0
jcc(Assembler::less, L_fold_tail);
movdqa(xmm2, Address(buf, 0));
movdqa(xmm3, Address(buf, 16));
movdqa(xmm4, Address(buf, 32));
addptr(buf, 48);
subl(len, 3);
jcc(Assembler::lessEqual, L_fold_512b);
// Fold total 512 bits of polynomial on each iteration,
// 128 bits per each of 4 parallel streams.
movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32));
align(32);
BIND(L_fold_512b_loop);
fold_128bit_crc32(xmm1, xmm0, xmm5, buf, 0);
fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16);
fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32);
fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48);
addptr(buf, 64);
subl(len, 4);
jcc(Assembler::greater, L_fold_512b_loop);
// Fold 512 bits to 128 bits.
BIND(L_fold_512b);
movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2);
fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3);
fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4);
// Fold the rest of 128 bits data chunks
BIND(L_fold_tail);
addl(len, 3);
jccb(Assembler::lessEqual, L_fold_128b);
movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
BIND(L_fold_tail_loop);
fold_128bit_crc32(xmm1, xmm0, xmm5, buf, 0);
addptr(buf, 16);
decrementl(len);
jccb(Assembler::greater, L_fold_tail_loop);
// Fold 128 bits in xmm1 down into 32 bits in crc register.
BIND(L_fold_128b);
movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()));
if (UseAVX > 0) {
vpclmulqdq(xmm2, xmm0, xmm1, 0x1);
vpand(xmm3, xmm0, xmm2, 0 /* vector_len */);
vpclmulqdq(xmm0, xmm0, xmm3, 0x1);
} else {
movdqa(xmm2, xmm0);
pclmulqdq(xmm2, xmm1, 0x1);
movdqa(xmm3, xmm0);
pand(xmm3, xmm2);
pclmulqdq(xmm0, xmm3, 0x1);
}
psrldq(xmm1, 8);
psrldq(xmm2, 4);
pxor(xmm0, xmm1);
pxor(xmm0, xmm2);
// 8 8-bit folds to compute 32-bit CRC.
for (int j = 0; j < 4; j++) {
fold_8bit_crc32(xmm0, table, xmm1, rax);
}
movdl(crc, xmm0); // mov 32 bits to general register
for (int j = 0; j < 4; j++) {
fold_8bit_crc32(crc, table, rax);
}
BIND(L_tail_restore);
movl(len, tmp); // restore
BIND(L_tail);
andl(len, 0xf);
jccb(Assembler::zero, L_exit);
// Fold the rest of bytes
align(4);
BIND(L_tail_loop);
movsbl(rax, Address(buf, 0)); // load byte with sign extension
update_byte_crc32(crc, rax, table);
increment(buf);
decrementl(len);
jccb(Assembler::greater, L_tail_loop);
BIND(L_exit);
notl(crc); // ~c
}
#ifdef _LP64
// S. Gueron / Information Processing Letters 112 (2012) 184
// Algorithm 4: Computing carry-less multiplication using a precomputed lookup table.
// Input: A 32 bit value B = [byte3, byte2, byte1, byte0].
// Output: the 64-bit carry-less product of B * CONST
void MacroAssembler::crc32c_ipl_alg4(Register in, uint32_t n,
Register tmp1, Register tmp2, Register tmp3) {
lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
if (n > 0) {
addq(tmp3, n * 256 * 8);
}
// Q1 = TABLEExt[n][B & 0xFF];
movl(tmp1, in);
andl(tmp1, 0x000000FF);
shll(tmp1, 3);
addq(tmp1, tmp3);
movq(tmp1, Address(tmp1, 0));
// Q2 = TABLEExt[n][B >> 8 & 0xFF];
movl(tmp2, in);
shrl(tmp2, 8);
andl(tmp2, 0x000000FF);
shll(tmp2, 3);
addq(tmp2, tmp3);
movq(tmp2, Address(tmp2, 0));
shlq(tmp2, 8);
xorq(tmp1, tmp2);
// Q3 = TABLEExt[n][B >> 16 & 0xFF];
movl(tmp2, in);
shrl(tmp2, 16);
andl(tmp2, 0x000000FF);
shll(tmp2, 3);
addq(tmp2, tmp3);
movq(tmp2, Address(tmp2, 0));
shlq(tmp2, 16);
xorq(tmp1, tmp2);
// Q4 = TABLEExt[n][B >> 24 & 0xFF];
shrl(in, 24);
andl(in, 0x000000FF);
shll(in, 3);
addq(in, tmp3);
movq(in, Address(in, 0));
shlq(in, 24);
xorq(in, tmp1);
// return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
}
void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
Register in_out,
uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
XMMRegister w_xtmp2,
Register tmp1,
Register n_tmp2, Register n_tmp3) {
if (is_pclmulqdq_supported) {
movdl(w_xtmp1, in_out); // modified blindly
movl(tmp1, const_or_pre_comp_const_index);
movdl(w_xtmp2, tmp1);
pclmulqdq(w_xtmp1, w_xtmp2, 0);
movdq(in_out, w_xtmp1);
} else {
crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3);
}
}
// Recombination Alternative 2: No bit-reflections
// T1 = (CRC_A * U1) << 1
// T2 = (CRC_B * U2) << 1
// C1 = T1 >> 32
// C2 = T2 >> 32
// T1 = T1 & 0xFFFFFFFF
// T2 = T2 & 0xFFFFFFFF
// T1 = CRC32(0, T1)
// T2 = CRC32(0, T2)
// C1 = C1 ^ T1
// C2 = C2 ^ T2
// CRC = C1 ^ C2 ^ CRC_C
void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
Register tmp1, Register tmp2,
Register n_tmp3) {
crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
shlq(in_out, 1);
movl(tmp1, in_out);
shrq(in_out, 32);
xorl(tmp2, tmp2);
crc32(tmp2, tmp1, 4);
xorl(in_out, tmp2); // we don't care about upper 32 bit contents here
shlq(in1, 1);
movl(tmp1, in1);
shrq(in1, 32);
xorl(tmp2, tmp2);
crc32(tmp2, tmp1, 4);
xorl(in1, tmp2);
xorl(in_out, in1);
xorl(in_out, in2);
}
// Set N to predefined value
// Subtract from a lenght of a buffer
// execute in a loop:
// CRC_A = 0xFFFFFFFF, CRC_B = 0, CRC_C = 0
// for i = 1 to N do
// CRC_A = CRC32(CRC_A, A[i])
// CRC_B = CRC32(CRC_B, B[i])
// CRC_C = CRC32(CRC_C, C[i])
// end for
// Recombine
void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
Register in_out1, Register in_out2, Register in_out3,
Register tmp1, Register tmp2, Register tmp3,
XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
Register tmp4, Register tmp5,
Register n_tmp6) {
Label L_processPartitions;
Label L_processPartition;
Label L_exit;
bind(L_processPartitions);
cmpl(in_out1, 3 * size);
jcc(Assembler::less, L_exit);
xorl(tmp1, tmp1);
xorl(tmp2, tmp2);
movq(tmp3, in_out2);
addq(tmp3, size);
bind(L_processPartition);
crc32(in_out3, Address(in_out2, 0), 8);
crc32(tmp1, Address(in_out2, size), 8);
crc32(tmp2, Address(in_out2, size * 2), 8);
addq(in_out2, 8);
cmpq(in_out2, tmp3);
jcc(Assembler::less, L_processPartition);
crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
w_xtmp1, w_xtmp2, w_xtmp3,
tmp4, tmp5,
n_tmp6);
addq(in_out2, 2 * size);
subl(in_out1, 3 * size);
jmp(L_processPartitions);
bind(L_exit);
}
#else
void MacroAssembler::crc32c_ipl_alg4(Register in_out, uint32_t n,
Register tmp1, Register tmp2, Register tmp3,
XMMRegister xtmp1, XMMRegister xtmp2) {
lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
if (n > 0) {
addl(tmp3, n * 256 * 8);
}
// Q1 = TABLEExt[n][B & 0xFF];
movl(tmp1, in_out);
andl(tmp1, 0x000000FF);
shll(tmp1, 3);
addl(tmp1, tmp3);
movq(xtmp1, Address(tmp1, 0));
// Q2 = TABLEExt[n][B >> 8 & 0xFF];
movl(tmp2, in_out);
shrl(tmp2, 8);
andl(tmp2, 0x000000FF);
shll(tmp2, 3);
addl(tmp2, tmp3);
movq(xtmp2, Address(tmp2, 0));
psllq(xtmp2, 8);
pxor(xtmp1, xtmp2);
// Q3 = TABLEExt[n][B >> 16 & 0xFF];
movl(tmp2, in_out);
shrl(tmp2, 16);
andl(tmp2, 0x000000FF);
shll(tmp2, 3);
addl(tmp2, tmp3);
movq(xtmp2, Address(tmp2, 0));
psllq(xtmp2, 16);
pxor(xtmp1, xtmp2);
// Q4 = TABLEExt[n][B >> 24 & 0xFF];
shrl(in_out, 24);
andl(in_out, 0x000000FF);
shll(in_out, 3);
addl(in_out, tmp3);
movq(xtmp2, Address(in_out, 0));
psllq(xtmp2, 24);
pxor(xtmp1, xtmp2); // Result in CXMM
// return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
}
void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
Register in_out,
uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
XMMRegister w_xtmp2,
Register tmp1,
Register n_tmp2, Register n_tmp3) {
if (is_pclmulqdq_supported) {
movdl(w_xtmp1, in_out);
movl(tmp1, const_or_pre_comp_const_index);
movdl(w_xtmp2, tmp1);
pclmulqdq(w_xtmp1, w_xtmp2, 0);
// Keep result in XMM since GPR is 32 bit in length
} else {
crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3, w_xtmp1, w_xtmp2);
}
}
void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
Register tmp1, Register tmp2,
Register n_tmp3) {
crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
psllq(w_xtmp1, 1);
movdl(tmp1, w_xtmp1);
psrlq(w_xtmp1, 32);
movdl(in_out, w_xtmp1);
xorl(tmp2, tmp2);
crc32(tmp2, tmp1, 4);
xorl(in_out, tmp2);
psllq(w_xtmp2, 1);
movdl(tmp1, w_xtmp2);
psrlq(w_xtmp2, 32);
movdl(in1, w_xtmp2);
xorl(tmp2, tmp2);
crc32(tmp2, tmp1, 4);
xorl(in1, tmp2);
xorl(in_out, in1);
xorl(in_out, in2);
}
void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
Register in_out1, Register in_out2, Register in_out3,
Register tmp1, Register tmp2, Register tmp3,
XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
Register tmp4, Register tmp5,
Register n_tmp6) {
Label L_processPartitions;
Label L_processPartition;
Label L_exit;
bind(L_processPartitions);
cmpl(in_out1, 3 * size);
jcc(Assembler::less, L_exit);
xorl(tmp1, tmp1);
xorl(tmp2, tmp2);
movl(tmp3, in_out2);
addl(tmp3, size);
bind(L_processPartition);
crc32(in_out3, Address(in_out2, 0), 4);
crc32(tmp1, Address(in_out2, size), 4);
crc32(tmp2, Address(in_out2, size*2), 4);
crc32(in_out3, Address(in_out2, 0+4), 4);
crc32(tmp1, Address(in_out2, size+4), 4);
crc32(tmp2, Address(in_out2, size*2+4), 4);
addl(in_out2, 8);
cmpl(in_out2, tmp3);
jcc(Assembler::less, L_processPartition);
push(tmp3);
push(in_out1);
push(in_out2);
tmp4 = tmp3;
tmp5 = in_out1;
n_tmp6 = in_out2;
crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
w_xtmp1, w_xtmp2, w_xtmp3,
tmp4, tmp5,
n_tmp6);
pop(in_out2);
pop(in_out1);
pop(tmp3);
addl(in_out2, 2 * size);
subl(in_out1, 3 * size);
jmp(L_processPartitions);
bind(L_exit);
}
#endif //LP64
#ifdef _LP64
// Algorithm 2: Pipelined usage of the CRC32 instruction.
// Input: A buffer I of L bytes.
// Output: the CRC32C value of the buffer.
// Notations:
// Write L = 24N + r, with N = floor (L/24).
// r = L mod 24 (0 <= r < 24).
// Consider I as the concatenation of A|B|C|R, where A, B, C, each,
// N quadwords, and R consists of r bytes.
// A[j] = I [8j+7:8j], j= 0, 1, ..., N-1
// B[j] = I [N + 8j+7:N + 8j], j= 0, 1, ..., N-1
// C[j] = I [2N + 8j+7:2N + 8j], j= 0, 1, ..., N-1
// if r > 0 R[j] = I [3N +j], j= 0, 1, ...,r-1
void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
Register tmp1, Register tmp2, Register tmp3,
Register tmp4, Register tmp5, Register tmp6,
XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
bool is_pclmulqdq_supported) {
uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
Label L_wordByWord;
Label L_byteByByteProlog;
Label L_byteByByte;
Label L_exit;
if (is_pclmulqdq_supported ) {
const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr+1);
const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
assert((CRC32C_NUM_PRECOMPUTED_CONSTANTS - 1 ) == 5, "Checking whether you declared all of the constants based on the number of \"chunks\"");
} else {
const_or_pre_comp_const_index[0] = 1;
const_or_pre_comp_const_index[1] = 0;
const_or_pre_comp_const_index[2] = 3;
const_or_pre_comp_const_index[3] = 2;
const_or_pre_comp_const_index[4] = 5;
const_or_pre_comp_const_index[5] = 4;
}
crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
in2, in1, in_out,
tmp1, tmp2, tmp3,
w_xtmp1, w_xtmp2, w_xtmp3,
tmp4, tmp5,
tmp6);
crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
in2, in1, in_out,
tmp1, tmp2, tmp3,
w_xtmp1, w_xtmp2, w_xtmp3,
tmp4, tmp5,
tmp6);
crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
in2, in1, in_out,
tmp1, tmp2, tmp3,
w_xtmp1, w_xtmp2, w_xtmp3,
tmp4, tmp5,
tmp6);
movl(tmp1, in2);
andl(tmp1, 0x00000007);
negl(tmp1);
addl(tmp1, in2);
addq(tmp1, in1);
BIND(L_wordByWord);
cmpq(in1, tmp1);
jcc(Assembler::greaterEqual, L_byteByByteProlog);
crc32(in_out, Address(in1, 0), 4);
addq(in1, 4);
jmp(L_wordByWord);
BIND(L_byteByByteProlog);
andl(in2, 0x00000007);
movl(tmp2, 1);
BIND(L_byteByByte);
cmpl(tmp2, in2);
jccb(Assembler::greater, L_exit);
crc32(in_out, Address(in1, 0), 1);
incq(in1);
incl(tmp2);
jmp(L_byteByByte);
BIND(L_exit);
}
#else
void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
Register tmp1, Register tmp2, Register tmp3,
Register tmp4, Register tmp5, Register tmp6,
XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
bool is_pclmulqdq_supported) {
uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
Label L_wordByWord;
Label L_byteByByteProlog;
Label L_byteByByte;
Label L_exit;
if (is_pclmulqdq_supported) {
const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 1);
const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
} else {
const_or_pre_comp_const_index[0] = 1;
const_or_pre_comp_const_index[1] = 0;
const_or_pre_comp_const_index[2] = 3;
const_or_pre_comp_const_index[3] = 2;
const_or_pre_comp_const_index[4] = 5;
const_or_pre_comp_const_index[5] = 4;
}
crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
in2, in1, in_out,
tmp1, tmp2, tmp3,
w_xtmp1, w_xtmp2, w_xtmp3,
tmp4, tmp5,
tmp6);
crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
in2, in1, in_out,
tmp1, tmp2, tmp3,
w_xtmp1, w_xtmp2, w_xtmp3,
tmp4, tmp5,
tmp6);
crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
in2, in1, in_out,
tmp1, tmp2, tmp3,
w_xtmp1, w_xtmp2, w_xtmp3,
tmp4, tmp5,
tmp6);
movl(tmp1, in2);
andl(tmp1, 0x00000007);
negl(tmp1);
addl(tmp1, in2);
addl(tmp1, in1);
BIND(L_wordByWord);
cmpl(in1, tmp1);
jcc(Assembler::greaterEqual, L_byteByByteProlog);
crc32(in_out, Address(in1,0), 4);
addl(in1, 4);
jmp(L_wordByWord);
BIND(L_byteByByteProlog);
andl(in2, 0x00000007);
movl(tmp2, 1);
BIND(L_byteByByte);
cmpl(tmp2, in2);
jccb(Assembler::greater, L_exit);
movb(tmp1, Address(in1, 0));
crc32(in_out, tmp1, 1);
incl(in1);
incl(tmp2);
jmp(L_byteByByte);
BIND(L_exit);
}
#endif // LP64
#undef BIND
#undef BLOCK_COMMENT
// Compress char[] array to byte[].
// ..\jdk\src\java.base\share\classes\java\lang\StringUTF16.java
// @HotSpotIntrinsicCandidate
// private static int compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) {
// for (int i = 0; i < len; i++) {
// int c = src[srcOff++];
// if (c >>> 8 != 0) {
// return 0;
// }
// dst[dstOff++] = (byte)c;
// }
// return len;
// }
void MacroAssembler::char_array_compress(Register src, Register dst, Register len,
XMMRegister tmp1Reg, XMMRegister tmp2Reg,
XMMRegister tmp3Reg, XMMRegister tmp4Reg,
Register tmp5, Register result) {
Label copy_chars_loop, return_length, return_zero, done;
// rsi: src
// rdi: dst
// rdx: len
// rcx: tmp5
// rax: result
// rsi holds start addr of source char[] to be compressed
// rdi holds start addr of destination byte[]
// rdx holds length
assert(len != result, "");
// save length for return
push(len);
if ((AVX3Threshold == 0) && (UseAVX > 2) && // AVX512
VM_Version::supports_avx512vlbw() &&
VM_Version::supports_bmi2()) {
Label copy_32_loop, copy_loop_tail, below_threshold;
// alignment
Label post_alignment;
// if length of the string is less than 16, handle it in an old fashioned way
testl(len, -32);
jcc(Assembler::zero, below_threshold);
// First check whether a character is compressable ( <= 0xFF).
// Create mask to test for Unicode chars inside zmm vector
movl(result, 0x00FF);
evpbroadcastw(tmp2Reg, result, Assembler::AVX_512bit);
testl(len, -64);
jcc(Assembler::zero, post_alignment);
movl(tmp5, dst);
andl(tmp5, (32 - 1));
negl(tmp5);
andl(tmp5, (32 - 1));
// bail out when there is nothing to be done
testl(tmp5, 0xFFFFFFFF);
jcc(Assembler::zero, post_alignment);
// ~(~0 << len), where len is the # of remaining elements to process
movl(result, 0xFFFFFFFF);
shlxl(result, result, tmp5);
notl(result);
kmovdl(k3, result);
evmovdquw(tmp1Reg, k3, Address(src, 0), Assembler::AVX_512bit);
evpcmpuw(k2, k3, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
ktestd(k2, k3);
jcc(Assembler::carryClear, return_zero);
evpmovwb(Address(dst, 0), k3, tmp1Reg, Assembler::AVX_512bit);
addptr(src, tmp5);
addptr(src, tmp5);
addptr(dst, tmp5);
subl(len, tmp5);
bind(post_alignment);
// end of alignment
movl(tmp5, len);
andl(tmp5, (32 - 1)); // tail count (in chars)
andl(len, ~(32 - 1)); // vector count (in chars)
jcc(Assembler::zero, copy_loop_tail);
lea(src, Address(src, len, Address::times_2));
lea(dst, Address(dst, len, Address::times_1));
negptr(len);
bind(copy_32_loop);
evmovdquw(tmp1Reg, Address(src, len, Address::times_2), Assembler::AVX_512bit);
evpcmpuw(k2, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
kortestdl(k2, k2);
jcc(Assembler::carryClear, return_zero);
// All elements in current processed chunk are valid candidates for
// compression. Write a truncated byte elements to the memory.
evpmovwb(Address(dst, len, Address::times_1), tmp1Reg, Assembler::AVX_512bit);
addptr(len, 32);
jcc(Assembler::notZero, copy_32_loop);
bind(copy_loop_tail);
// bail out when there is nothing to be done
testl(tmp5, 0xFFFFFFFF);
jcc(Assembler::zero, return_length);
movl(len, tmp5);
// ~(~0 << len), where len is the # of remaining elements to process
movl(result, 0xFFFFFFFF);
shlxl(result, result, len);
notl(result);
kmovdl(k3, result);
evmovdquw(tmp1Reg, k3, Address(src, 0), Assembler::AVX_512bit);
evpcmpuw(k2, k3, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
ktestd(k2, k3);
jcc(Assembler::carryClear, return_zero);
evpmovwb(Address(dst, 0), k3, tmp1Reg, Assembler::AVX_512bit);
jmp(return_length);
bind(below_threshold);
}
if (UseSSE42Intrinsics) {
Label copy_32_loop, copy_16, copy_tail;
movl(result, len);
movl(tmp5, 0xff00ff00); // create mask to test for Unicode chars in vectors
// vectored compression
andl(len, 0xfffffff0); // vector count (in chars)
andl(result, 0x0000000f); // tail count (in chars)
testl(len, len);
jcc(Assembler::zero, copy_16);
// compress 16 chars per iter
movdl(tmp1Reg, tmp5);
pshufd(tmp1Reg, tmp1Reg, 0); // store Unicode mask in tmp1Reg
pxor(tmp4Reg, tmp4Reg);
lea(src, Address(src, len, Address::times_2));
lea(dst, Address(dst, len, Address::times_1));
negptr(len);
bind(copy_32_loop);
movdqu(tmp2Reg, Address(src, len, Address::times_2)); // load 1st 8 characters
por(tmp4Reg, tmp2Reg);
movdqu(tmp3Reg, Address(src, len, Address::times_2, 16)); // load next 8 characters
por(tmp4Reg, tmp3Reg);
ptest(tmp4Reg, tmp1Reg); // check for Unicode chars in next vector
jcc(Assembler::notZero, return_zero);
packuswb(tmp2Reg, tmp3Reg); // only ASCII chars; compress each to 1 byte
movdqu(Address(dst, len, Address::times_1), tmp2Reg);
addptr(len, 16);
jcc(Assembler::notZero, copy_32_loop);
// compress next vector of 8 chars (if any)
bind(copy_16);
movl(len, result);
andl(len, 0xfffffff8); // vector count (in chars)
andl(result, 0x00000007); // tail count (in chars)
testl(len, len);
jccb(Assembler::zero, copy_tail);
movdl(tmp1Reg, tmp5);
pshufd(tmp1Reg, tmp1Reg, 0); // store Unicode mask in tmp1Reg
pxor(tmp3Reg, tmp3Reg);
movdqu(tmp2Reg, Address(src, 0));
ptest(tmp2Reg, tmp1Reg); // check for Unicode chars in vector
jccb(Assembler::notZero, return_zero);
packuswb(tmp2Reg, tmp3Reg); // only LATIN1 chars; compress each to 1 byte
movq(Address(dst, 0), tmp2Reg);
addptr(src, 16);
addptr(dst, 8);
bind(copy_tail);
movl(len, result);
}
// compress 1 char per iter
testl(len, len);
jccb(Assembler::zero, return_length);
lea(src, Address(src, len, Address::times_2));
lea(dst, Address(dst, len, Address::times_1));
negptr(len);
bind(copy_chars_loop);
load_unsigned_short(result, Address(src, len, Address::times_2));
testl(result, 0xff00); // check if Unicode char
jccb(Assembler::notZero, return_zero);
movb(Address(dst, len, Address::times_1), result); // ASCII char; compress to 1 byte
increment(len);
jcc(Assembler::notZero, copy_chars_loop);
// if compression succeeded, return length
bind(return_length);
pop(result);
jmpb(done);
// if compression failed, return 0
bind(return_zero);
xorl(result, result);
addptr(rsp, wordSize);
bind(done);
}
// Inflate byte[] array to char[].
// ..\jdk\src\java.base\share\classes\java\lang\StringLatin1.java
// @HotSpotIntrinsicCandidate
// private static void inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) {
// for (int i = 0; i < len; i++) {
// dst[dstOff++] = (char)(src[srcOff++] & 0xff);
// }
// }
void MacroAssembler::byte_array_inflate(Register src, Register dst, Register len,
XMMRegister tmp1, Register tmp2) {
Label copy_chars_loop, done, below_threshold, avx3_threshold;
// rsi: src
// rdi: dst
// rdx: len
// rcx: tmp2
// rsi holds start addr of source byte[] to be inflated
// rdi holds start addr of destination char[]
// rdx holds length
assert_different_registers(src, dst, len, tmp2);
movl(tmp2, len);
if ((UseAVX > 2) && // AVX512
VM_Version::supports_avx512vlbw() &&
VM_Version::supports_bmi2()) {
Label copy_32_loop, copy_tail;
Register tmp3_aliased = len;
// if length of the string is less than 16, handle it in an old fashioned way
testl(len, -16);
jcc(Assembler::zero, below_threshold);
testl(len, -1 * AVX3Threshold);
jcc(Assembler::zero, avx3_threshold);
// In order to use only one arithmetic operation for the main loop we use
// this pre-calculation
andl(tmp2, (32 - 1)); // tail count (in chars), 32 element wide loop
andl(len, -32); // vector count
jccb(Assembler::zero, copy_tail);
lea(src, Address(src, len, Address::times_1));
lea(dst, Address(dst, len, Address::times_2));
negptr(len);
// inflate 32 chars per iter
bind(copy_32_loop);
vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_512bit);
evmovdquw(Address(dst, len, Address::times_2), tmp1, Assembler::AVX_512bit);
addptr(len, 32);
jcc(Assembler::notZero, copy_32_loop);
bind(copy_tail);
// bail out when there is nothing to be done
testl(tmp2, -1); // we don't destroy the contents of tmp2 here
jcc(Assembler::zero, done);
// ~(~0 << length), where length is the # of remaining elements to process
movl(tmp3_aliased, -1);
shlxl(tmp3_aliased, tmp3_aliased, tmp2);
notl(tmp3_aliased);
kmovdl(k2, tmp3_aliased);
evpmovzxbw(tmp1, k2, Address(src, 0), Assembler::AVX_512bit);
evmovdquw(Address(dst, 0), k2, tmp1, Assembler::AVX_512bit);
jmp(done);
bind(avx3_threshold);
}
if (UseSSE42Intrinsics) {
Label copy_16_loop, copy_8_loop, copy_bytes, copy_new_tail, copy_tail;
if (UseAVX > 1) {
andl(tmp2, (16 - 1));
andl(len, -16);
jccb(Assembler::zero, copy_new_tail);
} else {
andl(tmp2, 0x00000007); // tail count (in chars)
andl(len, 0xfffffff8); // vector count (in chars)
jccb(Assembler::zero, copy_tail);
}
// vectored inflation
lea(src, Address(src, len, Address::times_1));
lea(dst, Address(dst, len, Address::times_2));
negptr(len);
if (UseAVX > 1) {
bind(copy_16_loop);
vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_256bit);
vmovdqu(Address(dst, len, Address::times_2), tmp1);
addptr(len, 16);
jcc(Assembler::notZero, copy_16_loop);
bind(below_threshold);
bind(copy_new_tail);
movl(len, tmp2);
andl(tmp2, 0x00000007);
andl(len, 0xFFFFFFF8);
jccb(Assembler::zero, copy_tail);
pmovzxbw(tmp1, Address(src, 0));
movdqu(Address(dst, 0), tmp1);
addptr(src, 8);
addptr(dst, 2 * 8);
jmp(copy_tail, true);
}
// inflate 8 chars per iter
bind(copy_8_loop);
pmovzxbw(tmp1, Address(src, len, Address::times_1)); // unpack to 8 words
movdqu(Address(dst, len, Address::times_2), tmp1);
addptr(len, 8);
jcc(Assembler::notZero, copy_8_loop);
bind(copy_tail);
movl(len, tmp2);
cmpl(len, 4);
jccb(Assembler::less, copy_bytes);
movdl(tmp1, Address(src, 0)); // load 4 byte chars
pmovzxbw(tmp1, tmp1);
movq(Address(dst, 0), tmp1);
subptr(len, 4);
addptr(src, 4);
addptr(dst, 8);
bind(copy_bytes);
} else {
bind(below_threshold);
}
testl(len, len);
jccb(Assembler::zero, done);
lea(src, Address(src, len, Address::times_1));
lea(dst, Address(dst, len, Address::times_2));
negptr(len);
// inflate 1 char per iter
bind(copy_chars_loop);
load_unsigned_byte(tmp2, Address(src, len, Address::times_1)); // load byte char
movw(Address(dst, len, Address::times_2), tmp2); // inflate byte char to word
increment(len);
jcc(Assembler::notZero, copy_chars_loop);
bind(done);
}
#ifdef _LP64
void MacroAssembler::cache_wb(Address line)
{
// 64 bit cpus always support clflush
assert(VM_Version::supports_clflush(), "clflush should be available");
bool optimized = VM_Version::supports_clflushopt();
bool no_evict = VM_Version::supports_clwb();
// prefer clwb (writeback without evict) otherwise
// prefer clflushopt (potentially parallel writeback with evict)
// otherwise fallback on clflush (serial writeback with evict)
if (optimized) {
if (no_evict) {
clwb(line);
} else {
clflushopt(line);
}
} else {
// no need for fence when using CLFLUSH
clflush(line);
}
}
void MacroAssembler::cache_wbsync(bool is_pre)
{
assert(VM_Version::supports_clflush(), "clflush should be available");
bool optimized = VM_Version::supports_clflushopt();
bool no_evict = VM_Version::supports_clwb();
// pick the correct implementation
if (!is_pre && (optimized || no_evict)) {
// need an sfence for post flush when using clflushopt or clwb
// otherwise no no need for any synchroniaztion
sfence();
}
}
#endif // _LP64
Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
switch (cond) {
// Note some conditions are synonyms for others
case Assembler::zero: return Assembler::notZero;
case Assembler::notZero: return Assembler::zero;
case Assembler::less: return Assembler::greaterEqual;
case Assembler::lessEqual: return Assembler::greater;
case Assembler::greater: return Assembler::lessEqual;
case Assembler::greaterEqual: return Assembler::less;
case Assembler::below: return Assembler::aboveEqual;
case Assembler::belowEqual: return Assembler::above;
case Assembler::above: return Assembler::belowEqual;
case Assembler::aboveEqual: return Assembler::below;
case Assembler::overflow: return Assembler::noOverflow;
case Assembler::noOverflow: return Assembler::overflow;
case Assembler::negative: return Assembler::positive;
case Assembler::positive: return Assembler::negative;
case Assembler::parity: return Assembler::noParity;
case Assembler::noParity: return Assembler::parity;
}
ShouldNotReachHere(); return Assembler::overflow;
}
SkipIfEqual::SkipIfEqual(
MacroAssembler* masm, const bool* flag_addr, bool value) {
_masm = masm;
_masm->cmp8(ExternalAddress((address)flag_addr), value);
_masm->jcc(Assembler::equal, _label);
}
SkipIfEqual::~SkipIfEqual() {
_masm->bind(_label);
}
// 32-bit Windows has its own fast-path implementation
// of get_thread
#if !defined(WIN32) || defined(_LP64)
// This is simply a call to Thread::current()
void MacroAssembler::get_thread(Register thread) {
if (thread != rax) {
push(rax);
}
LP64_ONLY(push(rdi);)
LP64_ONLY(push(rsi);)
push(rdx);
push(rcx);
#ifdef _LP64
push(r8);
push(r9);
push(r10);
push(r11);
#endif
MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, Thread::current), 0);
#ifdef _LP64
pop(r11);
pop(r10);
pop(r9);
pop(r8);
#endif
pop(rcx);
pop(rdx);
LP64_ONLY(pop(rsi);)
LP64_ONLY(pop(rdi);)
if (thread != rax) {
mov(thread, rax);
pop(rax);
}
}
#endif