jdk-24/jdk/test/java/lang/StrictMath/FdlibmTranslit.java
Joe Darcy 655a976e65 8136799: Port fdlibm cbrt to Java
Reviewed-by: bpb
2015-10-14 16:17:08 -07:00

254 lines
9.1 KiB
Java

/*
* Copyright (c) 1998, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/**
* A transliteration of the "Freely Distributable Math Library"
* algorithms from C into Java. That is, this port of the algorithms
* is as close to the C originals as possible while still being
* readable legal Java.
*/
public class FdlibmTranslit {
private FdlibmTranslit() {
throw new UnsupportedOperationException("No FdLibmTranslit instances for you.");
}
/**
* Return the low-order 32 bits of the double argument as an int.
*/
private static int __LO(double x) {
long transducer = Double.doubleToRawLongBits(x);
return (int)transducer;
}
/**
* Return a double with its low-order bits of the second argument
* and the high-order bits of the first argument..
*/
private static double __LO(double x, int low) {
long transX = Double.doubleToRawLongBits(x);
return Double.longBitsToDouble((transX & 0xFFFF_FFFF_0000_0000L)|low );
}
/**
* Return the high-order 32 bits of the double argument as an int.
*/
private static int __HI(double x) {
long transducer = Double.doubleToRawLongBits(x);
return (int)(transducer >> 32);
}
/**
* Return a double with its high-order bits of the second argument
* and the low-order bits of the first argument..
*/
private static double __HI(double x, int high) {
long transX = Double.doubleToRawLongBits(x);
return Double.longBitsToDouble((transX & 0x0000_0000_FFFF_FFFFL)|( ((long)high)) << 32 );
}
public static double hypot(double x, double y) {
return Hypot.compute(x, y);
}
/**
* cbrt(x)
* Return cube root of x
*/
public static class Cbrt {
// unsigned
private static final int B1 = 715094163; /* B1 = (682-0.03306235651)*2**20 */
private static final int B2 = 696219795; /* B2 = (664-0.03306235651)*2**20 */
private static final double C = 5.42857142857142815906e-01; /* 19/35 = 0x3FE15F15, 0xF15F15F1 */
private static final double D = -7.05306122448979611050e-01; /* -864/1225 = 0xBFE691DE, 0x2532C834 */
private static final double E = 1.41428571428571436819e+00; /* 99/70 = 0x3FF6A0EA, 0x0EA0EA0F */
private static final double F = 1.60714285714285720630e+00; /* 45/28 = 0x3FF9B6DB, 0x6DB6DB6E */
private static final double G = 3.57142857142857150787e-01; /* 5/14 = 0x3FD6DB6D, 0xB6DB6DB7 */
public static strictfp double compute(double x) {
int hx;
double r, s, t=0.0, w;
int sign; // unsigned
hx = __HI(x); // high word of x
sign = hx & 0x80000000; // sign= sign(x)
hx ^= sign;
if (hx >= 0x7ff00000)
return (x+x); // cbrt(NaN,INF) is itself
if ((hx | __LO(x)) == 0)
return(x); // cbrt(0) is itself
x = __HI(x, hx); // x <- |x|
// rough cbrt to 5 bits
if (hx < 0x00100000) { // subnormal number
t = __HI(t, 0x43500000); // set t= 2**54
t *= x;
t = __HI(t, __HI(t)/3+B2);
} else {
t = __HI(t, hx/3+B1);
}
// new cbrt to 23 bits, may be implemented in single precision
r = t * t/x;
s = C + r*t;
t *= G + F/(s + E + D/s);
// chopped to 20 bits and make it larger than cbrt(x)
t = __LO(t, 0);
t = __HI(t, __HI(t)+0x00000001);
// one step newton iteration to 53 bits with error less than 0.667 ulps
s = t * t; // t*t is exact
r = x / s;
w = t + t;
r= (r - t)/(w + r); // r-s is exact
t= t + t*r;
// retore the sign bit
t = __HI(t, __HI(t) | sign);
return(t);
}
}
/**
* hypot(x,y)
*
* Method :
* If (assume round-to-nearest) z = x*x + y*y
* has error less than sqrt(2)/2 ulp, than
* sqrt(z) has error less than 1 ulp (exercise).
*
* So, compute sqrt(x*x + y*y) with some care as
* follows to get the error below 1 ulp:
*
* Assume x > y > 0;
* (if possible, set rounding to round-to-nearest)
* 1. if x > 2y use
* x1*x1 + (y*y + (x2*(x + x1))) for x*x + y*y
* where x1 = x with lower 32 bits cleared, x2 = x - x1; else
* 2. if x <= 2y use
* t1*y1 + ((x-y) * (x-y) + (t1*y2 + t2*y))
* where t1 = 2x with lower 32 bits cleared, t2 = 2x - t1,
* y1= y with lower 32 bits chopped, y2 = y - y1.
*
* NOTE: scaling may be necessary if some argument is too
* large or too tiny
*
* Special cases:
* hypot(x,y) is INF if x or y is +INF or -INF; else
* hypot(x,y) is NAN if x or y is NAN.
*
* Accuracy:
* hypot(x,y) returns sqrt(x^2 + y^2) with error less
* than 1 ulps (units in the last place)
*/
static class Hypot {
public static double compute(double x, double y) {
double a = x;
double b = y;
double t1, t2, y1, y2, w;
int j, k, ha, hb;
ha = __HI(x) & 0x7fffffff; // high word of x
hb = __HI(y) & 0x7fffffff; // high word of y
if(hb > ha) {
a = y;
b = x;
j = ha;
ha = hb;
hb = j;
} else {
a = x;
b = y;
}
a = __HI(a, ha); // a <- |a|
b = __HI(b, hb); // b <- |b|
if ((ha - hb) > 0x3c00000) {
return a + b; // x / y > 2**60
}
k=0;
if (ha > 0x5f300000) { // a>2**500
if (ha >= 0x7ff00000) { // Inf or NaN
w = a + b; // for sNaN
if (((ha & 0xfffff) | __LO(a)) == 0)
w = a;
if (((hb ^ 0x7ff00000) | __LO(b)) == 0)
w = b;
return w;
}
// scale a and b by 2**-600
ha -= 0x25800000;
hb -= 0x25800000;
k += 600;
a = __HI(a, ha);
b = __HI(b, hb);
}
if (hb < 0x20b00000) { // b < 2**-500
if (hb <= 0x000fffff) { // subnormal b or 0 */
if ((hb | (__LO(b))) == 0)
return a;
t1 = 0;
t1 = __HI(t1, 0x7fd00000); // t1=2^1022
b *= t1;
a *= t1;
k -= 1022;
} else { // scale a and b by 2^600
ha += 0x25800000; // a *= 2^600
hb += 0x25800000; // b *= 2^600
k -= 600;
a = __HI(a, ha);
b = __HI(b, hb);
}
}
// medium size a and b
w = a - b;
if (w > b) {
t1 = 0;
t1 = __HI(t1, ha);
t2 = a - t1;
w = Math.sqrt(t1*t1 - (b*(-b) - t2 * (a + t1)));
} else {
a = a + a;
y1 = 0;
y1 = __HI(y1, hb);
y2 = b - y1;
t1 = 0;
t1 = __HI(t1, ha + 0x00100000);
t2 = a - t1;
w = Math.sqrt(t1*y1 - (w*(-w) - (t1*y2 + t2*b)));
}
if (k != 0) {
t1 = 1.0;
int t1_hi = __HI(t1);
t1_hi += (k << 20);
t1 = __HI(t1, t1_hi);
return t1 * w;
} else
return w;
}
}
}