655a976e65
Reviewed-by: bpb
254 lines
9.1 KiB
Java
254 lines
9.1 KiB
Java
/*
|
|
* Copyright (c) 1998, 2015, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation. Oracle designates this
|
|
* particular file as subject to the "Classpath" exception as provided
|
|
* by Oracle in the LICENSE file that accompanied this code.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*/
|
|
|
|
/**
|
|
* A transliteration of the "Freely Distributable Math Library"
|
|
* algorithms from C into Java. That is, this port of the algorithms
|
|
* is as close to the C originals as possible while still being
|
|
* readable legal Java.
|
|
*/
|
|
public class FdlibmTranslit {
|
|
private FdlibmTranslit() {
|
|
throw new UnsupportedOperationException("No FdLibmTranslit instances for you.");
|
|
}
|
|
|
|
/**
|
|
* Return the low-order 32 bits of the double argument as an int.
|
|
*/
|
|
private static int __LO(double x) {
|
|
long transducer = Double.doubleToRawLongBits(x);
|
|
return (int)transducer;
|
|
}
|
|
|
|
/**
|
|
* Return a double with its low-order bits of the second argument
|
|
* and the high-order bits of the first argument..
|
|
*/
|
|
private static double __LO(double x, int low) {
|
|
long transX = Double.doubleToRawLongBits(x);
|
|
return Double.longBitsToDouble((transX & 0xFFFF_FFFF_0000_0000L)|low );
|
|
}
|
|
|
|
/**
|
|
* Return the high-order 32 bits of the double argument as an int.
|
|
*/
|
|
private static int __HI(double x) {
|
|
long transducer = Double.doubleToRawLongBits(x);
|
|
return (int)(transducer >> 32);
|
|
}
|
|
|
|
/**
|
|
* Return a double with its high-order bits of the second argument
|
|
* and the low-order bits of the first argument..
|
|
*/
|
|
private static double __HI(double x, int high) {
|
|
long transX = Double.doubleToRawLongBits(x);
|
|
return Double.longBitsToDouble((transX & 0x0000_0000_FFFF_FFFFL)|( ((long)high)) << 32 );
|
|
}
|
|
|
|
public static double hypot(double x, double y) {
|
|
return Hypot.compute(x, y);
|
|
}
|
|
|
|
/**
|
|
* cbrt(x)
|
|
* Return cube root of x
|
|
*/
|
|
public static class Cbrt {
|
|
// unsigned
|
|
private static final int B1 = 715094163; /* B1 = (682-0.03306235651)*2**20 */
|
|
private static final int B2 = 696219795; /* B2 = (664-0.03306235651)*2**20 */
|
|
|
|
private static final double C = 5.42857142857142815906e-01; /* 19/35 = 0x3FE15F15, 0xF15F15F1 */
|
|
private static final double D = -7.05306122448979611050e-01; /* -864/1225 = 0xBFE691DE, 0x2532C834 */
|
|
private static final double E = 1.41428571428571436819e+00; /* 99/70 = 0x3FF6A0EA, 0x0EA0EA0F */
|
|
private static final double F = 1.60714285714285720630e+00; /* 45/28 = 0x3FF9B6DB, 0x6DB6DB6E */
|
|
private static final double G = 3.57142857142857150787e-01; /* 5/14 = 0x3FD6DB6D, 0xB6DB6DB7 */
|
|
|
|
public static strictfp double compute(double x) {
|
|
int hx;
|
|
double r, s, t=0.0, w;
|
|
int sign; // unsigned
|
|
|
|
hx = __HI(x); // high word of x
|
|
sign = hx & 0x80000000; // sign= sign(x)
|
|
hx ^= sign;
|
|
if (hx >= 0x7ff00000)
|
|
return (x+x); // cbrt(NaN,INF) is itself
|
|
if ((hx | __LO(x)) == 0)
|
|
return(x); // cbrt(0) is itself
|
|
|
|
x = __HI(x, hx); // x <- |x|
|
|
// rough cbrt to 5 bits
|
|
if (hx < 0x00100000) { // subnormal number
|
|
t = __HI(t, 0x43500000); // set t= 2**54
|
|
t *= x;
|
|
t = __HI(t, __HI(t)/3+B2);
|
|
} else {
|
|
t = __HI(t, hx/3+B1);
|
|
}
|
|
|
|
// new cbrt to 23 bits, may be implemented in single precision
|
|
r = t * t/x;
|
|
s = C + r*t;
|
|
t *= G + F/(s + E + D/s);
|
|
|
|
// chopped to 20 bits and make it larger than cbrt(x)
|
|
t = __LO(t, 0);
|
|
t = __HI(t, __HI(t)+0x00000001);
|
|
|
|
|
|
// one step newton iteration to 53 bits with error less than 0.667 ulps
|
|
s = t * t; // t*t is exact
|
|
r = x / s;
|
|
w = t + t;
|
|
r= (r - t)/(w + r); // r-s is exact
|
|
t= t + t*r;
|
|
|
|
// retore the sign bit
|
|
t = __HI(t, __HI(t) | sign);
|
|
return(t);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* hypot(x,y)
|
|
*
|
|
* Method :
|
|
* If (assume round-to-nearest) z = x*x + y*y
|
|
* has error less than sqrt(2)/2 ulp, than
|
|
* sqrt(z) has error less than 1 ulp (exercise).
|
|
*
|
|
* So, compute sqrt(x*x + y*y) with some care as
|
|
* follows to get the error below 1 ulp:
|
|
*
|
|
* Assume x > y > 0;
|
|
* (if possible, set rounding to round-to-nearest)
|
|
* 1. if x > 2y use
|
|
* x1*x1 + (y*y + (x2*(x + x1))) for x*x + y*y
|
|
* where x1 = x with lower 32 bits cleared, x2 = x - x1; else
|
|
* 2. if x <= 2y use
|
|
* t1*y1 + ((x-y) * (x-y) + (t1*y2 + t2*y))
|
|
* where t1 = 2x with lower 32 bits cleared, t2 = 2x - t1,
|
|
* y1= y with lower 32 bits chopped, y2 = y - y1.
|
|
*
|
|
* NOTE: scaling may be necessary if some argument is too
|
|
* large or too tiny
|
|
*
|
|
* Special cases:
|
|
* hypot(x,y) is INF if x or y is +INF or -INF; else
|
|
* hypot(x,y) is NAN if x or y is NAN.
|
|
*
|
|
* Accuracy:
|
|
* hypot(x,y) returns sqrt(x^2 + y^2) with error less
|
|
* than 1 ulps (units in the last place)
|
|
*/
|
|
static class Hypot {
|
|
public static double compute(double x, double y) {
|
|
double a = x;
|
|
double b = y;
|
|
double t1, t2, y1, y2, w;
|
|
int j, k, ha, hb;
|
|
|
|
ha = __HI(x) & 0x7fffffff; // high word of x
|
|
hb = __HI(y) & 0x7fffffff; // high word of y
|
|
if(hb > ha) {
|
|
a = y;
|
|
b = x;
|
|
j = ha;
|
|
ha = hb;
|
|
hb = j;
|
|
} else {
|
|
a = x;
|
|
b = y;
|
|
}
|
|
a = __HI(a, ha); // a <- |a|
|
|
b = __HI(b, hb); // b <- |b|
|
|
if ((ha - hb) > 0x3c00000) {
|
|
return a + b; // x / y > 2**60
|
|
}
|
|
k=0;
|
|
if (ha > 0x5f300000) { // a>2**500
|
|
if (ha >= 0x7ff00000) { // Inf or NaN
|
|
w = a + b; // for sNaN
|
|
if (((ha & 0xfffff) | __LO(a)) == 0)
|
|
w = a;
|
|
if (((hb ^ 0x7ff00000) | __LO(b)) == 0)
|
|
w = b;
|
|
return w;
|
|
}
|
|
// scale a and b by 2**-600
|
|
ha -= 0x25800000;
|
|
hb -= 0x25800000;
|
|
k += 600;
|
|
a = __HI(a, ha);
|
|
b = __HI(b, hb);
|
|
}
|
|
if (hb < 0x20b00000) { // b < 2**-500
|
|
if (hb <= 0x000fffff) { // subnormal b or 0 */
|
|
if ((hb | (__LO(b))) == 0)
|
|
return a;
|
|
t1 = 0;
|
|
t1 = __HI(t1, 0x7fd00000); // t1=2^1022
|
|
b *= t1;
|
|
a *= t1;
|
|
k -= 1022;
|
|
} else { // scale a and b by 2^600
|
|
ha += 0x25800000; // a *= 2^600
|
|
hb += 0x25800000; // b *= 2^600
|
|
k -= 600;
|
|
a = __HI(a, ha);
|
|
b = __HI(b, hb);
|
|
}
|
|
}
|
|
// medium size a and b
|
|
w = a - b;
|
|
if (w > b) {
|
|
t1 = 0;
|
|
t1 = __HI(t1, ha);
|
|
t2 = a - t1;
|
|
w = Math.sqrt(t1*t1 - (b*(-b) - t2 * (a + t1)));
|
|
} else {
|
|
a = a + a;
|
|
y1 = 0;
|
|
y1 = __HI(y1, hb);
|
|
y2 = b - y1;
|
|
t1 = 0;
|
|
t1 = __HI(t1, ha + 0x00100000);
|
|
t2 = a - t1;
|
|
w = Math.sqrt(t1*y1 - (w*(-w) - (t1*y2 + t2*b)));
|
|
}
|
|
if (k != 0) {
|
|
t1 = 1.0;
|
|
int t1_hi = __HI(t1);
|
|
t1_hi += (k << 20);
|
|
t1 = __HI(t1, t1_hi);
|
|
return t1 * w;
|
|
} else
|
|
return w;
|
|
}
|
|
}
|
|
}
|